DECOMPOSITION OF PURE SUBGROUPS OF TORSION
FREE GROUPS

BY
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1. Introduction

Throughout this paper all groups are abelian. The notion of a cotorsion
group, introduced by Harrison in [8], plays an important role. Some basic
properties of cotorsion groups are listed in [4]. A torsion free group is called
completely decomposable if it is isomorphic to a direct sum of torsion free
groups of rank one. If G'is a torsion free group and H is a subgroup of G, we
use the symbol H 4« to denote the minimal pure subgroup of G containing H.
The symbols D and + will be used for direct sums; whereas the subgroup of
a group @ generated by subsets S and T will be denoted by {S, T}.

Recently, the author gave a negative answer [7] to a question posed by
E. Weinberg [9] which asked: Does there exist a torsion free abelian group of
cardinality greater than the continuum with the property that each pure sub-
group is indecomposable? In this paper we use the techniques of [7] to gen-
eralize our result concerning Weinberg’s question. In fact, if G is a torsion
free group we show that there is a completely decomposable pure subgroup
C of G such that | G| < | C [*. Ourinvestigation of completely decomposa-
ble pure subgroups of torsion free groups requires the study of a distinguished
class of independent subsets of a torsion free group. An independent subset
S of a torsion free group G will be called quasi-pure independent if Y .5 {a} %
is a pure subgroup of G and {z} « = {z} whenever {z} +is cyclicand z ¢ S. Note
that {S}x = 2 ces {2} if S is a quasi-pure independent. We remark that
quasi-pure independence is equivalent to pure independence if G is N;-free.
In Section 2 we establish a number of remarkable properties of quasi-pure
independent subsets.

2. Quasi-pure independence

We observe that, although nonvoid pure independent subsets may not exist,
nonzero torsion free groups always have quasi-pure independent subsets. The

proof of the following proposition can be aceomplished by standard tech-
niques.

ProrosiTioN 2.1. Any quasi-pure independent subset S of a torsion free
group G is contained in a maximal quasi-pure independent subset of G.

One might hope that the cardinality of a maximal quasi-pure independent
subset of a torsion free group is an invariant of the group. In [6] it was shown
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that a torsion free group may contain a finite maximal pure independent sub-
set as well as a maximal pure independent subset of infinite cardinality. Un-
fortunately, the following example demonstrates that the same situation occurs
for quasi-pure independence. Let J = ][, I, where p ranges over the primes
and I, denotes the p-adic group. We show that J contains maximal quasi-pure
independent subsets S and 7 such that | S| = 1land | T | > N,. For each
prime p let 2, be an element of J whose p** coordinate is a nonzero element of
I, and whose other coordinates are all zero. The set [z, | p is a prime] is
easily seen to be quasi-pure independent. Therefore, let T' be a maximal
quasi-pure independent subset of J containing [, | p is a prime]. Since the
additive group of integers Z can be embedded in J as a pure subgroup such
that J/Z is divisible, it follows that J contains a maximal quasi-pure inde-
pendent subset S of cardinality one. Although this example shows that the
cardinality of a maximal quasi-pure independent subset is not an invariant of
a torsion free group, we are able to establish a slightly weaker result. The
proof of this next theorem is essentially the same as Chase’s proof of Theorem
3.11in [2]. For notational convenience we use the symbols D(A4) and ¢4 to
denote the minimal divisible group containing the group A and the torsion
part of A, respectively.

TueoreMm 2.2. Let G be a torsion free group and suppose that S and T are
infinite maximal quasi-pure independent subsets of G. Then | S| = | T |.

Proof. It suffices to show that if X and Y are quasi-pure independent sub-
sets of @ where | X | < | Y | and Ny < | Y| then there is a quasi-pure inde-
pendent subset X; containing X such that | Xy | = | Y |. Set H = D cex {2} «,
K =D yr{y}x,and 8 = |Y|. Then H and K are pure subgroups of G,
|H| < IKI,andIKI =p. LetG = G/Kand H = {H, K}/K. Therefore
H C G, G is torsion free, and D(G) = D(H) + M where M is torsion free
and divisible. D(G)/H may be identified with (D(H)/H) + M, in which
case

((G/H) S «D(G)/A) = «D(H)/H).

t(D(H)/H) has cardinality less than B, since 8 is uncountable and since
|A| < |H| < B Observing that G/H = G/{H, K}, we have shown that
t(G/{H, K}) has cardinality less than 8.
Since g is infinite, we may construct a free group F of rank less than 8 and
an epimorphism
¥ :F—t(G/{H, K}).

Then there is 2 homomorphism ¢ : F — G such that ¢ is the composition of ¢
with the canonical map of G onto G/{H, K}. Since | {H, o(F)} | < B8, Bis
infinite and, K is completely decomposable, we may write K = A 4 B where
A and B are completely decomposable, K n{H, ¢(F)} € A, and rank
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(B) = | B| = 8. Observing that
HnBC (HnK)nBCAnB =0,

set C = H + B. Then clearly rank (C) = g8 and C is completely decompos-
able. Since B is completely decomposable of cardinality 8, B contains a
quasi-pure independent subset V of cardinality 8. Thus, X u V will be a
quasi-pure independent subset of G if C = H + B is a pure subgroup of G.
Suppose nx ¢ C where z ¢ G and n is a nonzero integer. Then nz = hy + by
where h; ¢ H and by e B. Therefore,  maps onto an element of finite order
in G/{H, K}. Hence, there is an element y ¢ F such that x — ¢(y) ¢ {H, K}.
But then

t—o(y) =h+a+b
where he e Hya ¢ A, and b, e B. 'We then have that

by 4 by = nz = ne(y) -+ nhe + na + nb,,
or that

ki — np(y) — nhy — na = mby — by.

The left side of this equation is easily seen to be in A and the right side in B-
Thus both sides are zero and we have that by = nb,. Therefore

h = nx — nbs enGn H = nH.

It follows that nx = hy + by € nC, in which case x ¢C. Henece, C is a pure sub-
group of G and X uV is a quasi-pure independent subset of G. Setting
X; = X uV, we have that X; is a quasi-pure independent subset of G such
that | X;| =8 =|Y]|.

CoroLLARY 2.3. (corollary to proof). If a torsion free group G contains
an uncountable quasi-pure independent subset, then any two maximal quasi-pure
independent subsets of G have the same cardinality.

If a torsion free group G contains maximal quasi-pure independent subsets
S and T such that | S| < | T |, then Corollary 2.3 implies that any quasi-pure
independent subset X of @ is at most countable. In particular, | T| < N,.

Baer proved in [1] that a homogeneous torsion free group is separable if
and only if every pure subgroup of finite rank is a direct summand. (For the
definitions of a homogeneous group and a separable group, see [3].) Thus, for
separable, homogeneous torsion free groups, we have the following corollary.

CoroLLARY 2.4 If G is a separable, homogeneous torsion free group, then
the cardinality of a maximal quasi-pure independent subset of G is an invariant
of G.

Proof. Suppose S and T are maximal quasi-pure independent subsets of G.
If | S| = n < N, then, by Baer’s theorem [1], {S}x = D ses [}« is a direct
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summand of G, i.e., G = {S}« + M. Clearly, if M 5= 0, we can choose y ¢ M
such that 8 u [y] is quasi-pure independent. Therefore, M = 0 which implies
that | S| = rank (G) = n. Since rank (G) = n < o, it follows that
| T| < NRy. By the same argument we have that | T | = rank (G) = | S |.
If Xy < | 8}, then ¥y < | T | since the rank of G cannot be finite. Hence,
applying Theorem 2.2, we again have that | S| = | T'|.

We now establish in the following theorem a remarkable relationship be-
tween the cardinality of a torsion free group and the cardinality of any maxi-
mal quasi-pure independent subset of the group.

Turorem 2.5. If G is a non-zero torsion free group and if S s a maximal
quasi-pure independent subset of G, then |G| < (| 8| + 1)™.

Proof. Let G = Gy + D where Gy is reduced and D is divisible. Since D
is torsion free divisible, it is elementary to show that the cardinality of any
maximal quasi-pure independent subset of D is rank (D). It is also clear
that S n D is a maximal quasi-pure independent subset of D whenever 8 is a
maximal quasi-pure independent subset of G. Hence, it is enough to prove
the theorem when D = 0, that is, when G is reduced.

Let E be the cotorsion completion of G and let H be the closure of
{S}4 = D ses {x} % in the n-adic topology on E. Since H must be pure, E/H
is torsion free and reduced. It follows that H is a direct summand of E since
Ext (E/H,H) =0. LetE = H + M. Since E is torsion free, E = H + M,
and G is pure in E, then Hn @ + M n G is a pure subgroup of G. Therefore,
if M n G 5 0 we can choose y ¢ M n G such that Su [y] is a quasi-pure inde-
pendent subset of G. But this contradicts the maximality of S. Therefore,
M n G = 0 and the natural projection 7 of E onto H is a monomorphism when
restricted to G. Hence, |G| = |7(G) | < | H|. Since {8}« is dense in H
and since the n-adic topology on H is Hausdorff, we have that

|H| < [{S}«[® = (| 8]+ 1),
Thus, |G| < (| S|+ 1.
CoroLLARY 2.6. (corollary of proof). If 8 isamaximal quasi-pure inde-

pendent subset of a torsion free group G, then G is isomorphic to a subgroup of the
n-adic completion of D zes {2} = {S}x.

With the aid of Theorem 2.4, we can establish a stronger version of Theorem
2.2 for torsion free groups of cardinality greater than the continuum.

TraeoreM 2.7. If G is a torsion free group of cardinality greater than the
continuum, then any two maximal quasi-pure independent subsets of G' have the
same cardinality.

Proof. Theorem 2.5 implies that any two maximal quasi-pure independent
subsets of @ are infinite. Hence, by Theorem 2.2, any two maximal quasi-pure
independent subsets of G' have the same cardinality.
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The following theorem we shall need in Section 3.

TarOREM 2.8. If E is a reduced torsion free cotorsion group and if S is a
quasi-pure independent subset of E, then S 1s maximal (with respect to being
quasi-pure independent) if and only if B/ (D ses {x} %) is divisible.

Proof. If B/( D .8 {x}+) is divisible, then § is clearly a maximal quasi-pure
independent subset of E. Hence, suppose S is a maximal quasi-pure inde-
pendent subset of E. Let H be the closure of s {2}  in the n-adic topology
on E. Then E = H + M. If M # 0, we may choose y ¢ M such that
S u [y] is quasi-pure independent. Therefore, M = 0 and E = H which
implies that E/( 2 s {} «) is divisible.

3. Decomposition of pure subgroups of torsion free groups

Immediate consequences of Theorem 2.2 and Theorem 2.5 are the following
theorems.

TueoreM 3.1. If A and B are completely decomposable pure subgroups of
infinite rank of a homogeneous torsion free group G, then there are isomorphic
completely decomposable pure subgroups H and K of G such that A and B are
direct summands of H and K, respectively.

TuaroreEM 3.2. If G is a torsion free group, then G contains a completely
decomposable pure subgroup C such that | G | < | C ™.

For a cardinal 4 > 2, we call a group G u-indecomposable if in each direct
decomposition of G the cardinal number of the set of non-trivial direect sum-
mands is less than u. A group G will be called purely p-indecomposable if
every pure subgroup of G is p-indecomposable. For p = 2, the above defini-
tions correspond, respectively, to the definitions of indecomposability and pure
indecomposability. L. Fuchs has established results concerning p-indecom-
posable primary groups [3] and, as mentioned in the introduction, the author
has given characterizations of purely indecomposable torsion free groups [7].
We conclude by generalizing a portion of the results in [7].

TaeoreEM 3.3. If G is a torsion free purely u-indecomposable group, then
|G| < u™.
Proof. By Theorem 3.2 there is a completely decomposable pure subgroup

C of G such that | @| < | C [*. By hypothesis rank (C) < u. Therefore
| C ‘So < “Ro.
TuarorEM 3.4. There is a purely u-indecomposable torsion free group G. of

cardinality greater than or equal to u if and only if there is a cardinal number a
such that @ < p < ™.

Proof. The necessity follows from Theorem 3.3. Therefore, assume that
uand a are cardinals such thate < p < ™. Ifa <u< 2%, 8etG = 3., I,
where I, denotes the p-adic group. Hence |G| = 2% > u. If H is apure
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subgroup of G such that H = Y. H;, then H contains a quasi-pure inde-
pendent subset S of @ such that | S| = |I|. We may also assume that
each z e S has zero p-height in G, i.e., 2_zs {2} is p-purein G. It follows that
D zes {2} is a direct summand of a p-basic subgroup of G (For definition of a
p-basic subgroup, see [5]). It is well known that any p-basic subgroup of G
has rank «. Hence, |I| = | S| £ a < p. If p > 2% then « must be in-
finite. Let G be the cotorsion completion of the free group F = D e {22}
where |A| = a. Then |G| = o™ > u. Suppose that H = ;s H; is a
pure subgroup of G. Then H contains a quasi-pure independent subset S of
G such that | S| = |I|. By Proposition 2.1 there is a maximal quasi-pure
independent subset T which contains 8. Theorem 2.8 implies that X = [z)\]rea
is also a maximal quasi-pure independent subset of G. Applying Theorem 2.2,
wehavethat [T | =[S |T| L |X|=|Al=a<p
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