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1. Statement of results
THEOREM. Let M be a triangulated 3-manifold, and suppose that M is

compact, connected and simply connected. Then there is a subcomplex K of a
triangulation of the 3-sphere S3, and a mapping

of S onto M, such that
(1)
(2)
(3)
(4)
(5)
(6)

Here (5) means that each set f-1 (x) is connected.
mean a 1-dimensional polyhedron.

dim K _-< 2,
f K is simplicial (relative to K and a subdivision of M),
f l(S- K)is one-to-one,
f(g) n f(S K) O,
f is monotonic, and
Each set f-(x is either a point or a linear graph.

By a linear graph we

2. Bing’s example
R. H. Bing [B] has given a curious example of a mapping of the sort de-

scribed in the above theorem. In Bing’s example, M is S, but the iaverse-
image sets f-l(x) are of an unexpected sort. Consider (as shown on the
left in Figure 1) two circular disks D1, D2 which intersect each other in a
common radius. Let their boundaries be the circles C and C2. Each of
these is decomposed into concentric circles. (In the figure, we show one such
circle J1 in D, and one such circle J in D.) Thus we have a collection G of
sets, consisting of (1) the points of S (D1 u D), (2) the circles C1 and
C2 and (3) infinitely many "figure 8’s" of the type J1 u J..
The collection G is upper-semicontinuous in the usual sense: if X is any

closed set in S8, then the union of all elements of G that intersect X is also a
closed set [K]. Thus we can define a Hausdorff topology in G, by saying

Received March 16, 1967.
A portion of, the work reported here (in Sections 3 through 10 below) was done while

the author held a Guggenheim Memorial Foundation Fellowship. This portion of the
paper was also sponsored by the National Science Foundation and the Institute for
Advanced Study.

-Theorem 3.1 below was announced in [M] (see the bibliography at the end), and
earlier, in colloquia at Warsaw and Madison. Since then, a weaker version of the theorem
has been proved by Wolfgang Haken [H1].

451



452 EDWIN E. MOISE

FIGURE 1

that a set H c G is open in the space G if the union of its elements is open
in the space S3.

It was shown by Bing that the space G is homeomorphic to S3. Following is
a proof of this result, different from his.

Let us split D2 into two conical surfaces, as shown in the middle of Figure 1.
Under this operation, C2 is fixed. To each other circle J in D there corre-
spond two circles J., J, on the respective cones; and to the center of D
there correspond two points N and S. Thus we get a new space G’ whose
points are (1) the arc from N to S (corresponding to C1) (2) sets of the type
J2 u J J’ (3) C2 and (4) the points of the exterior of the figure. The
region in the interior of the two conical surfaces is regarded as empty. While
the splitting operation G ---. G’ is not continuous, or even one-to-one, if re-
garded as an operation in the 3-sphere, it is rather easy to see that it induces
a homeomorphism between G and G’; the obvious correspondence G *- G’ is
one-to-one, and is continuous both ways. The point is that when a circle
in D2 is split into two parallels of latitude J, J, these sets are still joined
by an arc J.
Each circle J or J is the boundary of a plane disk. To get the space

G", we map each such disk onto a point, by a mapping S -- S which
is a homeomorphism except on the union of the disks (that is, except on the
closed interior of the union of the two cones.) Obviously G’ and G" are ho-
meomorphic, because induces a one-to-one continuous mapping G’ G".

It is now easy to see that the arcs in G" can be mapped onto points by a
mapping which is one-to-one elsewhere in S3. Therefore G is homeomorphic
to S.



MONOTONIC MAPPING THEOREM 453

3. A weaker form of the monotonic mapping theorem
For the sake of convenience, we state a weaker form of the Monotonic

Mapping Theorem, incorporating into it some of the apparatus to be used
in the proof. Sections 3 through 10 will be devoted to the proof of Theorem
3.1. In the rest of the paper, we shall show f can be chosen in such a way
that each set f-(P) is a point or a linear graph.

THEOREM 3.1. Let M be a triangulated 3-manifold, and suppose that M is
compact, connected and simply connected. Then there are subcomplexes K and
D of a subdivision of the 3-sphere S, a subcomplex L of a subdivision of M, and
a mapping

f: S---M
of S onto M, such that

(1) M L is an open 3-cell,
(2) dimL-- 2,
(3) dimK-< 2,
(4) f lK is simplicial,
(5) f(K) is the 1-skeleton L of L,
(6) f is monotonic,
(7) f Sa K) is one-to-one,
(8) f(K) n f(S K) O,
(9) f(D) L,

(10) for each 2-simplex r of L there is exactly one 2-simplex a of D such
that f a is a simplicial homeomorphism of a onto r.
The complex L is of familiar type. If we represent M in the usual way

as a singular 3-cell with singularities only on its boundary, then L is the image
of the boundary. K is like the set D u D in Bing’s example. Note, how-
ever, that under the conditions of the theorem, 2-simplices of K may be
mapped onto points. Note also that while Bing’sD uD is contractible, Theo-
rem 3.1 tells us nothing at all about the topology of K, except that its dimen-
sion is <_- 2. (Obviously K u D must be contractible: M L is an open 3-
cell,

f(S- [guD]) M-L,
and f is a homeomorphism except on K. Therefore S [K u D] is an open
3-cell, and its complement K u D is contractible.)

4. The topological contraction cell
If A is an n-manifold with boundary, then Int A denotes the interior of A,

that is, the set of all points of A that have open neighborhoods U in A, ho-
meomorphic to Euclidean n-space E. The "intrinsic boundary" A Int A
of A is denoted by BdA. If A is a subset of a space S, thenFrA is the
boundary (or frontier) of A relative to S, that is, C1 (A) n C1 (S A).
Given a 3-manifold M as in Theorem 3.1, we first represent M as a singular



3-cell with singularities only on its boundary. That is, we define a mapping

" -.Mof a 3-simplex onto M, such that (1) is simplicial, relative to M and a sub-
division of a3 and (2) iInt a8 is a homeomorphism. It follows, of course,
that maps no edge or 2-face of Bd a8 onto a point, and that the 2-simplices
of the subdivision of Bd a3 are identified in pairs by the mapping . Let

L (Bd a).
After a suitable subdivision, this L will be the L of Theorem 3.1.

(Such a and L can be constructed by the following well known process.
Let a be any 3-simplex of M, let N M Int a, and let aa -- a3 be
the identity. Inductively, suppose that we have given a piecewise linear
mapping 3 -- M of a onto a set M which is the union of some or all of
the 3-simplices of M, such that 1 Int a3 is a homeomorphism. If M is
not all of M, then there is a 3-simplex r of which does not lie in M but
has a 2-face r in common with Fr Mi. There is therefore a piecewise linear
mapping h M -- M u r3, such that if i+ , then + Int aa is a
homeomorphism. Let k be the number of 3-simplices in M. Then is
the that we were looking for.)
For each i, let

N M (Int a).
Then

N N M-Int3.
And if we carry out the above process in the usual way, then at each stage
we have

N+ N Int r u Int r.
Therefore N+ is a retract of Ni. By induction on i it follows that

:PROPOSITION 4.1 L is a retract of N.

:PROPOSITION 4.2. N is contractible on itself to a point.

Proof. This is obtainable by standard methods, as follows. By hypothe-
sis, we know that the fundamental group v(M) is 0. It follows that the
1-dimensional homology group Hi(M) (with integers as coefficients) is also

0, because HI(M) is isomorphic to the factor group of r(M) by its com-
mutator subgroup. (See [ST, p. 173].) By the Poincar Duality Theorem
[ST, p. 245] it follows that H(M) 0. Since (M) 0, it follows that M
is orientable [ST, p. 206], so that H(M) is isomorphic to the group Z of
integers. Since M is connected, H(M) is obviously isomorphic to Z.

Similarlyl H(N) Z. It is readily erifiable that (N) 0, because
M N a, and N n aa is the 2-sphere Bd a.. Therefore H(N) 0. We
assert, finally, that H(N) O.
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Proof. LetZbea2-cycleonN. ThenZ0onM, so thatZisho-
mologous on N to a 2-cycle Y on Bd N. Since H (N) 0, and Ha(M) Z,
it follows by the Mayer-Vietoris Theorem that every 2-cycle which generates
H(Bd N) is homologous to zero not only on a3 but also on. N. Therefore

Z.-YN0 onN,
which was to be proved.

This mens that N satisfies the hypothesis of the classical contractibility
theorem of W. Hurewicz [H]; and the proposition follows.
By the preceding two propositions we have immediately-

PIOPOSlTION 4.3. L is contractible on itself to a point.

We recall that L was defined as

L (Bd 3),
where

was a singular 3-cell with singularities only on its boundary. Let us now
think of the domain of definition of as the closure C1 (S B) of the com-
plement of a 3-simplex B in the 3-sphere. Thus we have a piecewise linear
mapping

: C1 (S B) -- M,Bd B -- L,

such that [ (S B) is one to one. Since L is contractible, the mapping
$" Bd B -- L can be extended to give a mapping B --+ L. Thus we have
the following:

PROPOSITION 4.4. There is a 3-simplex B in the 3-sphere, and a mapping

S--M
such that

(1) Sa B) is one-to-one,
(2) Bd B is simplicial, relative to a suitable triangulation of B,
(3) (B) n(8 B) O, and
(4) (B) i.

We might have added that (5) 1 (S B) is piecewise linear. But this
fact will not be needed, and will not be preserved under geometric operations
soon to be performed.

5. The relative simplicial approximation theorem

Given a mapping
S --- M,as in Proposition 4.4, it follows from Zeeman’s relative simplicial approxima-
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tion theorem [Z] that there is a mapping

q Ss--, M,
such that (1) 1($8 B) I(S B), (2) (B) L, and (3) is
simplicial (relative to M and a suitable subdivision of Sa. To sum up"

THEOREM 5.1. There is a simplex B in the 3-sphere, and a mapping

q S-- M
such that

(1) q $3 B) is one-to-one,
(2) B is simplicial (relative to subdivisions of B and M
(3) q(B) n q(S B) O, and
(4) (B) i.

Hereafter, when we speak of a simplex of B, M or L, we shall mean a simplex
of one of the subdivisions referred to in condition (2).

6. The operation and the definitions of f, K and D
Consider the union W of two 3-simplices , r whose intersection is a face

a of each of them. Suppose that we have a mapping

,: WX,
of W onto a subcomplex X of M, such that

klr is one-to-one,

! aa is simpliciM,

k(v3) k(v4), and

k[a is one-to-one.

(Here the condition that /I ra be one-to-one is not as restrictive as it looks;
in practice, under the scheme now to be described, aa will be a simplex of the
complex K on which a given mapping fails to be one-to-one, and a will lie
in Fr K. We then take v0 as we please, close to the barycenter of as, in the
complement of K.)
Under these conditions, the sets k-x (x) (x e X) are (1) the points of r as,

(2) the points of vlv2 and (3) infinitely many linear segments in as, one of these
being v3v4 and the others being parallel to vary.

Obviously X is a 3-cell, and

BdX BdW.
Now the sets

h-l(x), x e Bd X

form a hyperspace in Bd W; and this hyperspace (under the natural topology)
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FIGURE 2
W aa tJ r

is a 2-sphere. In fact, it is easy to see that there is a mapping

p W---*r
of W onto r, such that

(1) ( v) v
(2) (v, v v) v
(3) p(v v v) v v va, linearly, and
(4) p] CI(Bd ra ) is the identity.

To get such a mapping, we mash a against a and slightly past , allowing
the image to protrude slightly into ra.
Now let

’ W---> X
be defined by he condition

’= ,.
When we replace b by k’, the effect is o delete Int a from the set on which

k fails to be one-to-one. The operation a is he operaion which replaces b by
’. Thus

o,, ," WX ,(W).
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Starting with the mapping given by Theorem 5.1, we shall construct a
new mapping by repeated applications of the operation a.

Let a be a 2-simplex of Bd B. Then a is a face of exactly one 3-simplex
a of B; la is simplicial and one-to-one; (a) (a); and obviously
there is a 3-simplex r, with a as a face, such that

We now apply the operation a. This gives a mapping

’= a" S----M.
And we have added Int a to the set on which is one-to-one.

Let
B1 B- (Inta3tInta).

Then B1 is not necessarily a manifold with boundary. But there is a 2-sim-
plex a2 of Fr B1 such that

If a. lies in a 3-simplex a of B1, we repeat the operation a, so as to delete
Int a. u Int a from B. In a finite number of such steps, we get a complex
Bn, a mapping

(I)n S M,

and a 2-simplex an of Bn, such that On is a simplicial homeomorphism of
an onto r, and a lies in no 3-simplex of B. Here an is one of the two 2-sim-
plices of Bd B which are mapped onto r by . Of course, (I)n (Sa Bn) is
a homeomorphism; this follows by an easy induction. Note also that Bn
contains an
We do this for every 2-simplex r .of L. Given r, there are always exactly

two 2-simplices of Bd B which are mapped onto r; we choose one of them,
repeat the above process, and get a a which is mapped onto r and which lies
in the interior of the set on which the new mapping is one to one. Let the
final mapping thus obtained be fi and let D be the complex whose simplices
are the 2-simplices a and their faces. Let B be the "ultimate Bn", consisting
of all simplices remaining in B after the operations just performed. Thus
B D t K, where K is the set of all simplices of B other than the a ’s.
Note that it is not necessarily true that f(K) n f(S K) 0, because K
may contain 3-simplices a such that f(a) r e L. The properties of f, K,
and D are described in the following propositions.

POPOSITION 6.1. K t D is a subcomplex of a subdivisoin of S and

f (K t D) is simplicial.

(Because K t D is a subcomplex of B, and f (K t D) (K t D).)

PROPOSITION 6.2. f(D) L. And for each r ae L there is exactly one e D
such that f maps a simplicially onto r
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By construction.

PROPOSITION 6.3.

By induction.

PROPOSITION 6.4.

By induction.

PROPOSITION 6.5. f(K) C L.

Because f[ K [ K, and K c B.

PnOPOSTON 6.6. f lFr K is monotonic.

This calls for a proof. We recall that

f[(S K) is one-to-one.

f(BdK) a/(S3- K) 0.

:CI(S3-B)--+M
can be regarded as an identification mapping, representing M as a singular
3-cell with singularities only on its boundary. We got if from by a sequence
of operations a. Thus we have a sequence

q), qh, qh, v f;

and we have a corresponding sequence of complexes

B, B1,B2,...,Bv- KuD.

LetC Cl(S3- B);andforeachilet

C C1 (S3- B).

Let be the identification mapping oa C which identifies two points x and y
of C if (1) q)i(x) q(y), and this point lies in the interior of a 2-simplex
of L or (2) x and y lie in the same component of the same set- (z) n Fr C (z L).

We define similarly for C. This gives a sequence of spaces

C, C, }2 C., C.
We assert that }C is a 3-manifold, homeomorphic to M. The proof is as

follows. We know by rule (1) that in the interiors of the 2-simplices of Bd C,
} performs all the identifications performed by q). Since {q)7 (z)} forms an
upper-semicontinuous collection, so also does {q)7 (z) n Fr C}; and since the
union of the latter sets is compact, it follows that the set of all their compo-
nents forms an upper-semicontinuous collection. We see by continuity that
for each , in Bd C, () () if and only if q)() q)(). But
when a 3-manifold is represented by making identifications on the boundary
of a 3-cell, edge--and vertex identifications are made if and only if they are
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consequences (by continuity) of the 2-face-identifications. It follows that
for points x, y, (x) (y) if and only if (x) (y).
But it is also easy to see, by a re-examination of the operation a, that +1

is homeomorphic to C for each i. Therefore p Cp is a 3-manifold.
Now

C C1 (S3- B)

Cl[S3- (KtD)]

CI(S’- K).

Consider the identification mapping ’ on C, defined by the condition that
’(x) ’ (y) if f(x) f(y). Then ’C is a 3-manifold, because ’Cp is
homeomorphic to M. If ’ performed any additional identifications, not
performed by , then these additional identifications would apply to the 1-di-
mensional set Fr (K), and so they would destroy the property of being a 3-
manifold. Therefore ’, and so each set f-l(z) n Fr K has only one com-
ponent, which was to be proved.

PROPOSITION 6.7. fi K and D can be chosen in such a way that if v is a vertex
of L, then S f-(v) is connected.

(From this it can be shown that every set S f-(z)(z e M) is connected.
But we shall not need this fact.)

Proof. Suppose that for the given fi some set S f-(v) is not connected.
Some one component U of S f-(v) contains S K. Let V be the union
of all the others. Then C1 (V) forms a subcomplex of K, because Fr V does.
We now define a new mapping

f’’ S --M
by providing that

f’l(s v) f[ (s v)
and

f’(V) f(v).

In a finite number of such steps we obtain the desired f.
Thus we have aa fi K, D satisfying the conditions of Propositions 6.1m6.7.

Let n be the number of 3-simplices of K. The next few sections will be de-
voted to the proof of the fact that if fi K and D satisfy these conditions, and
are chosen so as to minimize n, then n 0 and dim K -< 2. This will complete
the proof of Theorem 3.1, because in this case Fr K K.

Essentially, the proof is constructive; the geometric operations described
below can be used to eliminate the 3-simplices of a given K, one at a time.
The notation is simpler, however, if we avoid the problem of giving names
to the objects which appear in the intermediate stages.
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7. The operations fl, 3’ and ti

Consider the union W of two 3-simplices as, r whose intersection 2 is a face
of each of them. (See Figure 2.) Suppose that we have a mapping

’WX,
such that k(a3) is a point and 1 (r3 a) is a homeomorphism. Evidently
the hyperspace formed by the sets -l(x) is a 3-cell.

It follows that there is a mapping h’’ W --. X, such that ’lBd W
klBd W and ’ [Int W is a homeomorphism. When we replace
the effect is to delete Int a3 from the set on which fails to be one-to-one.
The operation/3 is the operation which replaces k by ’. Thus

" W --+ X (W).

PROPOSITION 7.1. Iff, K and D satisfy the conditions of Propositions 6.1-6.7,
and n is minimal, then K does not contain a 3-simplex as, with a 2-face cr in Fr K,
such that f(a3) is a point.

Proof. If there were such a as, we could reduce n by the operation B. We
need to verify, of course, that/ preserves the conditions of Propositions 6.1-
6.7; but all these verifications are trivial.

Consider now

as before, with
W=aaur,

(r n’r o’.

Suppose that we have a mapping

:WX.
k(v v3 v4) is a point, a3 is simplicial, k(vl) # (w.), and i r as) is a
homeomorphism. Thus the sets k-l(x) are (1) the points of r a (2) vx
and (3) an infinite collection of 2-simplices in planes parallel to the plane of
w. va v. As before, X is a 3-cell. Now let H" be the space whose points are
(1) the points of Int W and (2) the sets k-x (x) n Bd W. Then H is a 3-cell.
It follows (as in the definition of f above) that klBd W has an extension

’ WXsuch that k Int W is a homeomorphism. Let

’.
PROPOSITION 7.2. If f, K and D satisfy the conditions of Propositions 6.1-

6.7, and n is minimal, then K does not contain a 3-simplex vl v. v v, such tha
v v v e Fr K and f maps v and v v v onto two different points.
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Proof. If there were such a a3, then n could be reduced by the operation
(As before, we verify trivially that - preserves the conditions of Theorems
6.1-6.6.)

Consider next W 3 u r nd b:W X; nd suppose that (1)
b[ (r ) is one-to-one, (2) b issimplicilnd (3)
re two different points. The sets -’(x) re then (1) the points of r ,
(2) v v, (3) v v nd (4) a infinite collection of quadrilateral regions lying
in pmllel planes. In the figures, we show two quadrilateral regions h-(x),
one lying close to v v nd the other lying close to v v.
As in the preceding cases, the mpping h Bd W hs n extension

’ W -* X,

such thut k’ Int W is one to one. The verification is entirely analogous to
the preceding ones. Let

k’.
PaOOSITON 7.3. Iff, K and D satisfy the conditions of Propositions 6.1-6.6,

and n is minimal, then K does not contain a 3-simplex v v va v such that
v v. va e Fr K and f maps v va and v v onto two different points.

The proof is like the preceding ones.

8. The operations e and o/

If we think of the proof of the 5/[onotonic Mpping Theorem s sequence
of operations which replace given mapping by a monotonic one, it is plain
that not much of consequence has happened so far" a, , , and give monotonic
mappings only wheu monotonic mappings were given to them. Under the
conditions of Theorem 5.1, it is quite possible that some components of some

V

FUnE 3
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sets (I,-l(x) lie entirely in Int B; and if this is true, it remains true after any
number of applications of a,/, 3’, and ti. In this section we describe a method
of eliminating such components.

Consider W a3tJ r, as before. (See Figure 2.)
Suppose that (1) 3 e K, (2) v v va e Fr K, (3) f(v) f(v) and (4)

f v v v and f v va v are one-to-one. This means, of course, that f maps a
simplicially onto a 2-simplex p of L.
We assume further that (5) f maps v0 v. va simplicially onto p, (6) f (r a:)

is one-to-one, and (7) v0 v K u D.
Here conditioa (5) implies that v0 v. v e D. We know that there is a sim-

plex of D which is mapped simplicially onto p; and since f K) is
one-to-one, this simplex must be v0 v v.
These are the hypotheses for the operation . Note that (5) is a very strong

and special hypothesis. In the following section we shall show how one can
get along without it.
The first stage in the operation is a sort of simplified inverse of the opera-

tion a. By (7), there is a polyhedral 3-cell E, containing v0 v v, such that

(BdE) v0vv vvuv0v. E (KuD).

Let fiE. Then there is a mapping ,,’" E -- f(E), such that (i)

’ Bd E lBd E, (ii) k’ maps v0 v v. simplicially onto a 1-simplex, and
(iii) k (E v0 v v:) is a homeomorphism. The operation a replaces k by
b’, leaving f unchanged on S E.
The next stage is to replace the resulting mapping by a mapping f’ which

fmaps r simplicially onto p. We get such an by applying the inverse
--1

a of the a defined ia Sec. 6.
Now let v be any point of the interior of a; and let W’ be the subdivision of
W in which v is the only new vertex. We define a new mapping f" by the
following conditions"

f"lC1 (S W) f’lC1 (S W),

f" (v) f(vo)(=f(v), and

f" W is simplicial.

It may be easier to see what is happening here if we draw 2-dimensional
figures. We started with a situation whose 2-dimensional analogue looks
like Figure 4. Here the concentric circles in the annulus are mapped onto
points; and the annulus and the vertical segment are mapped by f onto the
same 1-simplex. The first step is to introduce a new 2-simplex (see Figure
5). This shows inverse-images under f’. Next we get f", for which the in-
verse image sets look like this (see Figure 6). Intuitively speaking, what
we have done is to dig a hole in K so that components of sets f-(x) which
were buried in Int K can get access to Fr K.
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FIGURE 4

FGURE 5

Now let

let

let

W’K’ (K 3) o

w VVo V2 V3

032 VV2 V3 V4

and given , let 0+1 be the 3-simplex of K’ such that (1) f" (+1) p
and (2) +1 n is a 2-simplex whose image is also , and (3) + +,
if such an +1 exists. Obviously this process terminates, with a certain

and must be vvo v v3. The reason is. that has a 2-face, lying in Fr K’,
which is mapped simplicially by f" onto p; only two 3-simplices of K’ have
this property, one of them being and the other being vvo vl va.
We now eliminate , , 0 from K’, in the reverse of the stated order,
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FOURE 6

by repeated applications of the operation a. This gives a new mapping
and a new "singularity complex"

K" K’ {, ,,
Note that since we eliminated the w’s in reverse order, the new D is the same
as the old one.
Thus we have eliminated a and other 3-simplices from K. But we have

added to K the 3-simplices VVo vl w. and vv4 vl v. We get rid of these, in the
order named, by two applications of the operation . The final result is a
mapping satisfying all the conditions of Propositions 6.1-6.7, for which the
associated complex K has fewer 3-simplices than the given one.
The only non-trivial verification required is that f(") Fr K" is monotonic.

The only points where this condition might fail are the points y of Int v v.
But it is easy to see, inductively, that each such y is joined to the correspond-

n LI Bd w.ing y Int v v by broken line in Fr K"
The total operation just described is e. If n is minimal, then the hypotheses

for this operation must not be satisfied. Thus we have the following"

PROPOSITION 8.1. If f, K and D satisfy the conditions of Propositions 6.1-
6.6, and n is minimal, then there do not exist 3-simplices ( v v va v4 r

Vo v v va such that
(1) a" K,
(2) aS-- vv. vaFrK,
(3) () =/(w.),
(4) f{ vl va v4 and f w. va v are one-to-one,
(5) f maps Vo w. va simplicially onto f(_vl vav,) and
(6) f l(r" a) is one-to-one, and
(7) VoV ,t K u D.
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In the following section, we shall refer to conditions (1)-(7) as the hypothesis
for .

9. A reduction of the hypothesis for
To apply the operation e to a 3-simplex a vl v2 v3 v4, we needed to know

that there was a 2-simplex v0 v2 v3 of D, ia exactly the right position, such that
f(vo v2 v3) p f(v v v4). Under the conditions for f, K and D in Sec. 6, all
that we know is that there is some 2-simplex r of D which is mapped sim-
plicially onto p. Thus we need to show that r can be moved into the position
required for the operation e. What we need is the following"

PROPOSITION 9.1. Given fi K and D, satisfying the conditions of Propositions
6.1-6.6, anda 3-simplex Vl v. v v with a 2-face vl v2 v satisfying condi-
tions (1)-(4) of the hypothesis for . Then there exist f’, K’, D’, satisfying the
same conditions, such that the 3-simplices of K’ are those of K, and such that
f’, K’, D’, and satisfy the entire hypothesis for .

Proof. We recall that S has triangulation T in which K
subcomplex. We subdivide this T by introducing, as new vertices, the bary-
centers of the 2-faces and 3-simplices of T that do not lie in K. Let T’ be
the resulting subdivision of T. Then K is a subcomplex of T’, but D is not;
the latter creates a slight technical problem, to be taken cre of presently.
Note that every simplex of T intersects K in a simplex (or in the empty set.)

Let r v0 vl v2 v be the 3-simplex of T’ which intersects in vl v v"
Let G be the complex formed by all 3-simplices r of T, not lying in K, such
that r n K is a 1- or 2-simplex w0 wl or w0 wl w such that f(w0 wl) f(v v)
(or f(wo wl w.) f(v2 v)). Then the 3-simplices of G are arranged in a natural
cyclic order

T T1 T2 " T3)

such that for ech i, T--I I’1 Ti is 2-simplex r, not lying in K, but having an
edge r such that f(r) f(v v). To see this, let
2
r v0 v. v, r v2 v. Let r be the other 3-simplex of T (that is, the one
not mentioned so far) that contains r. If r n K r, let r3 r. if r n K

1is a 2-simplex r, let r be the other edge of r for whichf(r) f(r2) f(71));
in either case, let r be the 2-face of r which contains r but does not lie inK
or in r, and let r3 be the other 3-simplex of T’ that contains r. Inductively,

The sequence ultimately repeats, withthis defines a sequence r, r,

r+ r for some (minimal) p. Evidently each set f(r) is 3-cell, because
and f(r) f(v v) Andeach set r K is an edge or 2-simplex r in Bd r,

each set f( r (i > 1) intersects the union of its predecessors in a disk, namely,
the disk f(r). It follows that 13 f(r) is a 3-cell, whose interior contains
Int f(vl v3). Since M f(S) is locally Euclidean, Int [J’-i f(r) is open in M;
and this means that 13]’_- r is all of G.
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Now let d be a 2-simplex of D such that f(d) contains the edge f() of L.
$Since (Jr is all of G, it follows that some r+ lies in d.

LEMMA 9.1.1. If none of the simplices r, r, r lie in D, then there are
objects f’, K’, D, satisfying the conclusion of Proposition 9.1, such that (1)
f’(r) f(d) (2) K’ Du is a subcomplex of T D (j+l,and(3) , _1 ..

Proof of lemma. Let d w0 w w, where wl w2 K and w0 K; and let w
be the barycenter of d, so that r+ ww w.. By two applications of the
operation a, defined in the preceding section, we can get a mapping fl, such
that 1 fl agrees with f except in a small neighborhood of Int d, (2) fl(w)
fl(w0) f(w0), and (3) f WWo w and f wwo w. are linear. Thus we have
added wwo w and WWo w2 to K, and replaced d by r+ in D.

We repeat this operation, in exactly the same form, for each 2-simplex d’ of
D which contains a 2-simplex r. Finally, we repeat it for the other 2-sim-
plices of D. This gives a new mapping f2, and a new complex D, having the
stated properties of D, such that D. is a subcomplex of T.
There are now two cases to consider.

with Xl X2 X3 K, f(x)Case 1. T, nK is a 2-simplex. Let r wx x2 x3

f(x), f2(x x2 xa) f(v2 v). By one application of a, wecanget amappingfa
such that (1) f agrees with f except in a small neighborhood of
Intwxlx20Intwx2and(2)flwxl x2islinear. Thuswehaveaddedwx xtoK.

--1By one application of the operation a we can get a mapping f, such that (1)
f4 agrees with f3 except in a small neighborhood of Int r, Int wx xa and (2)
f4 r is linear. By one application of , we can get a mappingf such that (1)
f agrees with f except in a small neighborhood of Int r u Int wx xa, (2)
f Int r is one-to-one, and (3) f(wxl xa) f(wx xa).
But wx. x3 r+ d, and w xa r. Thus the effect of our operations

so far has been to replace d by r in D.
Case 2. r K is a 1-simplex. Let r wwxxa, with Tk-bl WX2 X

T, W W W, f(x2 X) f(v2 V). The method here is precisely analogous to
that used in Case 1" first we incorporate WWl x and WWl x3 into K (by two
applications of ’) and then we replace r+ by r in D (by a-, followed by a).
In ]c steps of this kind, we can replace d by r in D, which is what we wanted

in the conclusion of the lemma.
We now conclude the proof of Proposition 9.1. If the d of the lemma is such

that f(d) f(a), then Proposition 9.1 follows immediately from the lemma.
If not, we apply the lemma to d thus "moving d to the position r"; we then
subdivide T’, just as we subdivided T, getting a complex T"; we form a new
sequence r, r, ., r of 3-simplices of T, and apply the lemma to the first

r+l that lies in a simplex of D. SinceD is a finite complex, this process termi-
nates, giving a mapping of the Sort desired in the conclusion of Proposition 9.1.
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10. Proof of Theorem 3.1.. conclusion
Consider now f, K, and D, satisfying the conditions of Propositions 6.1-6.7,

such that the number n of 3-simplices of K is minimal.
Suppose that K contains a 3-simplex; and let K be the complex consisting

of the 3-simplices of K and their faces.
(1) If e Fr K3, then f() is not a 2-simplex. (If it were, f Fr K could

not be monotonic.)
(2) If a

s
e e K, and e Fr K, then f(as) is not a 1-simplex.

Proof. If 3 is mapped onto the same 1-simplex, then n can be reduced by
one of the operations % i. If f() is a 2-simplex, then n can be reduced by
Proposition 9.1 and the operation c.

(3) It follows from (1) and (2) that every 2-simplex of Fr K is mapped
into a point.. Let.

V Fr(S3-K3),
and let W be a component of V. Then W is the union of a finite number of
2-simplices of Fr K; and since W is connected, f(W) is a point. If a e V,
and e e K, then f() cannot be the point f(), because n could then be
reduced by operation/. On the other hand, f(3) cannot be a 1-simplex,
because then f-lf() would separate S, which contradicts Proposition 6.7.

Therefore the assumption K 0 is false, and dim K =< 2. As indicated at
the end of Sec. 6, this is sufficient to complete the proof of Theorem 3.1.

11. First modification of the f of Theorem 3.1
The f and K given by Theorem 3.1 satisfy all the conditions of the Mono-

tonic Mapping Theorem, except that some of the inverse-image sets f-l(x)
may be 2-dimensional. It remains, therefore, to get a mapping for which all
inverse-image sets are linear graphs.

PROPOSITION 11.1. There is a subcomplex K’ of a subdivision of S, and a
mapping

such that
(1) f’ S K’) is one-to-one,
(2) f’ K’ is piecewise linear,
(3) f’ (g’) n f’(S K’) O,
(4) f’ is monotonic and
(5) every set ],-l(x) is either a point or the union of a linear graph and a

3-manifold with boundary.

Proof. Step 1. Let be a 2-simplex of the K of Theorem 3.1, such that
f() is a point. (It follows, of course, that f() is a vertex of L.) Let 3
be a 3-simplex such that 8 n K and is a face of ; let

C1 (Bd 8 );
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and let

be a piecewise linear homeomorphism of onto , such that lBd/ is the
identity. We define to be the identity. Then can be extended to give
a piecewise linear mapping

" CI(S- )--.S (onto),

S letsuch that (S an) is one-to-one. For each p e aa,
g(p) f(p);

and let
g(a) f(a).

Theng (K u ) is piecewise linear.

We perform this process for each e K for which f(z) is a point; for each, we let v, where v is very close to the barycenter of ; and so dif-
ferent 3-simplices , . intersect one another only where they must, in the
corresponding sets n . But K is a finite complex. Therefore, in a finite
number of such steps (one for each such ), we get an f, K which satisfy
(1)-(4) of Proposition 11.1 and also

(5’) Every set f-(x) is a point, a linear graph, or a fmite union of linear
graphs and 3-simplices which intersect one another only in edges and vertices

Step 2. Let e be an edge of a 3-simplex of Kx which is mapped onto a point
by f, and let V be the union of all 3-simplices of K that have e as an edge.
Thus

Y o’zU cr U Uo’n

where the s are listed in the cyclic order in which they appear around e in
S. Then V is not a neighborhood of Int e in S, because no two 3-simplices
of K have a 2-face in common. But for each pair ,+there is a polyhedral
3-cell Z such that 2; V is a polyhedral disk d, lying in Bd u Bd +,
containing Int e in its interior, and such that 2 intersects K only in d. Let

d Cl(Bd2;- d).

and let be a piecewise linear homeomorphism d. onto d, such that
lBd d is the identity. We define 1 d as the identity. Then can be ex-
tended to give a piecewise linear mapping

C1 (S 2) - S (onto),

such that (S 2;) is one-to-one. For each p 2, let

g(p) f (P)
and let

g(Z)
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Then g (K1 u Z) is piecewise linear. In a finite number of such steps we get
an fs, Ks which satisfy (1)-(4) of Theorem 1 and also

(5") Every set f-i (x) is a finite polyhedron. This polyhedron is a point,
or a linear graph, or the union of a linear graph and a set in which all but a
finite number of points have 3-cell neighborhoods.

Under condition (5"), if v e f-l(x), and U is a small convex polyhedral
neighborhood of v in S3, then fl(x) n Bd U is the union of a finite set and a
2-manifold with boundary (the latter being not necessarily connected.) Let
F be the union of the 3-simplices in f-l(x). Then (a) F n U is empty, or
(b) F n U is a 3-cell, or (c) F n Bd U is not connected, or (d) Bd U F
is not connected. If (a) or (b) hold, we have no problem. And (c) and (d)
hold, at most, at a finite number of points v, because such a v must be a vertex
of f-I(x). Steps 3 and 4 below apply in cases (c) and (d) respectively.

Step 3. If (c) holds at v, then there is a polyhedral disk d, containing v
in its interior, intersecting f-(x) only at v, and separating S locally into two
connected sets each of which intersects f-(x). if d is taken in general posi-
tion, then d will intersect each set f-(y) only in isolated points. We shall
think of S as Euclidean 3-space E, compactified at infinity. We may then
assume that d is a 2-simplex in a horizontal plane, since the given d can be
mapped onto such a simplex by a piecewise linear homeomorphism of S onto
itself. (We recall that f is supposed to be merely piecewise linear, and not
necessarily simplicial.) Let a and as be 3-simplices such that a n as d,
and such that v lies on the linear segment joining the fourth vertices of a and

Let

and let

Let

d)d Cl(Bdal-

d. C1 (Bd as d).

" CI(S- W)--*S (onto)

be a piecewise linear mapping such that (1) 1 (Sa W) is one-to-one, (2)
Bdd is the identity, (3) dl is the vertical projection of d onto d and (4)

ld is the vertical projection of d onto d.
We now define a new mapping g S --* M, as follows"

(1) IfpeCl(S3- W),then

(2)

g(P) f
If p lies on a vertical segment xx’ (x dl x e d), then g(p) g(x).

Consider now the points x of d for which (x) is in K. The set of all such
points forms a polyhedral linear graph A, and thus forms a subcomplex of a
triangulation of d. If r is a 2-simplex of such a triangulation of d, and
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FIGURE 7
W v tJ

y In ,, then ff-xe(V) YV’ n be elinted by repeted pplifions of the
opemion a.

When we replace A by e, we ge new "singularity complex" K, on
e is pieeewise line,r, and we have reduced by 1 he number of points a which
() holds. In finite number of such steps we obtain n A, K, which sfisfy
1 )-(4) nd lso

(5"’) If v f(z), hen v sfisfies (), (b), or (d).

tep 4. If v (z), nd v sfisfies (d), hen here is polyhedral disk d,
wih v in its inerior, such ,h

nd such th d sepr,es locally into wo connected sets eeh of which
intersects Fr (x).
As before, we suppose that d is a simplex lying in a horizontal plane; we take

W:azu
d, d and as in Step 3; and we define a new mapping

g:SM
by the follong conditions

(1) IfpeCl(S- W),then

g(P) f (P).
(2) a(w) A(d).
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In a finite number of such steps, we get an f’, K’ of the sort described in
Proposition 11.1.

12. Fox’s Theorem. An unknotting process
The following theorem has been proved by Ralph H. Fox [F]:

THEOREM (:Fox). Let W be a polyhedral 3-manifold with boundary, in S3.
Then there is a piecewise linear homeomorphism , of W into S, such
that CI IS (W) is a tube.

Here by a tube we mean a set T which is homeomorphic to a regular neigh-
borhood of a polyhedral linear graph. This is equivalent to the statement that
T contains a finite collection dl, d2, .-., dl, of disjoint polyhderal disks, such
that Bd di c Bd T for each i, such that the closure of every component of
T Udi is a c-cell, and such that no set Bd d separates Bd T.
A trivial illustration of the process involved in Fox’s theorem is the case in

which W is a knotted tube and maps W onto an unknotted tube. Obviously
very non-trivial cases can occur.
Given f’ and K’ as in Proposition 11.1, let V be the union of all 3-simplices

lying in sets f-Z(x), and let W C1 (S V). We apply Fox’s Theorem to
this W, getting a mapping

:WS
such that the set

T C1 [S (W)]

is a tube. We now define the mapping

f" S ---. M
by the conditions

(1) f"l(W) f-,
(2) if A is a component of T, then

f" (A) f" (Bd A ).

Thus we can rewrite Proposition 11.1, with condition (5) in a stronger form,
as follows:

PnOeOSlTION 12.1. There is a subcomplex K of a subdivision of the 3-sphere,
and a mapping

such that
(1) f S K) is one-to-one,
(2) f K is piecewise linear,
(3) f(g) n f(S K) O,
(4) f is monotonic and
(5) every set f-l(x is a point, a linear graph or the union of a linear graph

and a tube.
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Thus, to complete the proof of the Monotonic Mapping Theorem, we need
to reduce to linear graphs the tubes mentioned in (5), and we need to make
f lK simplicial, rather than merely piecewise linear.

13. Conclusion
Let T be a polyhedral tube, such that Bd T lies in a set Fr f-l(x), as in

Proposition 12.1. Let d be a (polyhedral) disk ia T, with Bd D c Bd T, as
in the definition of a tube, at the beginning of Sec. 12, so that d does not
separate T. We may assume that d is a convex polyhedral disk lying in a
plane E, since this situation can be obtained by a piecewise linear homeo-
morphism of S onto itself. And if d is in general position, then E will inter-
sect K, in the neighborhood of d, in the union of d and a 1-dimensional set.

It is now an elementary matter to show that there is a mapping

: S
_

S,
such that [ (S d) is one-to-one, (d) is a point, and IK is piecewise
linear. This gives us a new K’ (K), and a new mapping

We can now "pull fr-if, (d) apart at b(d)," by the process used in Step 3 of the
proof of Proposition 11.1. This reduces the 1-dimensional Betti number of T.
Thus, in a finite number of such steps, we get a mapping fl and a complex K1,
satisfying (1)-(4) of Proposition 12.1 and also

(5r) Every set f-l(x) is a point, a linear graph, or a finite union of linear
graphs and disjoint polyhedral 3-cells.

We can now define a mapping
S __. S

such that b K is piecewise linear, maps every 3-cell in f-(x) onto a point,
and b is one-to-one except on the union of these 3-cells. Let K2 b(K), and
let

Then all of the sets f-l(x) are points or linear graphs. It remains only to
show that f is simplicial relative to a suitable subdivision of Ks.
We know that for every simplex a of K2, fl a is linear, though not neces-

sarily simplicial. For each vertex v of Ks, the set ff(v) is a linear graph.
Let V be the union of these graphs. Then V decomposes each ae Ks into
2-simplices and quadrilateral regions. Decomposing each of the latter into
two 2-simplices, using either diagonal, we get a subdivision relative to which

f.JK is simplicial.
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