CRITERIA FOR POSITIVE GREEN'S FUNCTIONS

BY
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If L is an elliptic operator defined by
(1) Lv=—-Z—(Z-<”a) 2Zb,—-+cv

$i=1 0%; i=1
and ¢(z) > 0in a bounded domain D C R", then the Green’s function G(z, £)
associated with L on D is known to be positive in D X D whenever it exists.
This fact follows readily from the characteristic properties of G(z, £) and the
Hopf maximum principle which applies to solutions of Lv = 0 when ¢ > 0.
In this paper we shall use recently proved comparison theorems for elliptic
equations to establish more general conditions under which fundamental
solutions of (1) are non-negativein D X D. Such conditions will be seen to
involve all the coefficients of L and, in the case L is self-adjoint, will reduce
to the assumption that the smallest eigenvalue of

Lu =N inD
u=0 ondD

(2)

be positive.
Comparison theorems for elliptic equations deal with solutions v of Lv = 0
and » of Au = 0 where L is given by (1) and

(3) = —Z(m(«xm6 ) Zm—+vu

If there exists a non-trivial solution u of A = 0 in a domain Dy C D which
vanishes on 8Dy, and if the operator L is “smaller” than A in an appropriate
sense to be made precise below, then such comparison theorems assert that
every solution of Lv = 0 has a zero in Dy .

For non self-adjoint equations of the form Lv = 0 where, L is given by (1),
we make use of a comparison theorem due to Swanson [1].

In order to make the matrix

an G — b
an1 ctr Opn — bn
—bl P _..bn g

positive semidefinite, Swanson formulates the condition

(4) g det(a;;) > — Z?=1 b:B;,
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where B; is the cofactor of —b;. The following, then, is a special case of
the prinecipal result of [1].

TuroreM 1.  Suppose g(x) satisfies (4) in D and that for some Dy C D there
exists a non-trivial solution of Lu. = 0 such that w = 0 on dDy. If go > g(x)
in Dy then every solution of (L — gol)v = 0 has a zero in D,.

In order to derive criteria for the non-negativeness of G(z, £) from this
theorem, we recall that G(z, £) is zero for « € dD or ¢ € dD, and that for = £,
G is a solution of LG = 0 in the variable z and a solution of L*G = 0 in the

variable f, where
db;
--Zy <“”a_é>+22"‘" ( +22ae,)

Furthermore, im  — & G(x, &) = lim § — 2, G(20, &) = o for (xq, &)
eD X D.

THEOREM 2. Suppose g(x) satisfies (4) in D and that for some go > ¢
either Lv = gov or L™ = go v has a solution v which is non-zeroin D. If G(x, £)
exists, then G(x, £) is non-negative in D X D.

Proof. Suppose, to the contrary, that G(xo, &) < 0 and,_ to be specific,
that Lv = gov has a solution v which is non-zero in D. Since

limfﬁfo G(x) EO) = + «©,

there exists a proper sub-domain Dy € D (not containing &) such
that G(x, &) < Oforz e Dy, G(x, &) = Oforx € 3D, , and (since & ¢ D — D)
in which G(z, &) is a regular solution of LG = 0. By Theorem 1 we obtain
the contradiction that v(x) has a zero in Dy . A similar argument applies in
case L*» has a non-zero solution in D.

In case L is self-adjoint (i.e., b = 0 for 2 = 1, ---, n) we can choose
g(xz) = 0. If the first eigenvalue of (2) satisfies y > 0, then there exists a
slightly larger domain D’ D D for which the first eigenvalue of

Lu =Ny inD
u=20 on oD’

also satisfies )\; > 0 and the corresponding eigenfunction v is positive in D.
Setting go = M we obtain

CoroLLARY 1. If L s self-adjoint and the first eigenvalue of (2) is positive,
then G(zx, £) is non-negative in D X D.

It is of interest to note that for self-adjoint operators the hypotheses of
Corollary 1 are satisfied whenever ¢c(x) > 0 in D and that these hypotheses
also imply the existence of G(z, £). Incase L is self-adjoint one can also derive
similar conclusions about the Robin’s function R,(x, ¢) associated with L and
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the mixed boundary conditions
(5) Zror=0 on oD —w <o(@) < 4o
(where o(z) = + o denotes the boundary condition v(x) = 0). This fact

follows from the characteristic properties of Ro(z, £) and the following special
case of a comparison theorem proved by the author [2].

TueoreM 3. Suppose u(x) and v(x) are, respectively, non-trivial solutions

of
O (1) Lo _
- 5 (a,'j é)xi> + cu = 0; 5 4+ o(z)u =0 on 9Dy,
3 v v B
_Z E(qzij 5@) + o = A\; ™ + 7(x)v =0 on 8D,.

If N> 0and — o < 7(z) < a(z) < 4+ on dD,, then either v(x) has a
zero in the interior of Dy or else A = 0 and v s a constant multiple of u.

Tueorem 4. Let R,(x, £) be the Robin’s function associated with the self-
adjoint operator L and the boundary conditions dv/dv + ov = 0 on dD. If the
Sirst eigenvalue \ 1 of

Ly = win D
/dv + ov = 0 on dD; —®o <g(@) £ ®
18 positive, then R, (x, &) is non-negative in D X D.
Proof. Suppose to the contrary that R.(xo, &) < 0 for some
(%o, %) € D X D.

Then there exists a proper sub-domain Dy C D in which R,(z, &) is negative,
R, satisfies LR = 0, and such that

R,(x, &%) = 0 forx edDyn D,
OR,/0v + cR = 0 for x € 9Dy n D.

Setting u(z) = R,(z, %) in Theorem 3, it follows that every solution of
(L — MI)v = 0 which satisfies v/3» + ov = 0 on dDy n 8D has a zero in
D, and we obtain the contradiction that the first eigenfunction of (6) has a
zero in D.

The fact that the non-negative Green’s and Robin’s functions considered
above are actually positive in D X D follows from an application of the Hopf
maximum principle. If lim,,,, G(z, &) = 0 for some interior point z, ¢ D
and if ¢(zy) > 0, then the Hopf maximum principle implies that G(z, &)
changes sign at ¢ . However even if ¢(z,) < 0 the Hopf maximum principle
can be applied locally to yield the same conclusions, as is shown in [3]. Thus
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the fact that G(z, £) or R,(z, £) is non-negative in D X D is actually equiva-
lent to the positivity of the fundamental solution.
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