
TOPOLOGICALLY UNKNOTTING TUBES IN EUCLIDEAN SPACE

BY

R. C. LACHER

In this paper we consider closed, locally flat embedding of tubes B-1 X R
and S-1 X R into R. In Part I we show that B- >< R knots in R but
unknots in R if n >__ 4. The situation with S- >< R is more complicated.

In Parts II and III, we show that S-1 X R can knot in R+ and in R and
in most R for k W 2 <_ n _< 2/. Thus a general low-codimensional unknot-
ting theorem is nonexistent. However, in Part IV we show that any closed,
locally flat embedding of S- X R in R, k _< n 3, is unknotted provided
that it is "unlinked at infinity", a condition derived while proving that the
examples in Part III actually knot. A corollary is that S- >< R unknots in
R’ifn >_ 2k 1, k >_ 2.
Embeddings of S- >< R into R are studied in Part V.
Several discussions with Joe Martin were helpful in the formulation of

Parts II and III.

Added in Proof. Closed, locally flat embeddings of S- >< R in R are clas-
(S--)sifted by the homotopy group r- provided 3(/ -t- 1) < 2n.

Definitions and Notation. We think of B as the dosed unit ball in euclidean
n-space R, and we identify R with R 0 in R". Also, S is the boundary of
B+. Thus B >< Rn- c R and S- >< R- c R. / is used to denote
the one-point compactification of R. Of course,/ is homeomorphic to S.

Let K be a (topological) k-manifold contained in the interior of the n-mani-
fold N. K is locally fiat at the point x e Int K (the interior of K) if x has a
neighborhood U in N such that (U, U n K) and (R, R) are homeomorphic
as pairs. K is locally fiat at the point x e Bd K (the boundary of K) if x has a
neighborhood U in N such that U, U n K) and (R, R) are homeomorphic
as pairs, where R R- X [0, c R.
An embedding f of a k-manifold K into the interior of the n-manifold N is

locally fiat at the point x e K if f(K) is locally flat at x; f is called a locally
fiat embedding if f is locally flat at every point of K.

Finally, an embedding is closed if its image is a closed subset of its range.

Pcr . Unknofin B- X R in R for n >_ 4

Before stating the main unknotting theorem, we prove two propositions.
The first says essentially that "setwise" unknotting implies "pointwise"
unknotting. The second shows that knotting occurs in dimension three.
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PROPOSITION 1.1. Any homeomorphism of B-1 X R onto itself can be
extended to a homeomorphism of R onto itself, k <_ n.

Proof. Let f be a homeomorphism of B- X R1. Notice that the closure
of the complement of B- X R in R is homeomorphic to S- X R X [0, ).
Thus f can be extended to a homeomorphism F of R by transposing the
formula

b--2(x,t) (f(x) t) x X R, O.

But then F can be extended to a homeomorphism of R" by a standard method.

POeOSTON 1.2. For k 1, 2, 3, there is a closed, locally fiat copy X of
B- X R in R such that the pairs (R, X) and (R, B- X R) are not borneo-
morphic.

Proof. First notice that there are locally flat, closed, copies Y of R in
R such that the pairs (R, Y) and (Ra, R) are not homeomorphic. For ex-
ample, one could take a simple trefoil knot (S, K) and remove a point p of
K from the pair, letting

(R, Y) (S- {p}, K- {p}).

The proposition follows by modifying (Ra, Y) in obvious ways.

THEOREM 1.3. Let f be a closed, locally fiat embedding of B- X R into
R. If n 4 then there is a homeomorphism h of R onto itself such that hf is
the identity on B- X R1.

Proof. We let . X u denote the one-point compactification of the
spuce X. Set A [f(B-1 X [0, ))]. A is a k-cell in R*’, and A is locally
fiat t every point other thn the point , u boundary point of A. Corollary
2.4 of [7] says that, since n 4, the pairs (, A) und (, k-simplex) ure
homeomorphic. Since this homeomorphism may be chosen to leave the ideal
point fixed, we simply assume that A [B- X [0, )]*. We think of a
as a simplex of " having as a vertex.

Let b be an interior point of A. Let be the join of b with the face of
A opposite , and let A be the line segment joining b and . Denote by
the homeomorphism of A A " "onto which stretches line segments parallel
to A. That is, is the identity on the face of A opposite b, (b) , and

is lineur on . It is easily seen that can be extended to a mapping (de-
noted gain by ) of onto itself with the following properties"

The only non-degenerate inverse set of is -( A, and

is the identity on B- X (- , 0] and on f(B- X (- , 0]).

Now, let Q [f(B- X , 0])]*uA. Q is a k-cell in " which is
locally fiat except possibly at the point of Bd Q. Again applying [7], there
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is homeomorphism g of/ onto itself such that

gl(Q) [B-1 X (-oo,0]]^uA.
It is a simple matter to modify g so that

g(Q) [B- X (-

g(b) b and

Moreover, using Corollary 3.2 of [8], we can find a homeomorphism g2 of
/" onto itself such that

g2 is the identity on g(Q)

g2 agrees with g-i on gl (A).

(Here, again, the restriction n >_ 4 is needed.) Notice that gg is a homeo-
morphism of/ which agrees with gl on Q and is the identity on A.

Define g by the formula g8 g g q Even though is not a function,
g is a well-defined homeomorphism of/ onto itself. It follows immediately
that

gf B- X R B- X R1.
Finally, by applying Proposition 1.1, let g4 be a homeomorphism of R onto
itself which agrees with (gf)- on B-1 R1, and let h g gs. This com-
pletes the proof.

COROLLARY 1.4. Let f be a closed, locally fiat embedding of S-1 X R into
R, n >_ 4. If f can be extended to a closed, locally fiat embedding of B X R
into R then there is a homeomorphism h of R" onto itself such that hf is the
identity on S- X R1.

Part II. Remark on links and cones

A. Lins. We describe here a well-known procedure for constructing a
pair of linked/c-sphere in S" whenever (S"--1) 0, 1

_
]c

_
n 2.

These and other constructions may be found in [12].
S S,--Let - be a piecewise linear, essential, mapping, and let

g S --* S X S-- be the graph of , given by g(x) (x, (x)).
We regard S and S-- as spheres in general position in a high-dimensional

euclidean spce, so that S. S--, the join of S and S--1, is a piecewise
linear copy of S. Moreover, S X S-- is embedded in a natural way in S
as the set of midpoints of segments ioining S to S--1.

g S --> S is a piecewise linear, locally fiat embedding.

Clearly g is piecewise linear. To see that g is locally fiat, let V be an open set
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in S-- and h V R" a homeomorphism, and let U -(V). We have
a homeomorphism H" U V U X V by the rule

H(x, y) (x, h-l[h(y) h(x)]).

Since Hg(x) (x, h-l(0)), x e U, g is locally flat in Sk Sn-k- and hence
in S.

g S (S" S) is not homotopic to a constant map.

This last statement is clear, since there is a retraction of S S onto S--which takes g(x) to (x), x e S.
B. Cones. Now we describe a procedure for "local" linking of two cells

in S. Suppose that $1 and S are locally flat (k 1)-spheres in S- such that
St is not contractible in S- S. Write S as the ioin S-1 {p, q} of S-1

with two points, and let D Si q, i 1, 2.
Let 2h and 2: be the respective boundaries of disioint k-simplexes in S"-,

and let zX 2:i q, i 1, 2.

There is no homeomorphism of S" which takes Dt u D. onto

In fact, suppose such a homeomorphism exists. Then there is an isotopy of
of S which moves points only in a neighborhood of q and which pushes Dt
onto a k-cell /)t such that BdDt St, t sn-. q, and /t n D 0.
But then retraction of (Sn-t. q) {q} onto S- along ioin lines maps/t
into S- S_, and the fact that St is not contractible in S-1 S is con-
tradicted.

ConoAY 2.1. Let K be the cone over the disjoint union of two ( 1)-
(S,--spheres. If r_t O then K knots in S’, 2

_
k

_
n- 2. In par-

ticular, K knots in S for 1 2.

Added in pro@ Using [4], [9], [11] and [13], one can prove" Eqvalence
classes of embeddings of K into S, locMly flat on each simplex of K, are in

n--k--lone-one correspondence with- provided 3(k + 1) < 2n.

Part Ill. Knotting S- X R in R
A. Codimeio wo. Nnogging occurs in eodimension wo simply as a

refleegion of ghe knogging of eodimension gwo sphere pairs, as follows. If
S is a locally flag ( 1)-sphere in R+, leg (R+, Y) (R+ X R, S XR).
Clearly (R+s, Y) deforms ongo (R+, ), so ghag, in pargieular, ghe homogopy

(R+ (R+ S) are isomorphicgroups = Y) and =
cop Y of S- X R i R+ chh he pir (R+, Y) =d [R+, S- X R)
re o homeomorphic.

(his follows from ghe above discussion if 2. The ease 1 1 is well
kno=n.)
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B. Codimension three or more. Suppose that $1 and $2 are locally flat
(It 1)-spheres in S-1 with the following two properties" $1 is not contrac-
tible in S-1 $2, and there is a nice piecewise linear annulus A properly
embedded in S’-1. p such that Bd A S u S. Then we can construct a
knotted embedding of S- X R in R" as follows. Write S" S"- {p, q/,
let K (SuS:).q, and let

(R, Z) (S" {qI, A u K {ql ).

It follows from IIB that (R, Z) and (R", S-1 X R) are not homeomorphic.

THEOREM 3.2. If _1(S"--) O, there is a closed, piecewise linear,
(locally fiat) copy Z of S- X R in R" such that the pairs (R", Z) and
(R’, S-1 X R) are not homeomorphic.

Proof. This follows from the above discussion, except for the existence of
the annulus, which follows from Theorem 1.1 of [6].

Remar]cs. 1. If n >_ 4, any "non-standard" embedding of S- X R into R
provides an example of and embedding which cannot be nicely extended
over B- X R. See Corollary 1.4.

2. Corollary 3.1 and Theorem 3.2 illustrate the fact that closed, locall
fiat embeddings f of S-1 X R into R may knot for two reasons" the spheres
f(S- X t) may be knotted in cross-sectional hyperplanes, or the spheres
f(Sk-1 t) and f(q-i X (--t)) may be linked in cross-sectional hyperplanes
for large t. In Part IV we show that, if ] <_ n 3 (so that (/ 1)-spheres
cannot knot in R-1) and if the spheres f(S- X t) and f(S-1 X (-t)) are
topologically unlinked for large t, then f is unknotted. See Theorems 4.3
and 4.4.

3. The example in Theorem 3.2, n 2/c, is the non-compact version of
Hudson’s example of a knotted S-1 X S in S. (See a description of
Hudson’s example in [11].)

Added in proof. Using [4] and [13] it follows that closed, locally fiat era-
beddings of S-1 :>< R in R are classified by -1 provided 3(/ -t- 1)
< 2n.

Part IV. Unknotting S- R in Codimension Three
As in Part I, the "pointwise" and "setwise" unknotting problems are

equivalent. This fact is stated explicitly in the corollary following the next
proposition.

PROPOSITION 4.1. Any homeomorphism of S- X R onto itself, >_ 2,
can be extended to a homeomorphism of B X 110tO itself.

RProof. Letf be a homeomorphism of S- X R onto itself. For each e

let S S- X and 2 f(S). Since Z separates S- X R for each t,
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we can define 2 < Z, if Z lies in the complementary domain of Z which
contains S, for arbitrarily large values of u. The following is an easy ex-
ercise"

The function -- 2; is either order-preserving or order-reversing, and con-
sequently the orderingZ Z, is a linear ordering. Since the homeomorphism
(x, t) --. (x, -t) of S- X R can obviously be extended to a homeomorphism
of B X R, we may, and henceforth do, assume that the function -- 2 is
order-preserving.
Now we need the following

SUBLEMMA. Suppose that to lies interior to S- X [a, b] for some a < b.
Then there is a k-cell Ao in B X a, b) with the following properties"

(i) A0 (Sk-1 X R1) Bd A0
(ii) Int A0 is locally fiat in B X R, and
(iii) A0 is "locally topologically perpendicular" to S-1 X R at each point

of ,o
Proof of sublemma. B X [a, b] is a (/ -t- 1)-cell, and Z is bicollared’

hence flat, (k 1)-sphere in the boundary of B X [a, b]. The existence of
A0 follows immediately. (See [1].) Thanks to the referee for pointing out
this short proof of the sublemma.

We can now extend f as follows. Construct a sequence Its/-o of num-
bers, with t ( t+, such that

for each i, there is u number with Z separated from+ by S,

t- o asi- oo and t-

Then, using the sublemma, construct, cells
be the (] d- 1)-cell in B X R bounded by

A u A+ u f(S- X [ti, t.]),

set D B* X t and C B X [t, ti+]. Extend f radially to a homeomor-
phism of D onto A for each i, and then extend radially to u homeomorphism
of C onto F for each i.

COOLAaY 4.2. Any homeomorphism of S- X R onto itself can be ex-
tended to a homeomorphism of R onto itself, 3

_
k <_ n.

Proof. Apply Propositions 4.1 and 1.1.

THEOUEM 4.3. Let f be a closed, locally fiat embedding of S- X R into
R’, l <_ n 3. If f can be extended to a closed, locally fiat embedding of
S- R o B [b, into R’*, then there is a homeomorphism h of R onto
itself such that hf is the identity on S- X R.

Proof. As in Theorem 1.3, we work in the one-point compactification
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/" of R. We may assume that the embedding f can be extended to an em-
bedding F of (S-1 X R1) u(B X [0, )) into / in such a way that
IF(B X [0, ]^ is a locally fiat (/ + 1)-cell in/ (see [7]). We assume,
therefore, that F is actually the identity on B X [0, ).

The proof proceeds now following the same idea as the proof of Theorem
1.3. We consider the k-sphere S [f(S-1 X (-, 0])]^u B 0. This
sphere is locally fiat except possibly at the ideal point, so [10] there is a homeo-
morphism g of/ onto itself taking S onto [S-1 X (--00, 0]]^u B1 X 0;
here is where we use the hypothesis k _< n 3. It is easy to modify g so that,
n addition,

g(B X 0) B X 0, g() and g(0) 0.

Using Corollary 3.2 of [8], we may assume that

g is the identity on [0 X [0, )]^ A.

Now, let be a mapping of/ onto itself with the following properties"
--1The only non-degenerate inverse set under q is A.

q is the identity on S-1 X (- , 0] and on f(S- X (- , 0]), and
maps B X 0 homeomorphically onto IS- X [0, )]^.

Define h by h g-. Clearly h is a homeomorphism of R"", and

hf S- X R Sk-I X R1.

An application of Proposition 4.1 completes the proof, provided k >_ 2. The
case k 1 may be handled separately altogether using trivial range techniques.

Remark. Intuitively, Theorem 4.3 says than an embedding f unknots if,
for sufficiently large t, f(S- X t) is geometrically unlinked from f(S- X s)
for all s. We can refine this idea slightly, making use of the following defini-
tion.

In the light of the proof given in Part IIB, it seems reasonable to say that a
closed embedding f of S*- X R into R is topologically unlinked at infinity if
there is a locally flat (n 1)-cell Q in/ such that the following conditions
are satisfied.

(i) The ideal point is an interior point of Q,
(ii) Q does not intersect the image of f, and
(iii) There is an open set U in/" containing which is separated by Q

such that U n f(S- X , 1]) and U n f(S-1 X [1, lie in different
components of U Q. That is, f(S- X , 1]) and f(S- X [1, oo

approach from opposite sides of Q.

THEOREM 4.4. If f is a closed, locally fiat embedding of S- X R into R,_
n 3, which is topologically unlinked at infinity, then there is a homeo-

morphism h of R onto itself such that hf is the identity on S-1 X R.
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Proof. It suffices to show that f can be extended to closed, locally flat
embedding of S- R B X [b, oo into R for some b.

LetD =f(S- (--,-1]) andD =f(S- X [1, )). LetQbe
locully flut (n 1) cell in/ such that e Int Q and such that D and
D approach from opposite sides of Q. By collaring argument [1],
we can find a locally flat embedding o of B- q into/" such that

(B"-) Q nd (B"-.q) D l}.

Let A be the arc (0. q).
Since o can be extended to a homeomorphism of *"R there is u mapping

of /" onto itself whose nondegenerte inverse sets are precisely the sets
q(St, tq), 0 < <_ 1, St being the sphere of radius in R"-. k maps the
(n 1)-cell (S tq) onto (tq) A. We may take to be the identity
on D.
Now, D,. is a locally flat k-cell in/" by Corollary 5.3 of [3], since we have

n > 4. Also, since n > 4, there is a homeomorphism g of/ such that

g(D,.) [S- X [1, oo)]^

and g(A) is straight line segment. (See Theorem 3.1 of [8].) Since there
is a neighborhood U of such that U n f(S- X R) lies in A u D:, it is
clear that there is a locally flat (k 1)-cell E, containing g(D) as a locally
flat face, such that

E n gbf(S- X R) g(D) and Eng(A) o }.

Thus #- is defined and continuous on g-* (E), as well as on a neighborhood of
g-(E) oo}. Therefore f can be extended to a closed, locally flat em-
bedding of

S- X Rt B X [b, o)

into R for some b by mapping B [b, o onto b-*g-(E) }.
An ppliction of Theorem 4.3 completes the proof.

ColOLlV 4.5. If f is a closed, locally fiat embedding of S- X R into
R, k > 2, n > 2k 1, then there is a homeomorphism h of R such that hf
is the identity on S- X R.

Proof. First, it follows that k < 2n/3 1. Therefore, by Theorem 1
of [4] the embedding of [S*-* R]^ into/" is locally tame at the point
That is, there is a homeomorphism g of/ such thut g is piecewise lineur on

[S- X (- o, -b] u S-* X [b, oo)]^

for some b > 0. Since k-dimensional cones unknot piecewise linearly in S
for n >_ 2k + 1, it is clear that gf is topologically unlinked at infinity, and the
result follows from Theorem 4.4.
The fact that k-dimensional cones unknot piecewise linearly in S" for

n >_ 2k -]- 1 follows by combining [5] and [9].
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Part V. Unknotting S- R in R" for n >_ 4

We begin by showing that S R knots in R in the worst possible way,
as follows. (Compare with Proposition 1.2.)

PROPOSITION 5.1. There exists a closed, locally fiat embedding f of S X R
onto R with the following properties"

(i) f cannot be extended to a closed embedding of B R into R, and
(ii) f cannot be extended to a closed embedding of S X R X [0, oo into R.
Proof. Let g be a closed, locally flat embedding of B [0, oo into R

which embeds 0 X [0, as a wild ray in R. Now let h be an embedding of
B (- , 0] into B X [0, o such that h is the identity on B 0,

h(B X (-- , 0)) (Int B X (0, ),

and h ties a trefoil knot in 0 X (- , 0]. Then define f by
fl,Sx (--,O]=ghlS1X (-,0] and flSx [o, (R)) =elZ x[o, ).
We have the following criterion for unknottedness when n >_ 4.

THEOREM 5.2. Let f be a closed, locally fiat embedding of S’- X R into
R’, n >_ 4. If there are numbers a < b such thatf can be extended to an embedding
of (S’- X R) u (B- X (a, b) into R’*, then there is a homeomorphism h
of R onto itself such that hf is the identity on S- X R.

Proof. Consider the induced embedding] of (S"- R) ^ into . By the
hypothesis, ] can be extended to an embedding F of (S- X R) ^ u (B-1 X c)
into / in such wy that the spheres

S+ F([S’- X [c, )]^u Bn-1 X c)
and

S_ F([S’- X (-, c]]^u B- X c)

are locally fiat in/ except possibly at the ideal point. Therefore [2], since
n >_ 4, S+ and S_ are locally fiat, and [1] bound n-cells Q+ and Q_ in/
such that Q+ n Q_ u F(B- X c). Hence F can be extended to an
embedding (B-1 X R) ^ into /" by radial projection. An application of
Corollary 1.4 completes the proof.
In order to pinpoint the unknotting problem for S"- X R in R’, n >_ 4,

we consider the following conjectures.

z(n). Let M be an (n 1)-manifold in the interior of the n-manifold N,
and let p be gn interior point of M. If p has a neighborhood U in M such
that U {P/ is locally fiat in N, then M is locally fiat at p.

r(n). Letfbe a closed, locally flat embedding of S- X R into R’. Then
f can be extended to a closed embedding of B"- X R into R".

THEORE 5.3. z(n) :* r(n) for n >_ 4.

Proof. First suppose that z(n) is true, and let f be a closed, locally flat
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embedding of Sn- X R into Rn. Consider D [f(S"- X [0, ))]^. D is
an (n 1)-cell in/ which is locally fiat except possibly at the ideal point.
By a(n), D is locally flat, and hence we can construct an extension of f over
(S"- X R1) u (B- X [0, ), making use of a collar for D on the side "away"
from f(S-2 X (- , 0]). Then f can be extended over all of Bn-1 X R by
Theorem 5.2.

Now suppose that r(n) is true, and let D be an (n 1)-cell in/ which is
locally fiat except possibly at , an interior point of D. By a collaring
argument [1], we can find a closed embedding G of Sn-2 X R X [0, into
R" such that

G(S’- X 0 X [0, )) D {},
and

G(S’- X R X 0) is locally fiat in R’.

Let f be G restricted to S"- X R. By (n), f can be extended to a closed
embedding F of B"-1 X R into Rn. Since the complementary domain of
f(S’- X R1) which intersects D is not homeomorphic to R", it follows that
F(B’- X R) and G(S’*- X R X [0, )) intersect in f(S’- X RI). Since
B- X R and S- X R X [0, intersect in S"- X R and fill up R" in a
natural way, we have constructed a homeomorphism H F u G of R onto
itself which takes S- 0 X [0, onto D I. Thus I takes a standard
cell onto D, and the proof is complete.

Remark. Both a(3) and (3) are false. See Proposition 5.1.

Added in Proof. R.C. Kirby has proved (n) for n _> 4.
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