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Introduction
We introduce the concept of polynomial function from group B to n

belin group A (see Definition 1). Let B be written multiplictively nd A
dditively nd let Z[B] denote the integral group ring of B. A function
f B --* A cn be extended to n dditive homomorphism f* Z[B] A. In
Section 1 we characterize polynomial functions by vrious properties of f nd
f* (see Theorem 1.1 ). Also we show that polynomial functions f B --, A
with f(1) 0 must tke p-elements to p-elements (see Theorem 1.2).

Section 2 dels with some general results on extensions. We give necessary
nd sufficient conditions for n extension E of n belin group M by nil-
potent group B to be nilpotent. This condition is formulated in terms of the
ction of B on M. In the split cse we describe the lower central series {E}
of E nd the series {Z (E) n M} in terms of the ction of B on M nd compute
the class of E in the nilpotent cse. These results re well known.
We then turn our ttention to wreath products in Section 3. Let A, B be

groups and F A>. Then W, the standard restricted wreath product of A
with B, is split extension of F by B. We first mke use of our results on poly-
nomial functions to give new proof of theorem of Bumslg [1]; this theorem
states that W is nilpotent if nd only if B is finite p-group nd A is nilpotent
p-group of finite exponent. In the cse where A is belin we re lso able to
describe the lower central series W} of W in terms of the ction of B on F nd
the so-called a-central series {Z (W) n F} of W in terms of polynomial func-
tions. This ltter result overlaps to n extent with result of Meldrum [4].
He described the -central series of W when both A nd B re abelin in terms
of polynomial condition.

Finally we discuss the class of these nilpotent wreath products. This hs
been computed by Liebeok [3] nd Meldrum [4] in the cse where both A nd B
are abelin. We show that when A is belin, it depends only on B nd the
exponent of A. In fact, it cn be described s the class of nilpotent ideal
(the ugmenttion ideal) in the group ring of B over the integers modulo the
exponent of A. Then by mking use of work of Jennings [2] we re ble to
determine the class of W when A is belin of exponent p nd B is ny finite
p-group.
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1968.
A p-element is an element whose order is a power of p.
A p-group is a group in which every element is a p-element.
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1. Polynomial functions
In this section A denotes n sbelin group written dditively nd B n r-

bitmry group written multiplictively.

DEFINITION 1. A function f B -- A is a polynomial function of degree
<_ r iffor each bl b in B there exist numerical polynomials pl p all
of degree <_ r and a a in A such that

f(b’ b ., p(m ..., mt, )a

for all integers m ..., m.
Note. By a numerical polynomial p (x, , xk) we mean a polynomial with

rational coefficients which is integral valued when integers are substituted for
the variables. If i 0, denote

(.+-t) 1.
If/> 0,

Then the product

(z’{---l ’(X "- 1) (x + i- 1)

is a numerical polynomial of degree i + + i. Also, it is well known that
every numerical polynomial is an integral linear combination of such poly-
nomials.

It is not difficult to show that the constant functions are precisely the poly-
nomial functions of degree 0 and that the polynomial functions of degree I are
those functions which are the sum of a non-zero group homomorphism and a
constant function.
As before, f denotes a function B -- A andf* denotes the extension off to an

additive homomorphism Z[B] --. A. Here Z[B] denotes the integral group
ring of B and I the augmentation ideal in Z[B]. I is generated as an additive
group by the set of all b 1, b in B. Hence the ideal Ik is generated as an ad-
ditive group by the set of all products (b 1 (b 1 where the b are
in B. The functions from B to A form u right module, denoted AB over the
ring Z[B] in the usual way. Namely, for f in AB and b in B, fb is the function
given byf (x f(xb-1) for x in B.

THEOREM 1.1.
(i)
(ii)
(iii)
(iv)

The following conditions are equivalent.
f B ---, A is a polynomial function of degree <_ r.
Ir+ is contained in the kernel off* Z[B] --, A.
I+ annihilates f (considering f in the right Z[B]-module AB).
For b b in B

This theorem is contained in the author’s Ph.D. thesis, Indiana University, 1964.
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for all integers m,, ..., m where

a,,....., f*[(1 57’)"... (1 b’’)’]
and the summation is over all i,, ..., i such that 0

_
ii, ..., i and

i,+ +i, <_ r.

Proof. We shll prove (i) (ii) (iv) (i) nd then (ii) = (iii).
(i) (ii). Here we proceed by induction on r. If r O, f is a constant

function. Hencef* (b 1 f(b) f(1) 0 for all b in B and consequently
I is contained in the kernel of f*. Suppose the statement is true for poly-
nomial functions of degree _< r 1 and let f have degree _< r. It is sufficient
to show f* (P (b 1)) 0 for all P in I and b in B. Now

f* (P (b 1 f* (Pb f* (P g* (P
where g f(b-l-1). By our induction hypothesis we will be done after proving
the following

LEMMA. Iff" B ----> A is a polynomialfunction of degree <_ r and b in B, then
g f(b-’-) is a polynomial function of degree <_ r 1.

Proof.
g(b’ b’*) f(b’ b*.b) f(b’ b’*)

p,(m,,..., ink, 1)a p,(m,,..., ink, O)a,

[p,(x,, ..., xk, 1) p,(x,, ..., x,, 0)]a.

Since degree p (x,, x, x,+) _< r we have

degree [p(x,, x, 1) p(xl, x, 0)] _< r 1.

Hence f(--) has degree _< r 1.
(ii) (iv). Here we make use of a congruence in the group ring, the proof

of which we omit. Let b in B, m be an integer positive or negative or 0 and r a
non-negative integer. Then

b --- E-o (+-)(1 b-’)’ mod I’+’.
Let b,, ..., bk in B and r >_ 0. Using this congruence we obtain

b’ b* - (m,+,,-, (m*+’*- (1 b-)’1 (1 b-’) **\ il ] \ ik ]

for 11 integers m, ..., m,. The summation cn be restricted to those

Whether m is positive, negative, or zero we denote

("+-) 1 if, 0
nd

(m - i 17 m(m - l) (m - i 1)
if i
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il,...,iksuchthat0<il,...,ikandi - - i < r. The result (iv)
now follows immediately.

(iv) (i). This is clear from the note following Definition 1.
(ii) =, (iii). Let P (b 1 (br+ 1 where the b are in B and

letxeB. Then

b-fP (z) f*[x( r+ 1 )(b71 1 (b7 1 )].

Since the ideal Ir+l is generated by all such P it is now clear that I+1 annihilates
f if and only if Ir+l is contained in the kernel off*. This completes the proof of
Theorem 1.1.

LEMMA. Let G be a group, [G, G] its commutator subgroup and I the augmenta-
tion ideal in ZIG]. If G/[G, G] has finite exponent n, then the additive group
I/I+ has exponent dividing n.

Proof. It is well known that the map G -- I sending x to x 1 induces an
isomorphism G/[G, G] I/Is. Hence nP for all P in I. The result now
follows easily by induction on r.

THEOREM 1.2. If f B A is a polynomial function of degree <_ r with
f (1) 0 and 0 (b) n, then 0 (f(b)) divides n.

Proof. Let G be the cyclic subgroup of B generated by b. The restriction
of f to G is also a polynomial function of degree <r. Since f(1) 0,

Ir+l.f(b) f* (b 1 ). By the above lemma, n (b 1 e Combining these
facts with Theorem 1.1, we obtain nf(b nf* (b 1 f* (n (b 1 O,
completing the proof. Note that in particularftakes p-elements to p-elements
where p is a prime.

2. Nilpotent extensions

First we collect some notation for commutators. If x, y e G, then
[x, y] x-y-xy. If x, xn+l e G, then

[, ..., +] [[, ..., ], +].

If S, T are subgroups of G, IS, T] is the subgroup generated by all [s, t] where
s e S and e T. Also, if n is a positive integer, [S, (n + 1)T] [IS, nT], T].
Finally we have the upper and lower central series of G denoted respectively by
Zn (G) and G} where Z (G) center of G and Z+I (G)/Z, (G) center
G/Z, (G) and G1 G, G.+I [G., G]. We recall that G is nilpotent either
when Gc+ 1 for some c or Zc (G) G for some c. In this case both series
have the same length and this is called the class of G. That is, the class of G
denoted nil G is the smallest positive integer such that G+ 1 or Z (G) G.

Let E be an extension of an abelian group M by a group B. Hence we can
regard M as a normal subgroup of E with quotient isomorphic to B. We then
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have an exact sequence of groups

Now M can be considered as a right B-module where the action of B on M is
given by the following. If a e M, b e B and p (g) b, then a g-lag. Again
I denotes the ]th power of i the augmentation ideal in Z[B]. Also MI de-
notes the subgroup of M generated by the elements aP where a e M and P e I.
If p (g) b, then

a(bl-1)’’’(b-l) [a, gl, ..., g]

and hence MI [M, lE].
In general an extension of a nilpotent group by a nilpotent group is not nil-

potent. We now formulate necessary and sufficient conditions for E to be nil-
potent in terms of the action of B on M. We also determine the class of E in
the split case after first describing the lower central series of E. The proofs of
these well-known facts are omitted.

THEOREM 2.1. Let E be an extension of an abelian group M by a nilpotent
group B. Then E is nilpotent if and only iffor some integer , I annihilates M.
In this case nil E -< /c -t- nil B where lc is the smallest such integer.

Now let E be a split extension of an abelian group M by a group B. So
M <l E,B c E, MnB 1 andE MB. We shall denote all this by
E [M]B. Again we have the induced action of B on M making M a right
B-module.

THEOREM 2.2. Let lc >- 1. Using the above notation,
(i) E+ [MI]B+I
(ii) Z (E) n M a a M and I annihilates a}.

We conclude this section with a corollary which follows immediately from
Theorem 2.2.

COROLLARY 2.3. IfE is a nilpotent split extension of an abelian group M by a
nilpotent group B of class c and lc is the smallest integerfor which I annihilates M,
then nil E max (/c, c).

3. Wreath products
Let A, B be arbitrary groups. A (B) denotes the set of those functionsf from

B to A for which f(b) 1 for all but a finite number of b in B. That is, A
can be considered as the restricted direct product of A with itself over the index
set B. The group B operates on A() in the following way. If b e B and
f A(), j (x) f(xb-). In this way B can be regarded as a subgroup of the
automorphism group of A(). The standard, restricted wreath product of A
by B denoted AwrB is by definition the relative holomorph of A() by B. That
is, the elements of AwrB can be writ’ten bf where b B and f A(m and multi-



POLYNOMIAL FUNCTIONS AND WREATH PRODUCTS

plication is given by: (bill). (bf) (bl b) Ofi.). We now apply the results
on polynomial functions and nilpotent extensions to give a new proof of the
following theorem of Baumslag [1].

THEOREM 3.1. AwrB is nilpotent if and only if B is a finite p-group and A is
a nilpotent p-group offinite exponent.

Proof. We first assume that AwrB is nilpotent and proceed to show that
the conditions on A and B are satisfied. We shall denote AwrB by W and
A() by F. Since it is almost immediate that W has trivial center when B is
infinite we can assume from the beginning that B is finite. Since A and B can
both be identified with sub-groups of W, A and B are nilpotent. We now pro-
ceed by induction on the class of A. Let nil A 1; that is, let A be abelian.
Here the results on polynomial functions enter in. W is an extension of the
abelian group F by the (finite) nilpotent group B. Since W is nilpotent we
conclude by Theorem 2.1 that some power I of the augmentation ideal in
Z[B] annihilates F. Since B is finite, F is the group of all functions from B to
A. By Theorem 1.1 we conclude that every functionf" B --. A is a polynomial
function of degree _/c 1. Let r k 1. Then B, A must be p-groups for
the same prime p because otherwise it would be easy to produce a function f
withf(1) 0 but not taking p-elements to p-elements contradicting Theorem
1.2. Furthermore A must have finite exponent, because if B has exponent pa
(we have shown B is a finite p-group), then A must have exponent dividing
prS. Otherwise it would be possible to produce a function f" B --, A violating
Theorem 1.2 again. Suppose now that the conditions on A and B are satisfied
when nil A < n. Assume that nil A n and W AwrB is nilpotent. Having
a natural epimorphism AwrB ---+ A/A2 wrB we can conclude that A/A2 is nil-
potent. Applying the case n 1, we conclude that B is a finite p-group and
AlAs is a p-group of finite exponent p* say. We already know A is nilpotent.
It is well known and easy to prove that A also has finite exponent dividing pnt.
This concludes the first half of the theorem. To go in the other direction we
again use induction on nil A. We begin by assuming B is a finite p-group and
A is an abelian p-group of finite exponent pro. Because of Theorem 2.1 we need
only show that some power I annihilates F As. Since B is a finite p-group
it is well known that I c pZ[B] for some positive integer r. (This is the con-
tent of a theorem of Jennings [2] describing the radical of the group algebra of
B over the modular field of p-elements.) Hence some power I p"Z[B].
Since F is an abelian group of exponent pro, I annihilates F and consequently
W is nilpotent. Suppose AwrB is nilpotent when nil A < n and the other
conditions on A, B hold. Let A, B satisfy the conditions and nil A n. We
consider the extension

1 Z (A) ---, AwrB ---, A/Z (A)wrB 1

where Z (A) denotes the center of A. Since nil A/Z (A) n 1 our induc-
tion hypothesis tells us that A/Z (A)wrB is nilpotent. If g e Z (A) and
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bf AwrB then

(3.1) g(bS-1) g(b-1).
This follows immediately, using the fact that

(bf- 1)= (b- 1)(f- 1)q- (b- 1)q- (f- 1)

together with the fact that g commutes with all functions. Let I denote the
augmentation ideal of A/Z (A)wrB and I (B) the augmentation ideal of B.
By the case n 1, Z (A)wrB is nilpotent and hence some power I (B) annihi-
lates Z (A)’. Because of (3.1) above the same power of I annihilates Z (A).
Consequently by Theorem 2.1 AwrB is nilpotent. This completes the proof
of Baumslag’s theorem.

Before discussing the class of these nilpotent wreath products let us make
some observations about the upper and lower central series of W AwrB when
A is abelian and B is any finite group. Let Pol (B, A denote the group of all
polynomial functions B -- A of degree

_
k. Here F As again.

THEOREM 3.2.
(i) W+I [FI]B+I
(ii) Z+ (W) F Pol (B, A).

Proof. W is a split extension of F by B. Hence (i) follows immediately
from Theorem 2.2 and (ii) from Theorem 2.2 and Theorem 1.1. We also note
that similar facts hold when B is infinite if one works with the unrestricted
wreath product.

In the case where B is a finite abelian p-group and A is an abelian p-group of
finite exponent, the class of AwrB has been computed by Liebeck [3] and Mel-
drum [4]. Meldrum first develops a necessary and sufficient condition for a
function f B --* A to be in Z (W). His Lemma 3.2 is equivalent to a special
case of Theorem 3.2 (ii) above and follows immediately from it. The compu-
tation of the class of AwrB when both A and B are abelian shows that the class
of AwrB depends only on B and the exponent of A. We now show that this is
also true when B is non-abelian by interpreting this class in an appropriate
group ring of B. We first have a preliminary result.

THEOREM 3.3. Let A be an abelian p-group offinite exponent and let B be any
finite p-group. Then nil (AwrB is the smallest integer ]c such that I annihilates
As"

Proof. Since AwrB is the split extension of AB by B we have by Corollary
2.3 the fact that nil (AwrB) max (k, c) where c is the class of B. Hence we
need only show that/ _> c. Now making use of Theorem 1.1 again/c can also
be described as the smallest integer such that all functions B -* A are poly-
nomial functions of degree _]c 1. Suppose c > ]c. Then there exists

I. Letf" B --+ A be any functionbeB bl Henceb-l0andb le
for which f(b) f(1). Then f* (b 1) 0. Hence I kernel f*. This
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contradicts the fact that all functions B --. A have degree _<k 1. Hence
ck.
We now show that k depends only oa B and the exponent of A. First we

collect some notation. Z[B] and I are as before. Z,[B] denotes the group
ring of B over Zm the integers mod pm and I (pro) the augmentation ideal in
Z,[B], that is, the image of I under the natural homomorphism Z[B] ---, Z,[B].
Jennings [2] has shown that when m 1 and B is a finite p-group, I (p) is the
radical of Z[B] and I (p)Z 0 for some 1. Hence one easily concludes that
I (p) is also a nilpotent ideal in Z[B]. Let k be the smallest integer such
that I (p) 0. We call k the class of I (pro).

THEOREM 3.4. Let B be a finite p-group and A an abelian p-group of finite
exponent p’. Then nil (AwrB class of I (p’).

Proof. By Theorem 3.3, nil (AwrB) is the smallest k such that I annihilates
A. We claim that this k is lust the smallestj such that I c p’Z[B] which in
turn is clearly the class of I (p). Now k is the smallest integer such that all
functions B --, A are polynomial functions of degree _< k 1. If I p’Z[B]
then I c kernel f* for all f B -- A and hence all functions B --, A are poly-
nomial functions of degree _<j-- 1. Hence j >_ k. Suppose j > k. Then
I p’Z[B]. Since Z[B] is a free abelian group on the set B, we can then pro-
duce an additive homomorphism Z[B] A not containing I in its kernel and
hence a function B -- A of degree > 1. Hence j k and the proof is
complete.
We now consider the special case m 1. Let B be a finite p-group and I (p)

the augmentation ideal in Z[B]. We state some results of Jennings [2] adapt-
ing the notation slightly. Let

R {xlxeBandx= lmodIX(p)}.
Jennings [2] characterizes the series Rx} as the minimal central series of B

B RR...

such that R Rx. He also proves the following.

THEOREM (Jennings [2]). If dx rank R/Rx+, then the class of
I(p) (p 1),d + 1.

Combining Theorem 3.4 with this theorem of Jennings we obtain the

CorollaRy 3.5. Let B be a finite p-group and A an abelian group of exponent
p Then

nil (AwrB (p 1)d+ 1.

Remarks. The determination of the class of I (p) for m > 1 seems to be a

Mr. Robert Sndling of the University of Chicago has recently informed me that he
lso has obtained this result.
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much more difficult problem. On the other hand, Mr. Robert Sandling of the
University of Chicago has recently informed me that he has obtained the class
of AwrB when B is a finite p-group and A has elementary center. Namely

nil (AwrB) (class A ). (class I (p)).
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