SIMPLE TESTS FOR RECURRENCE OR TRANSIENCE OF INFINITE SETS
IN RANDOM WALKS ON GROUPS

BY
B. H. Murpocr'

1. Introduction

It has been shown by R. A. Doney [3] that in the case of the simple three-
dimensional random walk no condition of the type

I Zae.i ¢(a) = ®©

with ¢(a) > 0 can be necessary and sufficient for a set A to be recurrent.

In this paper the analogous result is obtained for an arbitrary transient
random walk on an Abelian group provided only that Go; — 0 as ¢ — .

In what follows we will use the terminology and also some of the results of
[6]. We assume that a countable group @ is given with its elements numbered
in some order e = @, 01,0, --- . By a random walk on G we mean a
Markov chain for which the probabilities

(11) D = Pr (Tmin = G & Tm = @5) = Pr (@, = a:'a;: % = €)

are functions of a;'a; , n, z, denoting the element of G reached by the random
walk at time n.
We also write

e(a,A) = Pr(z,¢Ad forn > 0: 2 = a)
fla,A) = Pr(z, e A forsome n > 0:x = a)
fii = f(as, {as}) (1,5 20)
Gij = 2n=0Di3” = fi; Gis = fii Goo (4,7 20)

where Ggo, and hence also each G;; , is finite for a transient random walk. We
say that a set 4 in G is recurrent if f(a, A) = 1 for all ¢ in G, or equivalently,

(13) 1= h(a, 4)
. = Pr (z, e A forinfinitely many n > 0: 20 = a) (a€e@).

A is said to be transient if A(a, A) = 0 for all ¢ in G.
A set C in G is said to be almost closed if

(1.4) 0xh(a,C) =1~ h(a, @ — C) (ae@).

An almost closed set C is atomic if it does not contain two disjoint almost

(1.2)
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closed sets. If G is atomic the random walk is said to be simply atomic, if
G contains no atomic almost closed set the random walk is simply non-atomie.

A random walk is aperiodic if G is the smallest group containing all a;
for which Go; > 0.

2, Preliminary results

We say that there is a test for recurrence of type II if there is a finite-
valued function ¢(a) defined on G such that

1I A is recurrent <> Y g4 ¢(a) is divergent.

Similarly we say that there is a test for transience of type III if there is a
finite-valued function ¢(a) defined on G such that

II1 A is transient & ... ¢(a) is convergent.

Let
At ={a:aed,¢(a) >0, A" =A—A".

Then we have for tests of type II
2ale@)| = o =2 +¢(a) = +o or 2.-¢(a) = —
= A% or A~ is recurrent
(2.1) = A is recurrent
= > 1 ¢(a) is divergent
= 2al¢(a) | = =,

so that in this case ¢(a) can be assumed without loss of generality to be
non-negative. A similar argument can be used in the case of tests of type
III. We shall therefore in what follows always assume that ¢(a) is non-
negative.

In [6] it is shown that an aperiodic random walk is either simply atomic or
simply non-atomie. It follows from Theorems 8 and 10 of [6] that if tests
of type III (II) exist for a random walk then G is the union of finitely many
(one) atomie almost closed sets. Thus if such tests exist an aperiodic random
walk is necessarily simply atomic and hence by [1] each set A is either transient
or recurrent.

In this case therefore the existence of a test of type II or III implies the
existence of both tests simultaneously.

We say that a random walk has property A if there is a positive 4 such

that for any positive integer N we can find finite sets A}, --+, A¥, with
union By , and yx € G such that
(2:2) f(X,AVY) > 1f(yn X, By Y) (1<t<N)

for all X, Y in G.
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The basic lemma which we apply in the various types of Abelian groups
to show that a test of type II does not exist is

LemMa 1. In a simply atomic random walk with property A for which
Go; — 0 as 1 — o there is no valid test of type I1.

Before proving Lemma 1 it is necessary to obtain a preliminary

Lemma 2. If B is a finile set, C is a non-transient set and D 1is a transient
set in a random walk on a countable group G then there is a non-transient set

E= Uf=1Ba,
for whichD nE = ¢, 01,02, -+ €C and

C — Uy (b7, : b,b ¢ B
s transient.

Proof. We first define the finite set
B* = (b : b,b' ¢ B}
and then choose integers ¢ < 4, < 73 < --- by
i, = min {4 : a;¢C, a; ¢ B¥a;, (1 < s < 1)}
Denoting a;, by ¢, and writing ¢’ = {¢;, ¢z, - - - } We see that the finite union
Ub*,B* b*C, = C
and hence one of the sets b*C” is non-transient, which shows that ¢’ is non-
transient. From the definition of C” it follows that BC" = U B, is a disjoint
union containing C’ and so also non-transient. The set ¢ consisting of those
¢, for which Be, n D # ¢ is transient, since B is finite and D is transient, and
so also is BC”. Denoting the elements of ¢ = ¢’ — C” by a1, s, - -+

we see that
E = U Ba,

is also non-transient, D n £ = ¢ and
C — Uzt o, : 5,0 eB) © Uped*C" — Upe b*C < U b*C”.

Since the last set is transient we have proved the lemma as required.

Applying this lemma in the case of a simply atomic random walk we can
proceed to the proof of the basic Lemma 1. We note that in this case the
term ‘“‘non-transient” can be replaced by “recurrent” in the statement of
the lemma.

Proof of Lemma 1. We appeal to the construction of Lemma 7 in [6] in
which disjoint finite sets Sy = {e}, Si, S:, --- are constructed such that
G — U7 S, = Vis transient and

(2.3) 3 <foir,  fi < 3o
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forieS.,j €8Sm,m > ¢+ 2. (Thereis no loss of generality in putting S, =
{e} since in a group we can replace each S, by

S, =578, = {z:swel) (t>0)

for which the inequalities (2.3) still hold.)
We note that at each stage of the construction, when So, ---, S are
known 8, is taken to be an arbitrary finite set disjoint from V, S,, - -+, 8.

and containing at least a certain well-defined finite set of points
W.=((U —-T)ul{y4 —VuTl
Assuming that Sy, ---, Sy—1 have been constructed we apply Lemma 2
with B = By, C = G and
(24) D =U{Bya:f(e,Bva) > 1/N} Ufa: f(yn,a) < §f(e, a)}

to obtain E = U Bya, with D n E = ¢.

D is transient since, by assumption, f(e, a;) = Goi/Gow — 0 as ¢ — o« and
hence

f(€, By a;) < D asenya; f(€, @:) >0 asj— o
and also by [6] the set
(2“5) {a' : f('YN ) a) S %f(e, a’)}

is transient.

From the recurrence of E, and the fact that f(e, By a,) < 1/N it follows
that an integer r» can be chosen so that

(2.6) 1/N < f(e, Ey) < 2/N, Ey=UY%Bya,.
We write
Itv=U:£1 yar (1StSN),

and deduce from (2.2) that for any z in vx' Ey , and hence in some y5" By a; ,
we have

f(w) Fltv) 2 f(x’ A?’ a'f‘) > "f('YN Z, BN ar) = 1.
From this it follows that
f(z, FY) > nf(vn @, Ex)

for all z in vy Ex and thus also for all z in @, by the maximum principle [7].
Putting £ = e and noting that for a in Ex we have

f('YN ) a) > %f(e’ a)
we deduce from [6], (2.4) and (2.5) thatfor1 <t < N
f(e: Fltv) > ﬂf(’YN ) EN) =7 ZaeENf('YN ) a')e(a: EN)

2.7
(27) > 30 Deayf(e, a)e(a, Ex) = n f(e, Ev).
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If we choose Sy to be any finite set in @ — V — U2 8, containing Ey and
Wy we can then state the Wiener’s test [6] in the form:

(2.8) A is recurrent < 2 g f(e,An8,) = .

In particular if A is taken to be any set of the form A, = U, E, we see
from (2.6) and (2.7) that

(2.9) U, E.is recurrent & 2., ' = o & U, F, is recurrent

for any choice of {t}7—; such that 1 < ¢, < «. Let us assume now that a
test of type II is valid for the given random walk

(2.10) > ad(a) = = < A is recurrent.
Writing ¢(S) = D ees $(a) for each finite set S we deduce that
(2.11) S Lo(E.) = o < Uy E, is recurrent.

¢(E,) must necessarily approach 0 as « — o since otherwise we would
have a positive § and an infinite set A such that

o(E) >8>0 (ved),

so that for a suitably chosen infinite subset A" of A Uy, E, would be recurrent
by (2.11) and transient by (2.9).
We now choose {t.}1 so that

(2.12) B(F1) < T 9(B) (> 1),

From (2.9), (2.11) and (2.12) we see that
Y Lé(E) = « < Ug E, is recurrent

& UL F}, is recurrent & 2, ¢(Fi) = o
and therefore

(213) T o(E) = = @EI;%MEL) - =

for all subsequences of a sequence {¢(E.)}T of positive terms, with infinite
sum, which converges to 0.

From (2.13) we immediately obtain a contradiction if we choose

I<u< < --

such that
1/r < 20 é(B.) < 2/r
and hence .
oS | 2 1
2 L <
;, v $(E.) < i, 12

and put L = Ui i, \]. This completes the proof of Lemma 1.
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3. Abelian random walk

In [5] it is shown that in a random walk on an Abelian group G we have
Go; — 0 as ¢ — « except possibly when G contains an infinite cyclic group
H = {h"}Z, such that G/H is finite. If lim sup;»e Gos = 8 > 0 then either

(i) G(e, k™) — & asn— o,
or
(ii) G(e, k" ") —> 38 asnm— .

In case (i) any infinite subset of H* = {A"}{ is recurrent and H~ = H — H*
is transient; in case (ii), H™ and H~ have their roles interchanged.
Denoting the elements of G/H by g1 H, - -+ , g, H we deduce in case (i)
that any infinite subset of g; H* is recurrent and g; H™ is transient. Thus
an infinite subset of @* = Uj g; H" is recurrent and G~ = G — G is transient.
Writing
¢i(a) =1 aeGt
=0 aeG

(3.1)

we see that the corresponding test of type II is valid in case (i), in case (ii)
we only interchange the roles of G* and G~ and put ¢:(a) = 1 — ¢i(a) to
obtain a valid test of type II.

Before proceeding to consider the possible existence of a type II test for a
random walk on a countable Abelian group we will first need to prove

Lemma 3. If H s a subgroup of G then the existence of a type II test in G
implies the existence of a type II test in H if H is a recurrent set or in G/H if
H 1s a transient normal divisor of G.

Proof. Consider first the case when H is recurrent. We can then define
transition probabilities

(32) pij=Pr(w,---,%a¢H,z. = aj, forsome r > 0:2z = a;)

for any pair a;, a; in H. These are obviously the transition probabilities
of a random walk in the group H, termed the imbedded random walk.

A subset A of H is recurrent in the imbedded random walk if and only if
it is recurrent in the original random walk and hence the same type II test
is valid, restricted to sets in H.

In the case of a transient normal divisor H we define

(3.3) Dij = ZuaeajH Dia

for any pair of cosets a; H, a; H, which is independent of the particular element
of a; H which is chosen. These are easily seen to be the transition probabilities
of a random walk in G/H, termed the image random walk.
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Suppose that a type II test is valid in G. Since each a; H is transient then
(34) $(a: H) = 2awin 8(a)

is finite. A set B = U,..{aH]} is recurrent in G/H if an only if the corre-
sponding set ¢ = U, aH is recurrent in G and hence if and only if

w = D cd(c) = D4 o(aH) = 2 s (b)

Thus we have also a type II test in the image random walk if H is a transient
normal divisor.

CoROLLARY. - If G 4s the direct product of two groups
G=G®G
then there is a type 11 test in Gy or in G, if there is such a test in G.

Proof. If Gy is recurrent then there is a type II test for the imbedded
random walk in G;. If G is transient then there is a type II test for the
image random walk in G/G.. However G/G; = G, so that this implies that
there is a type II test in Ge .

We will now proceed to show that random walks on certain special types
of Abelian groups have property A. We adopt the terminology of [4] and
write our groups additively in the remainder of this paper.

Lemma 4. A simply atomic random walk on a subgroup G of the rationals
Q, containing the integers Z, has property A.

Proof. Either the positive rationals G* in G or the negative rationals
@ = G — G form a recurrent set. We may suppose without loss of gen-
erality that the former is true. We then write

(3.5) L; = Ui — 1 + 2jN, i + 2jN) (1 <3< 2N)
and note that each L; n G is recurrent. Let
(3.6) Gix=10,2kN)nL;n {z:2¢G,zk ! eZ}.

Since G, increases monotonically to L; n G as k& — « we can find an
integer k such that

(3.7) 70, Gi) > 3 (1 Li<L 2N).

Similarly by the recurrence of L; n G — G, we can find an integer K
such that

(38) 50, Gix — Gip) > % (1 <i<2N).
Tinally we write
AY = Guxu Gaia,x (1 <7< N),

3.9
(89) By = U AT
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and check immediately from (3.5) — (3.9) that
(3.10) f(z — 2kN, AY) > 3f(=, Bw) (1<i<N)

for all z in By . From the maximum principle [7] it then follows that (3.10)
is true for all z in G and so the random walk on G has property A, as required.

LemmA 5. A simply atomic random walk in the plane lattice Z ® Z has
property A if
1> limlil"’w Supf((OJ 0)) {(Sl}, y) ‘z E}) > 07
1 > limyy»e sup f((0, 0), {(z, y) : y = #}) > 0.

Proof. Writing X = Z @ {0}, Y = {0} @ Z,G@ = Z ® Z we see from
[7] that the image random walks in G/X and in G/Y must both be transient
with finite non-zero means u;, we, respectively, and hence that the given
random walk has finite mean

(3.13) (o1, m2) = 256 (%, Y)Po0 .o

The projection of this random walk on the orthogonal unit vector («, B8)
with transition probabilities

(3.12)

(3.14) m,t = Zaz+ﬂy=t D00,

is a random walk in a subset S of a real line, with mean zero. Therefore
by [2] any interval on the line u;  + ue y = 0 is recurrent, in particular the
two sets

Sn{(at,pt):0<t<[B[}, Snf(at,pt):0=2t>—[8]}

are recurrent. Interpreting this first in terms of the given random walk we
see that the sets

Ul = {(x7y):,u'2x21»¢ly> '—,U1+M2x}nG
Up={(z,y) ez S my <m-+mwa}nG

are recurrent setsin Z @ Z.

From this point we proceed in a manner similar to that of Lemma 4. We
first write

(3.15)

Il

Lyy = UnU,{(z,y) : 2
Ly = Uyn Ui, {(z,9) :

i+jN} (1 <t<N)
t+jN} (1<i<N)

(3.16)

Il

and note that each L, is also recurrent, since a finite number of translates of
each L; suffice to cover the recurrent U; or U, .
‘We then let

(3.17) Gip = {(z,y) :0< 2 <kN}nL; (1 <i<2N)
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and proceed exactly as in Lemma 4 to obtain k, K, satisfying

(3.18) f((0,0), Gix) > 3 < f((0, 1), Gix) (1<+<2N)

and also

(3.19) f((0,0), Gi,x — Gix) > 3 < f((0,1),Gi,x — Giz) (1 < ¢ < 2N).
We then define

(3.20) AY = Gyis1,xUGuix, By=U'4! (1<i<N)
and choose (kN, yy) in U;. From (3.15)-(3.20) it then follows that
(3.21) f((x — kN, y — yx), A7) > $f((z,9), By) (1 <i<N)

for all (z, y) in By and therefore for all (z, y) in Z @ Z as well. This com-
pletes the proof of the lemma.

Lemma 6. A simply atomic random walk on Z(p”) @ H = G has property
A if H 1s a torsion group.

Proof. If H is finite we write H = H, for all positive integers n. If H
is infinite, with elements A, A2, - - -, we denote by H, the finite group gen-
erated by hy, -+, ha. For given N we choose m so that p™™ > N and
define the finite set

(3.22) Giw = {l(i = 1)/p",i/p™) n Z(p")} ® H;.

As k — « the set G, increases monotonically to a recurrent set and there-
fore K ean be chosen so that

(3.23) f((0,0), Gix) > % (1 <7< p").
We then define

(3.24) t = UiZinpn Gix (LLt<N)
(3.25) Ax = Ul (yopypi1 Girx s By = Ui 47,

and deduce immediately from (3.22)-(3.25) that

(3.26) f(z, AY) > 3f(z, By) (1<t<N)

for all  in By and hence also for all z in G. This completes the proof of the
lemma.

Lemma 7. If G is a torsion group which contains finite direct summands
of arbitrarily large order then G has property A.

Proof. For given N we write G = D @ H with D finite of order at least
N and denote by Hj the group generated by the first & elements of H. If
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dy, --+ ,dy are the elements of D we write
(3.27) Gix = {d} ® Hy 1<Le<M).

Since {d;} @ H is recurrent for each 7 we can choose K so that (3.23) is satis-

fied for each ¢ in {1, M]. In a manner analogous to the previous proof we
define By = Uy A}, where

AY = Gux (1<t <N)

(3.28) .
= U¥Gix (t=DN).

It then follows immediately that (3.26) is satisfied for all z in By and hence
also for all  in @, so that Lemma, 7 is proved.

From the previously proved lemmas and also from the results of [4] it is a
fairly easy matter to deduce our principal

TuEorREM 1. There is a simple test for recurrence or transience (type I
or type 1II) of sets A in an aperiodic random walk on an Abelian group if and
only if

(3.29) lim;w sup Go,' > 0.

Proof. In the case when (3.29) holds we have already shown that there
are simple tests (type II or II1) for recurrence or transience.

We will now assume that Gy; — 0 as ¢ — « and quote certain results of
[4] which together with Lemmas 1, 3, 4, 5, 6, 7 will prove the theorem. We
also assume that there is a simple test of either type so that the random walk
is simply atomic and tests of both types are valid.

Let T be the torsion subgroup of G then by Lemma 3 there is either

(i) a type II test in the torsion group T if T is recurrent, or

(ii) a type II test in the torsion-free group G/T if T is transient.

In the latter case it is known that a torsion-free group is isomorphic to a
subgroup G of a countable direct sum of copies of the rationals @5 Q;. If
the group G (or G/T) contains at least three independent elements, or equiva-
lently if the direct sum necessarily contains at least three terms, we define A
as the subgroup of elements in {0} @ {0} ® {0} ® @®i-+ Q;. From the type
II test in G (or G/T) it then follows by Lemma 3 that there is a type II test
in G/H. (Since the random walk on G/H is a genuinely three-dimensional
one it is transient and so H is transient in the random walk on G.) Thus in
case (ii) we are reduced to three possible sub-cases

(a) atype II test in a subgroup G1 of @ ® Q@ @ Q containingZ ® Z @ Z,

(b) a type II test in a subgroup G: of @ @ @ containing Z @ Z, or

(e¢) a type II test in a subgroup G; of @ containing Z for which Gy, — 0

ag 1 — .

In case (ii) (a) either the subgroup H; = Gin [Q @ {0} ® {0}]is recurrent,
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in which case we are reduced to case (ii) (¢) for the imbedded random walk
in Hy, or H, is transient, in which case we are reduced to case (ii) (b) for
the image random walk in G;/H; .

In case (ii) (b) if either of the one-dimensional subgroups

H; = G2n[Q®{O}] or HY = ng[{O} ® Q]

is recurrent then we are reduced to case (ii) (¢) for the corresponding im-
bedded random walk. If both H; and Hj are transient and

(83.30) 0 < limyg, g1+ 8up f((0, 0), G2 n [{& @ QS((0,0), Gn [Q ® {n}])

then the image random walks must both have non-zero means, and G, =
Z @ Z. Therefore, by Lemma 5, no type II test can exist for this random
walk. On the other hand if the inequality (3.30) does not hold then for one
of the image random walks we are reduced to case (ii) (¢) again. Since by
Lemma 4, case (ii) (c¢) can never occur we see that no type II test is valid in
any torsion-free Abelian group.

Turning now to the torsion case (i) we know from [4] that any torsion group
is the direct sum of a divisible torsion group D and a reduced torsion group R.
Thus in this case, by the corollary to Lemma 3, there is either (i) (a) a type
II test in a divisible torsion group, or (i) (b) a type II test in a reduced torsion
group.

In case (i) (a) we can write D as a direct sum of groups of the form Z(p”)
for various primes p, and thus this case is immediately excluded by Lemma 6.

In case (i) (b) the group R can be written as a direct sum of reduced primary
groups. If all these latter groups are of bounded order then each of them, and
hence also R is a direct sum of finite cyclic groups, if any one is of unbounded
order then it contains cyclic direct summands of arbitrarily large order.
Whichever of these is true we can always say in case (i) (b) that R contains
direct summands of arbitrarily large order and so by Lemma 7 no type II test
is valid.

Since we have now disposed of all possible cases which can arise for countable
Abelian groups we have completed the proof of the theorem.

Note. In the case of a random walk which is not aperiodic the existence of
a type IT (or III) test in G implies the existence of such a test in the subgroup
H generated by those elements a; for which Gy; > 0. The theorem then shows
that this can only happen if lim,.., sup Go; > 0 so that the requirement of
aperiodicity can be dropped in the statement of the theorem. As remarked
at an earlier stage we can say in addition that in the case of a type III test the
group G is simply atomic and hence is identical with H and in the case of a
type II test the group G is a union of finitely many atomic almost closed sets
aH. In either case we immediately deduce that G contains an infinite cyclic
group of finite index in G.
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