BRANCHED COVERINGS WITHOUT REGULAR POINTS OVER BRANCH POINT IMAGES

BY

ERIK HEMMINGSEN AND WILLIAM L. REDDY¹

1. Introduction

The purpose of this paper is to describe the branch sets B_f [1, p. 528] of those light open maps $f: S^n \to S^n$ (where S^n denotes the *n*-sphere) for which $f^{-1}f(B_f) = B_f$ and dim $f(B_f) \le n-2$. It will be proved that, in the cases n=2 and n=3, numerous different maps are possible whereas certain restrictions occur on the nature of B_f in higher dimensions. The hypothesis that $f^{-1}f(B_f) = B_f$ is a natural one. It holds for example if f is the orbit map of a finite group acting on the *n*-sphere. Furthermore, while the examples in [2] show the complications possible in the general case, in the regular Montgomery-Samelson case $(f^{-1}fB_f = B_f)$ and f is a homeomorphism there—abbreviated M-S) it is possible to find some structure [4]. (The reader should be warned that the hypothesis of regularity is invalidly omitted in [4].) The maps considered in this paper are an intermediate class between the M-S and the general light open maps.

Throughout, $f: M^n \to N^n$ will be a light open map of *n*-manifolds for which dim $f(B_f) \leq n-2$ and hence [1, corollary 2.3, p. 531] dim $B_f \leq n-2$. In dimension 2, even without further hypotheses, the Stoilow-Whyburn theory guarantees that B_f and $f(B_f)$ are finite sets.

2. The case of the two-sphere

Throughout this section, we consider maps $f: S^2 \to S^2$.

THEOREM 1. If $f^{-1}f(B_f) = B_f \neq \emptyset$, then either $f(B_f) = S^0 = B_f$ or else $f(B_f)$ is a set consisting of three points. In the latter case the degree of f cannot be less than 4; for d=4 both B_f and the local behavior of f at B_f is uniquely determined; for d=5 there is no such map; and for d>5 there are various possibilities.

Proof. Let $f(B_f) = \{q_1, \dots, q_k\}$; let $f^{-1}(q_j) = \{p_{1j}, \dots, p_{mj,j}\}$ and let the *exceptionality* [2, p. 608] of f at p_{ij} be $e_{ij} > 0$. In this manner every element of $f^{-1}(q_j)$ becomes a branch point. Since the degree d is obtainable by computing for any g in the range of g the sum of the local degrees at the points of $f^{-1}(g)$, it follows that

(1)
$$d = \sum_{i} (e_{ij} + 1) = \sum_{i} e_{ij} + m_{j}.$$

Received April 4, 1972.

¹ This author's research was partially supported by a National Science Foundation grant.

Since the local degree at p_{ij} is at least 2, $m_j \leq \frac{1}{2} d$. Hence

(2)
$$\frac{1}{2} d \leq \sum_{i} e_{ij} \text{ and } \frac{1}{2} k d \leq \sum_{i} \sum_{j} e_{ij}.$$

From the Hurwitz-Riemann formula [3, p. 275], which is the 2-dimensional case of Tucker's formula [7], it follows that

(3)
$$2 + \sum_{i} \sum_{i} e_{ij} = 2 d.$$

Hence from (2) and (3) it follows that

$$(4) k \le 4 - 4/d.$$

Thus, for maps with the prescribed properties, k is either 1, 2, or 3. If one solves the last inequality for d instead of k, one obtains

$$(5) d \ge 4/(4-k)$$

from which it follows that $d \geq 2$ if k = 1 or 2 and $d \geq 4$ when k = 3. From the second part of (2) and from (1) it follows that

(6)
$$\frac{1}{2}kd \leq \sum_{ij} e_{ij} = \sum_{j} (d - m_j) = kd - \sum_{j} m_j$$

and hence that $kd \geq 2\sum_{j=1} m_j$. Since $m_j \geq 1$, it follows that $d \geq 2$. From (1) and (3) it follows that

$$(7) 2d - 2 = kd - \sum_{j} m_{j}.$$

When k=2, $m_1+m_2=2$ and B_f consists precisely of two points. Thus the case k=2 is the case in which the restriction $f|^{-1}f(B_f)$ is a homeomorphism. For all degrees $d \geq 2$, the complex function $f(z)=z^d$ yields such a map, and topologically these are the only such maps.

When k=3 and the functions under discussion exist, equation (6) yields $\sum m_j = d+2$ and the number of branch points is seen to depend upon the degree. For large degree there are a great many different functions of this type with various collections of exceptionalities for the branch points.

For even degree the functions of degree 2n defined by

$$g(z) = (z^{2n} + 6z^{n} + 1)/4z^{n}, \quad n = 2, 3, \cdots$$

provide examples. A computation will show that

$$g^{-1}g(B_g)=B_g=\{z\,|\,z^{2n}=1\}$$
 together with 0 and ∞ , $g(B_g)=\{1,\,2,\,\infty\},$

where

 $g^{-1}(\infty) = \{0, \infty\}, \quad g^{-1}(1) = n$ th roots of $-1, \quad g^{-1}(2) = n$ th roots of +1 and the exceptionalities are as follows:

$$e(0) = e(\infty) = n - 1, \quad e(+1) = e(-1) = 1.$$

It will now be proved that the values d = 5 and k = 3 cannot occur to-

gether. If they did, the values of e_{ij} would be at most 4. If $e_{ij} = 4$, then $m_j = 1$. The case $e_{ij} = 3$ cannot occur, for it would mean that the local degree of f at p_{ij} would be 4 and that the other point in $f^{-1}(q_j)$ would be outside B_f . If $e_{ij} = 2$, there is just one other element in $f^{-1}(q_j)$ and it has exceptionality 1. Hence, for each j, $\sum_i e_{ij}$ is either 3 or 4 and $\sum_{ij} e_{ij} \geq 9$. In equation (3) this would mean that $2 + 9 \leq 10$ which is false.

If d = 2n + 1 and n > 2, there are examples. In the case d = 7 and k = 3, there is topologically precisely one such map. For higher degrees there are many. This question is dealt with for both even and odd degree in the thesis of Carl Shepardson [5], to which we refer the reader for these examples.

In the case k=2, the sets $f^{-1}(q_i)$, j=1, 2, are homeomorphic. When k=3, one obtains the following:

Remark. If k = 3, and the sets $f^{-1}(q_j)$, j = 1, 2, 3, are homeomorphic, then $d \equiv 4 \mod 3$.

Proof. Let $m_j = m$, j = 1, 2, 3. Then from 1 and 3, an elimination of $\sum_{ij} e_{ij}$ yields d = 3m - 2. If, in addition, one requires that the exceptionalities be the same, say e at all branch points, then from (1), d = m(e + 1). This cannot occur, therefore, at prime degrees.

3. Higher dimensions

We consider maps $f: S^3 \to S^3$. Let p and q be positive integers and let S^1 and D be the unit circle and unit disk in the complex plane respectively. Let

$$g_{pq}: S^1 \times D \to S^1 \times D$$

be defined by $g_{pq}(z, w) = (z^p, w^q)$. Appropriate identification of the boundaries of two such solid tori, one the domain for g_{pq} and the other for g_{qp} produces a map $f: S^3 \to S^3$ satisfying the hypotheses of this paper. The set B_f is the disjoint union of two copies of S^1 and they are linked; $f(B_f)$ has the same structure. Certain aspects of this situation are valid in higher dimensions, to which we now turn.

The rest of this section will be devoted to the case dim $M = \dim N = n > 2$. The singular homology (and cohomology) theory with integer coefficients will be employed. Let M and N be compact orientable manifolds without boundary whose homology vanishes in dimensions 1 and 2. Let B_i and $f(B_i)$ be orientable (n-2)-manifolds such that $B_i = f^{-1}f(B_i)$, B_i and $f(B_i)$ are isolated tamely embedded components of B_f and $f(B_f)$ respectively and let d_i be the local degree on B_i .

LEMMA 1. Let x be a point of B_i and let U be a Euclidean neighborhood of x in M such that $U \cap B_i$ is a Euclidean neighborhood of x in B_i and $U \cap B_f = U \cap B_i$. Let $V = B_i \cap U$. Then diagram A is a commutative diagram of groups and homomorphisms in which φ is the Lefschetz duality isomorphism, δ

is the coboundary homomorphism and i denotes inclusion. Furthermore, the vertical arrows represent isomorphisms.

Proof. We know that B_i and (U - V) are tautly embedded in M [6, Theorem 10, p. 290] and hence φ is an isomorphism [6, Theorem 19, p. 297] in both cases. In the exact cohomology sequences for (M, B_i) and (M, U - V), the groups $H^{n-1}(M)$ and $H^{n-2}(M)$ are zero by the Poincaré duality theorem [6, Theorem 18, p. 297] and the fact that the homology of M vanishes in dimensions 1 and 2. Therefore δ is an isomorphism in both cases. Diagram A is commutative, the bottom square by the naturality of the exact sequence for a pair and the top square by the naturality of $\bar{\gamma}_U$ and the inclusions appearing in the proof of [6, Theorem 19, p. 297]. naturality of $\bar{\gamma}_{U}$ with respect to inclusions is established at [6, p. 292].

We remark that U - V is homotopically equivalent to S^1 which implies that

$$Z = H_1(U - V) = H^{n-2}[(M - U) \cap V].$$

Since B_i is an orientable (n-2)-manifold, $H^{n-2}(B_i) = Z$.

LEMMA 2. In Diagram A, the horizontal arrows represent isomorphisms.

Proof. It suffices to prove that i_3^* is an isomorphism. Notice that $\bar{V} \cap (M - U) = S^{n-3} = (B_i - U) \cap \bar{V}$. Since $B_i - U$ is a manifold with boundary, $H^{n-2}(B_i - U) = 0$. The following commutative diagram with exact rows is a consequence of the inclusion of

$$(B_i, B_i - U, \overline{V})$$
 in $(M - U \cup V, M - U, \overline{V})$

and of the Mayer-Vietoris theorem [6, p. 239].

If of the Mayer-Victoris theorem [0, p. 265].
$$Z \qquad \qquad Z \qquad \qquad 0$$

$$\|\mathbb{R} \qquad \qquad \|\mathbb{R} \qquad \qquad \|\mathbb$$

Here the maps i^* and i_3^* are induced by the inclusion. The homomorphism i* is an isomorphism since it is induced by the identity map. The homomorphism Δ^* is an epimorphism, and since its domain and range are copies of Z, it is an isomorphism. Hence $i_3 \circ \Delta^*$ is an isomorphism and thus i_3^* is an isomorphism.

LEMMA 3. There is a 1-cycle z whose carrier is a simple closed curve linking V in U; and on the homology class $\{z\} \in H_1(U-V)$ the map f_* is a multiplication by d_i , where d_i is the local degree of f at B_i .

Proof. We know [1, Theorem 4, p. 533] that there is a euclidean neighborhood U such that f is topologically equivalent to the natural winding map around the tamely embedded (n-2)-cell V. Let this be the one employed in Diagram A. Thus there is a 1-cycle z whose carrier |z| is a simple closed curve linking V in U, and this carrier can be chosen so that it has as an image a simple closed curve on which it winds d_i times. If \bar{z} is the cycle carried by f(|z|) and if $\{z\}$ is the homology class at z, then $f_*(\{z\}) = d_i\{\bar{z}\}$. Since U - V is contractible to |z|, the homology class $\{z\}$ is a generator of the group $H_1(U - V)$ and the action of f_* on $H_1(U - V)$ is merely a multiplication by d_i .

LEMMA 4. The homomorphism $f_*: H_1(M - B_i) \to H_1[N - f(B_i)]$ is a multiplication by d_i .

Proof. Consider the following commutative diagram in which the vertical arrows are seen by the argument on Diagram A to be isomorphisms.

$$\begin{array}{ccc} H_1(U-V) & \xrightarrow{f_*} & H_1(f(U-V)) \\ \downarrow i_* & & \downarrow i_* \\ H_1(M-B_i) & \xrightarrow{f_*} & H_1(N-f(B_i)) \end{array}$$

It is immediate that $f_*: H_1(M-B_i) \to H_1(N-f(B_i))$ is a multiplication by d_i .

THEOREM 2. Let $f: M \to N$ be a light open map of compact, oriented n-manifolds with vanishing homology in dimensions 1 and 2. Suppose $\dim B_f = n-2$, n > 2, and B_f contains as an isolated component a tamely embedded orientable (n-2)-manifold B_i whose image $f(B_i)$ is also an isolated tamely embedded orientable (n-2)-manifold such that $f^{-1}f(B_i) = B_i$. Let B_j be an arc-connected component of B_f for which $f^{-1}f(B_j) = B_j$ and $f(B_j) \cap f(B_i) = \emptyset$. Then $f(B_j)$ carries a 1-cycle which represents a nonzero class in $H_1[N-f(B_i)]$.

Proof. Suppose that no 1-cycle in $f(B_j)$ belongs to a nonzero class in $H_1[N-f(B_i)]$. Let α be a generator of $H_1[N-f(B_i)]$ chosen as follows: Let β be an arc from a point y_1 of $f(B_j)$ to a point y_2 of the cycle $|\bar{z}|$ of the proof of Lemma 3 such that β is disjoint from $f(B_f)$ except at y_1 . Let α be the path that proceeds along β from y_1 to y_2 then around $|\bar{z}|$ and finally back to y_1 along the reverse of β ; i.e. $\alpha = \beta \bar{z} \beta^{-1}$. Let $x_1 \in f^{-1}(y_1) \cap B_j$. Let $\bar{\alpha}$ be a lift through f of α starting at x_1 and proceeding around a part of |z| and returning from a point x_2' of $f^{-1}(y_2) \cap |z|$ to a point x_1' of $f^{-1}(y_1) \cap B_j$.

Let γ be an arc in B_j joining x_1' to x_1 . The paths $f(\gamma)$ and $\tilde{\alpha}\gamma$ are closed. That the cycle carried by $\tilde{\alpha}\gamma$ is non-trivial in $M-B_i$ can be seen as follows. Let $\{\tilde{\alpha}\gamma\}$ be the homology class of $\tilde{\alpha}\gamma$. Then

$$f_*(\{\tilde{\alpha}\gamma\}) = \{\alpha f(\gamma)\} = \{\alpha\} + \{f(\gamma)\}.$$

Since $f(\gamma) \subset f(B_i)$ and no cycle of $f(B_i)$ links $f(B_i)$, it follows that

$${f(\gamma)} = 0 \in H_1(N - f(B_i)).$$

Thus

$$f_*(\{\tilde{\alpha}\gamma\}) = \{\alpha\} = \{\bar{z}\} \neq 0.$$

On the other hand, by Lemma 4, f_* is a multiplication by d_i on $H_1(M - B_i)$. Hence $\{\bar{z}\}$ is a d_i multiple of some element of $H_1(N - f(B_i))$ which in turn is a multiple of $\{\bar{z}\}$. This is impossible, and thus there is a 1-cycle in $f(B_i)$ that links $f(B_i)$.

Theorem 2 can be extended and applied in various directions. Here is a sample.

THEOREM 3 Under the hypotheses of Theorem 2, if $f \mid B_j$ is a covering map, then B_j carries a cycle which represents a generator in $H_1(M - B_i)$.

Proof. If g is the degree of the covering map $f \mid B_j$ and \bar{z} is the cycle guaranteed to exist by Theorem 2, there is a cycle z carried by B_j such that $f(z) = g\bar{z}$. Consider

$$f_*: H_1(M - B_i) \to H_1[N - f(B_i)].$$

Then $f_*\{z\} = g\{\bar{z}\} \neq 0$ since $\{\bar{z}\} \neq 0$ and $H_1[N - f(B_i)] = Z$. Now z is some multiple of a generator of $H_1(M - B_i)$, so the generator is also carried by B_i .

It is known that the homology of B_f cannot be more complicated than that of M for certain regular M-S coverings and certain coefficient domains [4]. Theorem 3 allows a strong statement about B_f for certain branched coverings:

COROLLARY. Let $f: M \to N$ be a branched covering, n > 3. Suppose for each component B of B_f , $f^{-1}f(B) = B$. Then B_f does not contain two disjoint copies of S^{n-2} .

Proof. One copy of S^{n-2} cannot link the other in an *n*-manifold, n > 3, contrary to Theorem 3.

Notice that if we drop the requirement that B_i and $f(B_i)$ be orientable and replace integral coefficients by coefficients in \mathbb{Z}_2 , Lemmas 1-4 remain valid. A minor modification of the proof of Theorem 2 then yields the following theorem.

THEOREM 2'. Omit the hypothesis of orientability in Theorem 2. Suppose that the local degree on B_i is even. Then $f(B_i)$ carries a representative of a non-zero class in $H_1[N-f(B_i); Z_2]$.

REFERENCES

- P. T. CHURCH AND E. HEMMINGSEN, Light open maps on n-manifolds, Duke Math. J., vol. 27 (1960), pp. 527-536.
- 2. ——, Light open maps on n-manifolds II, Duke Math. J., vol. 28 (1961), pp. 607-624.
- 3. H. Hoff, Uber den Defekt stegiger Abbildungen von Mannigfaltigkeiten, Rend. Mat. e Appl. (V), vol. 21 (1962), pp. 273-285.
- 4. W. L. REDDY, Branched coverings, Michigan Math. J., vol. 18 (1971), pp. 103-114.
- 5. C. Shepardson, Thesis, Syracuse University,
- E. H. SPANIER, Algebraic topology, McGraw-Hill, New York, 1966. pp. 859-862.
- A. W. Tucker, Branched and folded coverings, Bull. Amer. Math. Soc., vol. 42 (1931), pp. 859-862.

SYRACUSE UNIVERSITY
SYRACUSE, NEW YORK
WESLEYAN UNIVERSITY
MIDDLETOWN, CONNECTICUT