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One of the essential parts of Zeeman’s proof [20], [21] to show that ball
pairs Bq, Be, q s >_ 3, were unknotted was to show that Bq collapses to
Be. For q s 2, it is well known that there exist ball pairs Bq, B-2,
such that Bq, B-" are knotted but B collapses to B- for q >_ 4.
For q 1, 2, 3, it is known that B, B-1 is unknotted and hence B collapses
to Bq- [5]. We say Bq, B is a collapsible ball pair if Bq collapses to B8.
In this paper we examine ball pairs Bq, Bq- for q >_ 4 with regards to col-
lapsibility. It is known that B, B is unknotted iff B, B is a collapsible ball
pair; however, it is unknown whether there exist knotted Bq, Bq- for q >_ 4.
We show that for q >_ 6, every Bq, Bq- is a collapsible ball pair and give some
necessary and sufficient conditions that Bq collapses to Bq- for q 4, 5.
We also characterize all ball pairs B5, B4.
Terminology and definitions will be as in [20] except as follow. By a mani-

fold, we mean a locally Euclidean, separable metric space. When referring
to combinatorial manifolds and piecewise linear maps we shall always use the
adjectives combinatorial and piecewise linear. Let M be an orientable mani-
fold; by bdry M we mean the boundary of M with the induced orientation;
by int M, the interior of M; by M- we mean M with its orientation reversed.
By C1 X, we mean the closure of X.

TEOREM 1. Let B", B"- be a ball pair with n >_ 6; then B collapses to

1. Proof of Theorem for n > 7

Let N be an admissible regular neighborhood of B"- in B [20; Chap. VII,
p. 67]. Then N bdry B is a regular neighborhood of bdry B"- in bdry
B. It was shown in [8] that

C1 (bdry B (N bdry B)

is the union of two disjoint combinatorial (n 1)-cells, say S u S.. Simi-
larly, C1 (bdry N (N n bdry B)) is the union of two disjoint combina-
torial (n 1)-cells, say T T, indexed so that S n T 0, i 1, 2.
Then each S u T is a combinatorial (n 1)-sphere. Hence by considering
the double of B, it follows from [4], [15] that each S u T bounds a topological
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cell R in Bn. By Smale [17], [11], each R is a combinatorial n-cell. Hence
each R collapses to T so that B collapses to N and hence B" collapses to

2. Proof of Theorem for n 6

Two orientable combinatorial manifolds M and N are said to be equivalent,
M N, if there exists an orientation preserving, onto, piecewise linear
homeomorphism taking M onto N. is clearly an equivalence relation and
so if one considers the set S(T) of all combinatorial manifolds which triangu-
late some fixed orientable manifold, induces a decomposition of S(T)
into equivalence classes each of which vill be called a combinatorial structure
on T. The set of combinatorial structures on T will be denoted by CS(T).
In general, we shall not distinguish between a combinatorial manifold and the
combinatorial structure containing it, in fact, we often use the same symbol
for both. The necessary details for making the transition from element
to equivalence class and vce versa in the following are easily supplied.

Let T be a closed orientable m-manifold with CS(T) 0. If
M, N CS(T), define the connected sum [9] of M and N, M % N, as follows.
Choose piecewise linear embeddings.

where B is the oriented combinatorial m-cell, il is orientation preserving
and i2 is orientation reversing. M % N is obtained from C1 (M i B) u
C1 (N i2 B) by identifying i(t) with i(t) for each e bdry B. That the
connected sum is a well defined operation follows from [5] and [14]. It is
then easily seen that CS(T) is a semigroup.

Let T be a compact orientable m-manifold with a non-empty connected
boundary and CS(T) 0. If M, N CS( T), define the connected sum
of M and N, M N, as follow. Choose piecewise linear embeddings

i" B-1 -- bdry M, i2 Bm-1 --> bdry N,

where bdry M, bdry N have orientations induced from M, N respectively and
i is orientation preserving, i: is orientation reversing. M $ N is obtained
from M u N by identifying i(t) with i(t) for each e That this
connected sum is well defined follows from [6] and the fact that combinatorial
manifolds are combinatorially collared [16], [20]. Then it also follows easily
that CS(T) is a segroup.
We shall be interested in the case when T is either the n-sphere S or the n-

cell C. For n 1, 2, it is a classical result that CS(C) and CS( S) are tribal
[5]. Moise [12] and Bing [3] have shown that these semigroups are trivial
for n 3; Smale has shown this for n 6 [17]. It is also known that CS(S)
is tribal [11]. That CS(C) is trivial is equivalent to an affiative answer
to the Schoenflies Conjecture [10].
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Consider the following maps"

0 C(C’) -. C(-)
defined by OM bdry M for each M CS(C) and

: c(’)

defined by },M C1 (M N) for each M e CS(S") where N is a combina-
torial n-cell embedded piecewise linearly in M. By [6], [14], , is a well
defined map. It is easily seen that both 0 and h are homomorphisms for each
n.

Let U(M) be .the subset of CS(M) of those elements which have inverses
under .
LEMMA 1. U(C), U(C), U(S) are groups.

LEMMA 2. 0 CS(C) ---* CS( S) is an epimorphism.

Proof. Let E e CS(S) want to findD e CS(C) such that OD E.
By [13], E has a differentiable structure compatible with its combinatorial
structure. From [9], (% is the trivial group, i.e., E is h-cobordant to S, the
standard 4-sphere. Hence by [9; Lemma 2.3], [11, p. 110], E OD where D
is u contractible differentiable manifold. Consider the double, 2D, of D.
It follows from the Mayer-Vietoris sequence and Van Kampen’s theorem
that 2D is a homotopy 5-sphere. Hence by Smale [17], 2D is diffeomorphic
to the 5-sphere. By [4], [15], D is a topological 5-cell. By [18], it follows
that D has the required combinatorial structure.

LEMMA 3. The kernel of 0 CS(C) -- CS(S) contains only the trivial
element of CS C )

Proof. Let D be an element of the kernel of 0 and give D a differentiab!e
structure compatible with its combinatorial structure. By [11; p. 110], D
is diffeomorphic to the standard 5-cell. The lemma then follows from the
uniqueness of the compatible combinatorial structure [18].

The following two lemmas are easily proved.

LEMMA 4. If G, H are semigroups and if f" G ---> H is anepimorphismsuch
that the kernel off contains only the trivial element, then an element a of G has an
inverse if and only if f(a) has an inverse.

LEMMA 5. 0-1(U(4)) U(D).

By using Alexander [1], one can prove easily:

:LEMMA 6. } CS(S) ----> CS(D) is an epimorphism.

LEMMA 7. The kernel of X CS(S) ---+ CS(D) contains only the trivial
element of CS S).
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Ltx 8. X-’ ( U(D) U(,S’).
Finally, we have

:LEMMA 9. The restricted maps

O: U(C) ---. U(S), X: U(S) ---. U(D)
are isomorphisms.

Proof of Theorem 1. Let B, B be a ball pair and let N, S, S., T, T
be defined as in Section 1 with the additional stipulation that each of the
sets be given the induced orientation. Our difficulty is that S, S., T, T
may not be combinatorial 5-cells.

By [15; Lemma 10] and the uniqueness of regular neighborhoods,
N n bdry B is homeomorphic to S X [0, 1]. Hence, by [15], S, S., T,, T
are topological 5-cells and are therefore elements of CS(D). We wish to
show that they are elements of U(D).

Let K be a triangulation of bdry B such that K contains a subcomplex
K which triangulates bdry B. Let v be a vertex of K such that st(v, K,) [,
1st (v, K)I is an unknotted ball pair. (For example, one could pick v
to be a point in the interior of some 4-simplex in K and consider the new
triangulation formed from K by coning from v.) Let Ka be the subcomplex
of K which triangulates C1 (bdry B [st (v, K) [); Let K Ka n K..
Hence by [1], K [, K is a ball pair. Let N be a second derived neighbor-
hood of K in K. By [19], N is a combinatorial 5-cell and bdry N, is a
combinatorial 4-sphere. Then

C1 (bdry N, bdry [Ka[) L, u L
where L L e U(D).
However lk(v, K) ], lk(v, K) is an unknotted sphere pair and

bdry N n Ilk (v, K,)

is a regular neighborhood of [lk (v, K) in Ilk (v, K) [. Hence

C1 ([ lk (v, K) bdry N) M, u M
which are disjoint combinatorial 4-cells. Note that N, u ]st (v, K,)] is a
regular neighborhood of bdry B in bdry B and

bdry (N u st (v, K) L u L u M u M,
which we may assume are so indexed that L n M 0.

Therefore L u M U(S) for each i. Hence

C1 (bdry B (N, u [st (v, K) [)) P, u P
where OP L u Mi and by Lemma 5, P U(D) for each i. By the
uniqueness theorem of regular neighborhoods it follows that each S is piece-
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wise linearly homeomorphic to some Pj. Similar arguments also that the
T’s belong to U(Ds). Since OS OT, by Lemma 9, S T for each i.
Each S u T" is a combinatorial 5-sphere and each bounds a combinatorial

6-cell R in B [11], [20]. What we want to show now is that each R collapses
to TT. Consider R S )< [0, 1]; R isclearly a topological 6-cell andhence
a combinatorial 6-cell. Clearly R collapses to S X 1 which is piecewise
linearly homeomorphic to $7. By using [20; Lemma 10], we have then
that R collapses to T7 for each i.

3. Theorem 2 for n 4, 5

TttEOREM 2. Every ball pair B, B is collapsible if and only if every ball
pair B, B is collapsible.

Proof. The "if" part is well known [10]. Suppose there exists a ball pair
B, B which is not collapsible. B B u B where B B. B and each
B U(D). Let N e U(D) such that B ON for each i. By Lemma 9,
each N is not a combinatorial 5-cell. Let N N N, N N N..
Claim that N, N is not a collapsible ball pair. If N collapses to N, then
each N collapses to N. Hence by [19], each N is a combinatorial 5-cell.,. Theorem 3 for n 5

Let B, B be a ball pair. B separates B into two components, the closure
of which will be designated as B, B where B, B, B have their orienta-
tion induced from B and the orientation on B agrees with the orientation
induced from B. The set of points {v} of B at which B .could fail
to be locally unknotted [20] is clearly finite. Let K be a triangulation of B
such that {v} K and K IB L. Define the knot type K+ at v with
respect to B to be the element

ilk (v K) B CS(C)
where the orientation of K+ is induced by the orientation of st (v, K)
which, in turn, is oriented coherently with B. Similarly define

,g_ Ilk (v, El n B.
From [6], we have that {K+, K_} is independent of the triangulation chosen.
Let S+ B n bdry B, S_ B bdry B have the orientations induced by
B, B- respectively.

THEOREM 3. B, B is a collapsible ball pair iff
S+ K+ K+ ,K+.

If B, B is locally unknotted at each point of B, then B, B is a collapsible ball
pair iff S O, i.e. iff S is a combinatorial 4-cell.

Proof. The proof of the second statement is straightforward, so we only
give a proof of the first statement. Suppose B, B is a collapsible ball pair.
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Let the v’s be ordered such that vl v2 v e bdry B, v+ v e

int B" let A1 be a polygonal arc in bdry B such that bdry A, {v, v} and
{v}?- __c A and let A be a polygonal arc in B such that A.n bdry B {vq},
bdry A. {vq, v,}, and {v}+ A. Let A A u A and let the usual
ordering < be given on A and suppose that the v’s are so indexed that v < v+
for each i. Claim B A.

Let N be a regular neighborhood of A rood (bdry A) u A in B meeting
bdry B regularly [71. Hence C1 (B N) is a combinatorial 4-cell [11. Let
N be an admissible regular neighborhood of A in C1 (B N) and again
C1 (C1 (B N) N:) is a combinatorial 4-cell so that

C1 (C1 (B N) N:) C1 (C1 (B N) N.) n N.

Hence C1 (B- N) " N2 , A, so that B N u N " A u A A.
Let K* be a subdivision of K such that L* L* A, [19] [20]. By White-

head [19], the second-derived neighborhood N(B, K*"), it follows that there
exists an orientation preserving piecewise linear homeomorphism between
N(B, K*") and N(A, K*"). It follows then from the properties of dual
complexes [2] thai;

N(A, K*") n B N(B’, K*") n B xK+ g K+ .K+,

where the oriena,ion of N(B, K*) is the one induced from B. Since B is
also a regular neighborhood of B in B, ,he conclusion follows from [7].

Conversely if we let M+ C1 (B N(B*, K* ), then

bdry M+ S+ u (M+ n N(B, K*) )-

where M+ has ,he orientation induced from M+. Hence

bdryM+ (xK+ i .K+)u (K+ .K+)-,

mplying M+ (K+ .K+) X I as in proof of Theorem 1, n 6;
so as in that proof M+ K+ % % .K+. Define

M_ C1 (B- N(B’, K*"
and by noting that S_ S,

(bdry N(B*, K*" n B [( bdry N(B*, g*" n B]-
by arguments of Theorem 1, n 6, we get similarly

M_ " [K+ K+]-.

Therefore B " N(B, K*" " B.
COROLLARY. There exists a 1-1 correspondence between ball pairs B, B and

ordered riples ({K+}, {L+}, M+) where {K+}, {L+} are two finite unordered col-
lections of knot types, K+’s occurring at vertices of bdry B and L+’s occurring at
vertices in int B, and where M+ e U(C).
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