MAPPING CUBES WITH HOLES ONTO CUBES WITH HANDLES

BY
H. W. LAMBERT

1. Introduction

In connection with some work by W. Haken [4] on the Poincaré conjecture
in dimension 3, R. H. Bing raised the following question in [2]. If K, is any
cube with 2 holes, does there always exist a continuous map f of K, onto a
cube with 2 handles C; such that f | Bd K, is a homeomorphism onto Bd C5?
(We call such a map f a boundary preserving map of K, onto C>.) In gen-
eral, if K, is a cube with n holes, does there always exist a boundary preserving
map of K, onto a cube with » handles C,? For the case n = 1, J. Hempel
in Theorem 5 of [5] answered the question in the affirmative. In Theorem 1
of this paper we show that the question has a negative answer for n = 2.
It then follows, as a corollary to Theorem 1, that the question has a negative
answer for » > 2. Theorem 2 gives a necessary and sufficient condition for
the existence of a boundary preserving map of K, onto C,. Theorem 3
gives another sufficient condition for the existence of a boundary preserving
map of K, onto Cs .

2. Terminology

Throughout this paper all sets which appear can be considered as polyhedral
subsets of B°. A cube with n holes K, and a cube with n handles C, are defined
as on pages 90 and 95 of [2]. Any cube with holes or handles is to be thought
of as a polyhedral subset of E*. In analogy to the definition of 1-linked
simple closed curves (sce’s) in E° [9], we define disjoint sce’s X, Y to be 1-
linked in the 3-manifold M if for each pair of compact orientable 2-manifolds
Mx and My in M such that Bd Mx = X and Bd My = VY, it follows that
Mxn My % (. At the end of Section 4 we note an analogy between the
main result of this paper and the example of a boundary link [; u I, given in [9].

Suppose ¢ is a map of K, onto C,,. Then g is said to be a boundary pre-
serving map of K, onto C, if ¢ is continuous and g | Bd K, is a homeomorphism
onto Bd C,. It can be shown that if ¢ is a boundary preserving map of
K, onto C, , then there is a piecewise linear map f of K, onto C, and a product
neighborhood 6; (= Bd K, X [0, 1]) of Bd K, in K, and a product neighbor-
hood 6, of Bd C, in C, such that (1) f| 6; is a homeomorphism onto 6; and
(2) f(K, — 6;) = C, — 6;. We will assume then that any boundary pre-
serving map f of K, onto C, has been adjusted so that it is piecewise linear
and satisfies (1) and (2) above.
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3. Description of T

In this section we describe a cube with 2 holes 7" which we show (Theorem
1 of Section 4) has no boundary preserving map of 7 onto the cube with 2
handles C;. The example we will describe is Zeeman’s example E° — C; — C;
of case 3 of [10] where we take the one point compactification of F; and remove
the interior of a regular neighborhood of C; u C;.

Let T” be a solid cube in E* containing the two arcs J v, J1 and the two
disks Dy, , D} as indicated in Figure 1. The intersection of D}, and Dj consists
of the two disjoint ares A, and A;. Let R be a regular neighborhood of J,
u J7in 7”. Then R is the union of two disjoint cubes R, and R; , containing
Ju and J; , respectively.

Assume R is taken so that B n Dy, is a regular neighborhood in Dy, of J., u
(D% n J1) and R n D;isa regular neighborhood in Diof Jiu (D; nJ,). As-
sume also that 4, = Cl(4, — R) and 4; = Cl(4; — R) are arcs.

Let T be the cube with 2 holes obtained by removing Int R (w.r.t. 7”) from

T'
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T’ (see Figure 2). Let
D, = D, — (Int R), D, = D; — (Int B), L, = Cl(BdR,nInt7T’), and
L, =CI(Bd RinInt T").

Then D,(D;) is a disk with 2 holes and let J,(J;) be the sec of Bd D, (Bd D;)
that does not intersect 4;(4,). Note that L, , L; are annuli on Bd T. (See
Figure 2 for a picture of these subsets of T.) Let D%(D}) be the disk ob-
tained from the closure of the component of D, — A4,(D; — A;) not containing
Bd D, — J. (Bd D, — J)). Let Li(L}) be the subannulus of L, (L:) bounded

4. Proof of Theorem 1

Some necessary parts to the proof of Theorem 1 are contained in the follow-
ing six lemmas. The first three of these lemmas are concerned with some
general topological properties needed for the investigation of our example 7,
and the last three lemmas are concerned with some specific properties of T'.

Suppose M;, M, are compact orientable 2-manifolds in E® such that
Bd M1nBd M, = §. In this paper we use the definition of the linking num-
ber 0(Bd M;, Bd M,) of Bd M, , Bd M, as given on page 81 of [1] with the
integers as the coefficient domain. The following lemma, is proved in [1].

Lemma 1. If o(Bd M, , Bd M,) £ 0, then o(Bd My, Bd M) # 0 and if
M, , M 5 are compact 2-manifolds such that Bd M 1= Bd M, ,Bd M » = Bd M, ,
then

o(Bd M1, Bd M;) = o(Bd M, Bd M,).

In [8], A Dehn surface of type (p, r) is defined and in [6], a conservative
e-alteration of a singular disk is defined. We may extend the term conserva-
tive e-alteration to apply to Dehn surfaces of type (p,r). Using this terminol-
ogy we have the following lemma.

LemmA 2. Let D be a Dehn surface of type (0, r) in the 3-manifold M such
that a regular netghborhood of Bd D in M consists of r disjoint solid tori. Then
there exisls a nonstngular surface of type (0, r) in M which is a conservative
e-alteration of D.

Proof. Let (A, --+,A,) be the boundary components of D. Since a
regular neighborhood of Bd D in M consists of r disjoint solid tori, it follows
that there exist r disjoint solid tori Ty, - - -, I'y in M such that for 1 < 7 < 7,
A; is a longitude of T; on Bd I'; .  For 2 < 7 < r, let h; be a homeomorphism
of Bd T'; onto itself which carries the boundary of a meridional disk ¥; of T';
onto A; . Now add Ui, I'; to M — Uji_; Int I'; by the identification z = h:(x)
for x e Bd T';. The resulting manifold M’ now contains the singular disk
D' = Du (Ui; ¥;). It then follows by Theorem IV. 3 of [6] that there is a
nonsingular disk D” which is a conservative e-alteration of D’ in M’ and, if
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the ¢ is small enough, D” contains Ui, ¥, ; hence D” — Int(Ui_; ¥;) is a

non-singular Dehn surface of type (0, r) which is a conservative ¢-alteration
of D in M.

LemMa 3. Suppose f is a boundary preserving map of T (or any cube with
2 holes K,) onto Cy. Suppose further that X, Y are disjoint scc’s on Bd C,
which are not 1-linked in Cy. Then f(X), f(Y) are not 1-linked in T.

Proof. Let X, Y bound in C; the disjoint compact orientable 2-manifolds
Mx , My respectively.
Let h; , he be homeomorphisms of Mx X [0, 1], My X [0, 1] into C, such that

(1) h(Mx X [0, 1]) n he(My X [0, 1]) = 6,
(2) m(Mx X {1/2}) = Mx, ho(My X {1/2}) = My, and
(3) hy(X X [0,1]) S Bd C,, heo(Y X [0,1]) S Bd C,.

Let Rx be a regular neighborhood of f™'(Mx) contained in
S (m(Mx X [0, 1]))
and let Ry be a regular neighborhood of f™(My) contained in
F (M y X [0, 1])).

Let Rx be the component of Ry containing f(X) and let Ry be the component
of Ry containing f(Y). Let Z be an arcin Bd T n Ry which intersects and
pierces f(X) at just one point. Now if f(X) does not separate Bd Rx ,
then we may join the endpoints of Z by an arc Z’ in Ry — T (Mx). But
then f(Z u Z') can be adjusted slightly to form a sce in 2(M x X [0, 1]) which
intersects and pierces Mx at just one point, contradicting that, locally, Mx
has two sides. Hence f(X) separates Bd Ry into two components and, by
a similar argument, (Y separates Bd Ry. The closure of a component of
Bd Ry — f(X) and a component of Bd Ry — f(Y) form the surfaces
required to show f(X), f(Y) are not 1-linked in 7.

Lemva 4. In T, J, and J; are 1-linked.

Proof. Suppose J,, J; are not 1-linked in T. Let M, , M; be disjoint
compact orientable 2-manifolds in 7 bounded by J., J:, respectively. Now
J. belongs to the first commutator subgroup (mi(M,))’ of m(M,). If Xisa
sccin T — (M, u M), theno(X, J.) = 0 and o(X, J;) = 0; hence Xe (m:(T))’.
Since each loop in M, is obviously homotopic to a loop in T — (M, u M),
it follows that J, e (m:(T))”. By [10],

m(T) = {C, g, x * [clg, z]] = ID},

where z can be taken to represent J, . As suggested in [10], we may map
m1(T) onto the permutation group S; on three elements by sending ¢, g to
(12) and = to (123). Since (123) ¢ S5 = {1}, it follows that J. ¢ (m:(T))”,
contradiction. Hence J, , J; are 1-linked in 7.
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Lemma 5. Suppose f is a boundary preserving map of T onto Cy (recall the
assumption made on f in Section 2) and X is a scc on Bd Cs such that X does
not bound a disk on Bd Cs and either X n f(J,) = Bor X nf(J1) = @. Then
X s not null homotopic in Cs .

Proof. Suppose X is null homotopic in C, and disjoint from f(JJ,). Using
Dehn’s Lemma, we obtain a disk F such that Bd # = X and Int F € Int C, .
Let R(F) be a regular neighborhood of F in C; — f(J,). Since C; is a cube
with 2 handles and X does not bound a disk on Bd C,, it follows
that Cl (C; — R(F)) is either a cube with 1 handle or two disjoint cubes with
1 handle. Since f(J,) is null homologous in C, (using integer coefficients),
it follows that f(J,,) is null homologous in Cl (Cy — R(F)) and hence bounds
adisk M, inCl (C, — R(F)). Sincef(J;) is null homologous in Cs , it bounds
a compact orientable 2-manifold M ; in C, and, by adjusting M ; to be in general
position with M, , cutting M; off on M, , and pushing M; to one side of M, ,
it follows that we may assume M, n M; = @. Then f(J,), f(J:) are not
1-linked in C; and hence, by Lemma 3, J, and J; are not 1-linked in 7', con-
tradicting Lemma 4. Interchanging f(J,) and f(J:) gives a proof for the
case X n f(J;) = 0.

Under the assumption that there exists a boundary preserving map of T
onto C,, the next lemma shows that we may obtain compact 2-manifolds
E, , E; in C, with properties enough like those of D, , D; in T to imply (in
Theorem 1) the contradiction that C, is not a cube with handles. In the
next lemma we choose 6; so that D u DY C 6, ; hence f | D* u D7 is a homeo-
morphism (see Section 2 for a description of 8; and Section 3 for D}, D7).

Lemma 6. Suppose f s a boundary preserving map of T onto Ce. Then,
in Cy , there exists a copy E, of D, and a compact orientable 2-manifold E, such
that

(1) BdE. = f(BdD.),Bd E: = f(J1),

(2) IntE,ulntE; C Int C,,

(3) E, and E, are in relative general position, and

(4) (DY) S B, f(DI) C Eu.

Proof. By Lemma 2, the singular Dehn surfaces (D), f(D:) of type (0, 3)
may be replaced, in C;, by nonsingular Dehn surfaces E, , oF; of type (0, 3)
which are conservative e-alterations of f(D,), f(D;), respectively. We may
choose the & of the e-alteration small enough that f(D¥) < E, and
(DY) C oE,;. Since f(L}) intersects o, on one side of oF; , E; = oF, u f(Ly)
is a compact orientable 2-manifold. (See Section 3 for a description of LE)
By adjusting E; — f(D7) slightly, so that Int B, C Int C; and E,, , E; are in
general position, the required surfaces E, and E; are obtained. Note that
E, n E; consists of the arc f(A4;) and a finite number of disjoint sce’s
in B, — f(4.).
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TuaeoreM 1. There does not exist a boundary preserving map of T onto Cs .

Proof. Suppose f is a boundary preserving map of T onto C». Let E,
and F; be as given in Lemma 5. Since C; is a cube with 2 handles, there is a
disk F in C; such that Bd # € Bd C,, Int F C Int C;, Bd F does not bound
a disk on Bd C., and F is in general position relative to E, .

If F n E, contains a scc S which separates the two components of
Bd E, — f(J,) in E, , then (S, f(J;)) = 0 using the disk S bounds in F.
But, after a slight adjustment, S intersects and pierces £; an odd number of
times, hence 0(8, f(J:)) £ 0 using F,; , and we have a contradiction to Lemma
1. If F n E, contains a sec S which separates f(J,) from Bd E, — f(J.) in
E, , then f(J,) bounds a disk in C, contradicting Lemma 5. If F n E, con-
tains any sce’s which bound disks in E, , they may be removed by cutting F
off on E, and pushing to one side of E,. Hence we may assume F n E,
consists of a finite collection of disjoint ares with interiors in Int E, and end-
points in Bd E,, .

Suppose an arc X in F n E, together with an arc Y in Bd £, form a scc
which bounds a disk F” in B, suchthatInt F' n F = §. Now Y plus one of
the two open arcs of Bd F—Bd Y form a see Z which does not bound a disk on
Bd C;. But Z bounds a disk F in C; formed by the sum of the disk F’ and
the disk on F bounded by (Z nBd F) u X. Then E may be adjusted slightly
so that E is in general position relative to E, , £ n E,, € F n E, and the number
of arcs E n E, which together with an arc in Bd £, bound a disk in E, is less
than those of F n E,. By applying the previous argument a finite number of
times (and denoting the result by F again), it follows that we may assume F
satisfies the following condition, which we refer to as Condition A: The inter-
section of F with E, contains no arc that together with an arc in Bd £, form
a sce which bounds a disk in ), .

Let @ be the collection of arcs in F' n E, which intersect f(J,). Then each
arc X of @ is one of the following two types:

(1) X has both endpoints in f(J,) and separates one component of Bd
E, — f(J,) from the other in £, .
(2) X has one endpoint in f(J,) and the other in Bd E, — f(J.).

Now assume X € @ is minimal in the sense that X, together with an arc Yo
in Bd F form a scc which bounds a disk Fo in F such that no element of @
is contained in Fy — X,. It follows from the proof of Lemma 6 that FLD)
intersects just one side of £, . Let the side of E, which intersects f(LT) be
called its positive side. We now have the following two cases:

(a) Fo lies on the positive side of F, near X .
(b) F, lies on the negative side of E, near X,.

Call the minimal arec X, of @ an ix arc if X, satisfies conditions (i) and (x)
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above, where i = 1, 2 and x = a, b. Each of the four possible cases ix is
now shown to lead to a contradiction.

Case I. X, is of type la. Since Bd X, C f(J.), if Bd Fo n f(L7) = @,
then Bd Fo n Bd f(LY) 5 §, and it follows by the general position of Fo with
E, that there is an arc X in Fo n E, with both endpoints in Bd E, — f(J.).
Since X n Xy = @, Fo € F, and X, separates the two components of
Bd E, — f(J.), it follows that X together with an arc in Bd £, — f(J.) form
a scc which bounds a disk in E, , violating Condition A. Hence Bd Fy n
f(LT) = 0 and it follows that Fon B, = X,. We may adjust X, in E, so
that X, is in general position relative to ;. Let E; = Cl (B, — f(DY)).
Now by pulling F, off E, along X, (that is X, is moved into the positive side
of B,), it follows that o(Bd Fo, Bd EY) = 0 using Fy (since Fon Bd Ef =9
but

o(Bd Fo,Bd ET) = +1or —1

using E7 , contradicting Lemma, 1.

Case II. X, is of type 2a. In this case, by pulling F, off E, along X, (and
into the positive side of £,), it follows that the endpoints of X, are separated
in Bd C: by Bd E, — f(J.). Hence Bd F, intersects and pierces
Bd E, — f(J.) an odd number of times. By pushing F, slightly into Int C,,
it follows that o(Bd Fo , Bd E,) = 0 using ¥, but 0(Bd Fy, Bd E,) 5 0 using
E, , contradicting Lemma 1

Case ITII. X, is of type 1b. We may adjust F, slightly so that it is in
general position with respect to f(D7) and Bd F, intersects f(A,;) at just one
point. Since Bd Fon f(L7) = @, as shown in Case I, it follows by the general
position of Fy with f(D7) that there is an arc X in Fo n f(D7) with one end-
point Bd Fon f(4,;) and the otherin f(J,). Since X C F(D7), X n Int Ef=¢
and there is a homeomorphism % of C; onto itself fixed on Bd C; , Bd E; and X
such that h(E7) n Xo = §. Let E7* = h(E7). It follows that

Int EY*nE, C E, — (f(4) u Xo),

and hence we may cut E;* off on E, and then off f(DY), so that
M, = f(DY) u ET* forms a compact orientable 2-manifold with boundary
f(J:) such that M, n E, = f(A;). Let R be a regular neighborhood
of M; u f(L;) in C, such that R n E, is a regular neighborhood of

f(4)) u (Bd By — f(J.))

inE,. LetM,beCl(E, — R) together with the component of Bd B — E,
not containing f(L;). It then follows that M, and M; are disjoint compact
orientable 2-manifolds with boundaries f(J,) and f(J;), respectively. By
Lemma 3, J, and J; are not 1-linked in 7, contradicting Lemma 4.

Case IV. X, is of type 2b. Let Fy be the closure of the component of
(Fy — E.) u X, containing X,. Note that Fy is a disk which intersects E,
on the negative side only and Fo n E, consists of X, and a finite collection of
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disjoint ares in E,, — X, each with endpointsin Bd E,, — f(J,). Since E TnE.
consists of f(4;) and disjoint see’sin E,, — f(4;), it follows that we may adjust
Int E near E, — f(A,;) so that

(Ef nB.) — f(A:)) C (Bu — Fo) u X,.

By pulling Fq off E, (into the negative side of E,) away from the arcs in
Fon E, — X, , We may assume

Fon E, = X,
as well as
Fon EF C Int Fou X,

(since EF n E, — f(4,)) € (B, — Fo) u X, and E7 intersects E, on the posi-
tive side near f(4;)). We may adjust Fo near E, so that X, n f(4,) = 0.
SinceFon E7 € IntFou Xoand Bd Ef n Fo = @, there exists a homeomorphism
h of C; onto itself which is fixed on Bd C; and Bd E7 such that k(E7) n X, = 6.
Letting E7* = h(E7), the rest of the proof is the same as Case I11.

These four cases now imply F n f(J.) = @, and the existence of F contra-
dicts Lemma 5 (where the X of Lemma, 5 is taken to be Bd 7). Hence there
is no boundary preserving map f of 7' onto C; and the proof of Theorem 1 is
complete.

CoROLLARY. For each n > 2 there is a cube with n holes T, with no boundary
preserving map onto the cube with n handles C,, .

Proof. For n > 2, let T, be the T of Section 3 together with n—2 disjoint
cubes with 1 handle H, , H;, - - -, H,_2 such that for each ¢,

H;nT=BdH;nBdT = adisk D;.

Suppose f is a boundary preserving map of T, onto C,, . Using Dehn’s Lemma,
replace each f(D,) by a nonsingular disk Di in C, such that D; n D; = § for
i j. It follows that each f(Bd H; — D;) u D; bounds a cube with one handle
H;in C, such that Hi n H; = @ for ¢ = j. Then, filling in the hole of each
H;and H{ by a cube (see [2] for a discussion of this process), we obtain from
T, a T» homeomorphic to 7' and from C, a C, homeomorphic to C;. It now
follows that f may be extended across the filled in holes to a boundary pre-
serving map of T, = T onto Cr, = C,, contradicting Theorem 1.

By [10], m(T) = {c, g, « : [clg, z]] = 2} and it follows that there is a homo-
morphism of m:(7T) onto the free group on two generators, m(Cs). In [9],
N. Smythe gives an example of 1-linked sce’s Iy , I in S° that form a homology
boundary link. Let oy, ol be disjoint sce’s in the zy-plane and let R(l),
R(L), R(ol), and R(ols) be regular neighborhoods in 8% of Iy , I, oy , and oz ,
respectively. Assume

R(hW) nR(L) =9 and R(oh) n R(ek) = 0.

Then it follows that there is no boundary preserving map of the connected
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elementary figure (see [3])

S* — (Int R(h) u Int R(k))
onto the connected elementary figure

S* — (Int R(oly) u Int R(ok))
but there is a homomorphism of

m (8 — (Int R(L) v R(L)))
onto the free group on two generators

m (S* — (Int R(ok) u Int R(ok))).

We have obtained in Theorem 1 the analogous result for the connected ele-
mentary figure 7" with connected boundary.

5. The existence of boundary preserving maps

In this section we give some conditions which imply the existence of a
boundary preserving map of K, onto C,, . We say the disjoint see’s ly, -+, ln
in K, form a boundary link [9] in K, if they bound disjoint compact orientable
2-manifolds M, , ---, M, , respectively, in K,. In Theorem 5 of [5], J.
Hempel shows that there is a boundary preserving map of any K, onto C,
and, to prove this, Hempel observes that any K; has a sce l; which is a bound-
ary link in K; and Bd K; — [; is connected. The ‘“if”’ portion of the next
theorem is a straightforward generalization of Hempel’s Theorem 5; the
“only if”’ portion is a straightforward generalization of our Lemma 3.

TueoreM 2. There exists a boundary preserving map of K, onto C, if and
only if there exists a boundary link I , - -+, 1, in K, such that Bd K, — Uj— I;
s connected.

Note that Theorem 2 together with Theorem 1 imply that if l; , I, are sce’s
on Bd T such that Bd T — [, u » is connected, then I; , I, are 1-linked (not a
boundary link) in 7.

T
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We say K, is reducible [7] if there is a disk D in K, such that Bd D C K,
and Bd D does not bound a disk on Bd K,, . It follows that if K, is reducible,
then there is a boundary link [; , I, in K, such that Bd K, — l; u Iy is connected.
Hence we have the next theorem.

TaEorREM 3. If K, is reducible, then there is a boundary preserving map of
K, onto C, .

Figure 3 illustrates a cube with 2 holes T’y that provides a counterexample
to the converse of Theorem 3. It is easy to show that 7' satisfies the hypothe-
sis of the ‘“4f portion” of Theorem 2, but it can be shown (by a long geometric
proof similar to that of Theorem 1) that 7' is not reducible.
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