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Introduction

In recent years the term "cyclotomy" has been used to refer to various struc-
tures bearing only formal resemblance to the structure of nth division points on
the circle whence the term derives [-3], [7], [15]. Thus there is discussion of the
cyclotomy of finite fields [9] or of "Galois Domains" [15] or even of Klooster-
man or hyper-Kloosterman sums [11-], [-12-]. It is the purpose of this paper to
provide a unified theory of cyclotomy which will include the examples given
above as special cases.

Following an approach used by Hall [9] we discuss in Sections 1-3 the
conjugacy class structure and representations of finite split metabelian groups
and under certain restrictions describe a certain duality between the classes and
representations. In Section 4 we consider the group which is the split extension
of the additive group of a finite commutative principal ideal ring by its group
of units, the action being that of multiplication, and by applying the theory
developed in Sections 1-3 are able to define generalized cyclotomic classes,
periods, and numbers for the ring in question. In Section 5 we utilize the theory
of finite dimensional Fourier transforms to generalize the classical Gauss and
Jacobi sums and prove appropriate theorems concerning them. In Section 6.1
and Section 6.2 we compute the cyclotomy of a finite field and of a "Galois
Domain" and show that our definitions coincide with those usually given.
Finally, in Section 6.3, we show that by considering the cyclotomy of the ring
which is a direct sum of n-copies of a given finite field we may determine the
"cyclotomic" properties of Kloosterman and hyper-Kloosterman sums alluded
to in [-11-] and [12].
We assume throughout a knowledge of the elementary properties of complex

characters such as may be found in Chapter of [5].

1. Preliminaries

All groups discussed will be finite and all characters will be complex. Unless
otherwise noted, A will denote a multiplicatively written abelian group and G
will denote a multiplicatively written abelian group of automorphisms of A.
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The action of G (or more generally the integral group ring ZG) on A will be
written exponentially as will group conjugation. If a is an element of ZG we
write A" and A, for the image and kernel of a respectively. We denote the semi-
direct product of A with G by ( and we shall identify A and G with subgroups
of f so that we may write (9 AG.

If C is a G-orbit in A then, since G is abelian, the stability subgroup in G of
an element of C will be independent of the element chosen, depending only on
C. We denote this stability subgroup by Tc and write ’c for the subgroup
ATc of f9.
Now let be the complex dual of A. Then there is a natural action of G on

,,I given by ’(a) ff(a") for in , tr in G. As above, if t is a G-orbit in
we write T(‘ for the stability subgroup in G of any element of t and write q’(‘
for AT(..
For an arbitrary group K with subgroup H we shall denote by ( )K and

( )n the usual Hermitian inner product of complex valued functions on K
and H respectively. For class functions # on H and Z on K, #K and zln denote
respectively the class function induced by # on K and the restriction of ;t to H.

2. The characters of g

We now describe the irreducible characters of (. Since this description is,
except for notation, identical to that given in Section 8.2 of [14], proofs are
omitted and the reader is referred there for details.
To any G-orbit t in we associate a set of characters ch() of ( as follows.

Let be any character in t and define the complex function r/, on "(‘ by
l,(at) (a) for a in A, in T(‘. Then r/, is in fact a homomorphism. Let co
range through (‘ and view co as a character on (‘. Then by ch(C) we mean the
set of characters (co,). It may be shown that if b is any other character in t
then (cor/,) (cot/,) for co in (‘. Thus ch(C) is well defined. In particular,
the character (r/,) depends only on t and we denote this character by ;t(‘.
Finally we have"

PROPOSITION 1. The characters constructed above are all irreducible and in

fact the set of irreducible characters of fg is the disjoint union of the sets ch()
where ranges over all G-orbits of ..

3. Conjugacy classes of g

In this section we give a description of the conjugacy classes of f which is in
some sense dual to the description given in Section 2 of the irreducible charac-
ters of f. In order to do this we must first place a restriction on the pair (.4, G).

DEFINITION 1. We say that the pair (A, G) is admissible if for each a in G there
existsf, in HomG (A, A) such that Im (1 a) kerr, and ker (1 a) Iraf,.
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We assume from now on that (A, G) is admissible and that the mapsf have
been fixed withfl identity.

LEMMA 1. Let C be a G-orbit ofA andpick tr in G so that C A_. Then
the setf x(C)tr is a conju#acy class of (g. Conversely, each conjugacy class ofG
is in theformf I(C)a with C and a determined by the class.

Proof Let tr and a2 be elements of G and let a and a2 be elements of A.
Then aax and a2a2 are in the same conjugacy class of if and only if there
exist elements z in G and b in A such that

bzaa a2a2bz
or equivalently such that

a a2 and a2 a[b-Our result now follows easily.

DEFINITION 2. We denote the conjugacy classf (C)a described in Lemma 1
by (C, a). We note that C (C, 1).

We put a further condition on the pair (A, G) which will suffice to introduce
a certain symmetry into the character table of .

DEFINITION 3. We say that A is a symmetric G-module if there exists a non-
degenerate balanced symmetric G-map from A x A into the multiplicative
group of the numbers, C

We now assume that A is a symmetric G-module and denote the balanced
symmetric G-map by [ ]. We note that by definition [ ] has the
following properties"

(1) [a, b] [b, a] for a, b in A.
(2) [aa2, b] [a, b][a2, b] for a, a2, b in A.
(3) [a,b] [a,b0fora,binA,ainG.
(4) [a, b] for all b in A if and only ifa 1.

We note that we may identify A with as G-modules by a [ a]. We
make this identification for the remainder of this paper and henceforth write
ch(C) for ch(), c for Ze, etc.

LnMMA 2. Let C and C2 be G-orbits ofA. Then

where by Zc(Cz) we mean the value which Zc takes on any element ofC.
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Proof Let as be an element of C, 1, 2. Then by definition,

Zc,(C)
1 E [a,

I’cl
1 E [a, allIZc,

Similarly,

ICl E ra, a]
IGI oinG

ICl E [-a, a2]Zc2(C1) IG--i ginG

The result now follows from the properties of [ ].

DEFINITION 4. Let Cx, C2, and Ca be G-orbits in A. Then by c(C, C2, Ca)
we mean the number of pairs (x, x2) in C1 x C2 such that xlx2 aa for
some fixed element aa in Ca. This number is clearly independent of the element
aa chosen. By (C, C2, Ca) we mean the inner product (Zc3,

PROPOSITION 2.
i= 1,2,3. Then

Let C, C2, and Ca be G-orbits in A and write T for Tc,,

c(C, C, C) (C, C2, C3).

eroof.
Therefore

;tc, is 0 off 7"c,. Also Zc,(at) ;tc,(a) for an element of T.

(C, Cz, C) ---1
I1
1 Z

TtT2Ta,
ainA

Zc,(at)Zc(at)Zc(at )

IT T= TI
I1 ainA

IT n T: n TIv C lZc,(C)Zc,(C)Zc(C)
I1 c

where this last sum is taken over all G-orbits C of A.
On the other hand,

c(C, c, c) ICllllC=l z(coz(c=)z(c)x(1)
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where the sum is taken over all irreducible characters ;t of G. We fix a G-orbit C
of A and sum first over ch(C). 7,(C) does not depend on the character ;t chosen
in ch(C); in particular ;t(1)= ICI for all such characters. Since there are
ITcl IGI/ICI characters in ch(C) we obtain

c(C c, c) ICl ICl IGI

By Lemma 2, this last sum is equal to

IZl IClZc,(C)Zc(C)Zc(C)
I1 c

which establishes the result.

4. The cyclotomic group of a P.I.R.

DEFINITION 5. Let R be a finite commutative Principal Ideal Ring and let G
and A be the group of units R and the additive group R/ of A respectively.
(We now write A additively.) Let G act on A by ring multiplication. Then the
group fg AG is called the cyclotomic group of R.

LEMMA 3. If G and A are as above then
(1) (A, G) is admissible, and
(2) A is a symmetric G-module.

Proof. (1) Let u be a unit in R and let I (a) be the annihilator in R of
1 u. Then viewing multiplication by a as an R-homomorphism of R/, we
see that ima ker(1 u). But im(1 u) is contained in kera so by a
simple index computation, im (1 u) ker a.

(2) We may write R as a direct sum of primary P.I.R.’s [20]. Let Ro be
one such summand and let J be its unique minimal ideal. Then since C is a
divisible group we may take some non-trivial character of J / and extend it to a
character on Rff. Taking the product of one such character for each primary
summand of R we obtain a character a of R/ which cannot contain any non-
trivial ideal of R in its kernel. Define the pairing [ ] by [a, a2] t(aa2)
for a and a2 in R. Then [ ] is clearly a symmetric balanced map on
R+ x R+ and it is nondegenerate since [R+, a] implies that a(aR)
so that a 0.
Now take G and A as above and let H be a subgroup of G. It is clear that the

conclusions of Lemma 3 hold for the pair (A, H). The set of H orbits of A
which are contained in the subset G of A are precisely the cosets of H in G.

DEFINITION 6. (a) With notation as above, we write C, for the coset of H in
G corresponding to the element tr in G/H. Given elements tr and z of G/H we
write (tr, z)n for c(Cx, C, C,) and call the numbers (tr, z)n the cyclotomic num-
bers of R with respect to H.
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(b) We write ;t, for the character Zc., tr an element of G/H. We write r/, for
;ta (C,) and call the complex numbers r/, the cyclotomic periods of R with respect
to H.
We note that c(C,, C,, C,) (C,, C,, C,) (az-, -) and that

;G(C,) r/,,. It is immediate from this that (a, z)n (a -a, za-a)n and that
(a, z)n (o, trZo)n where o is the unique element of G/H such that is an
element of C,o.
We conclude this section with a general result which will prove useful later.

LEMMA 4. Let K be a group, let a, 7-2,..., ’h be the conjuyacy classes of
K and let , Z2,..., Zh be the irreducible characters of K. Write (-)for the
value of on any element of [-f and write f for the value ofZ on the identity
element of K. Let oy [l’-lZ([-’)/f. Let Ck be the number ofpairs (x, x)
in x which are solutions to xx CkfOr some fixed element Ck of 7-.
Let W be the matrix (coi), V be the matrix (Ck), and write Efor the diagonal
matrix whose (j, j)th entry is o9. Then W- VW Efor 1, 2,..., h.

Proof This result is well known and follows, for example from Section 33
of [2].

COROLLARY. In the notation of Section 3 above, let Ct, C2,..., C, be an
enumeration of the G-orbits of A. Let X be the matrix (:c,(C)), let U be the
matrix (c(C, C, C)) and D be the diagonal matrix whose (j,j)th entry is

Xc,(Cj). Then
X- UiX D for 1, 2, s.

Proof Let V-l,..., Vh be an enumeration of the conjugacy classes of f
such that V C, 1, 2,..., s. Then Vi has the form

In addition o,j IC,Izc(C,)/f IC,Izc(C3/ICl Xc,(C) for i,j 1, 2,..., s
by Lemma 2. The lemma now follows.

5. Fourier transforms

In this section analogues to the classical Gauss and Jacobi sums (see [31 for
definitions) will be developed for P.I.R.’s by means of Fourier transforms on
finite groups (see [10] for a discussion of Gauss sums over finite rings). As in
Section 4, we let R be a finite commutative P.I.R. and denote by [ ! some
pairing of R+ x R+ into C constructed as in Lemma 3.

Identifying R+ with its complex dual by means of [ 1 we may define the
Fourier transform f of a complex functionfon R by

f(a) . f(b)[b, a] for allainA.
binR
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A knowledge of the elementary properties of the Fourier transform will be
assumed in what follows. (See [19] for example.)

DEFINITION 7. Let n be a character on R Then n is said to be primitive if
there is no nontrivial ideal I of R for which (1 + I)

It may be remarked that primitive zr exist and that their existence may be
shown by an argument similar to that of Lemma 3, part 2.
Given any character of R we will view it as a complex function on A by

defining it to be zero on nonunits.

LEMMA 5. Let n be a primitive character on G. Then 7r-1(1).

Proof. First, let a be a unit of R. Then

(a) n(b)[b, a] n(b)[b, a]
binR binR

n-l(a) n(ba)[ba, ll 1 (a)(1).
binR

Now assume a is a nonunit, let I be the annihilator of a in R and let H
(1 + I) c R. Then H is not trivial by the Chinese Remainder Theorem and

(a) n(bb2)[1, b2a]
bl in H,

b2 in R /H

n(b2)ll, b2a] n(bl)
b2 in R x/H bl in H

=0

since 7r is primitive. Thus again we have n-(1).

DEFINITION 8. By analogy to the classical gamma function (see footnote on
p. 144 of i-8]) we define the function F on the primitive characters of R by
FOr) (1).

We note that by Lemma 8, 7r- F(n).

LEMMA 6. x) IRln(- 1).

Proof. zr n-F(zr). Hence by Fourier inversion

IRlr(- 1)n R 1).
The result now follows.

We recall that if the convolution of two complex functions f and g on R is
defined byf, g(a) ,b in a f(b)g(a b) then (f, g) ^ f .
LEMMA 7. Let 1, 2, 1, 2 be primitive characters on R. Then

1 * 7Z2 (Trl * 7r2(1))71:12"
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Proof As in the proofofLemma 5, we first let a be a unit of R. Then

Xl * rc2(a) xlrc2(a) xl(ba- 1)rC2(1 ba- 1)
binR

e(a) X
binR

E
binR

rclT2(b2)Tr2(ab 1) rclr2(bl)

nl(b)n2(b(ab-1 1))

7rlTt2(b)rr2(ab-1- 1)

b2 in R x/H bl in H

=0.

DEFINITION 9. By analogy to the classical beta function, we define the
complex function fl on pairs of primitive characters by fl(Trl, 72) 7rl 7r2(1).

LEMMA 8. Let 71, re2, 17r2 be primitive. Then

(, ) r()r()
r()

Proof
F(n)F(n)n?n (n n) (nn)(n,

r(z)()-#(, )

Coo. I#(x, )1 I1,

Now let us consider a subgroup H of R. If there exists a nontrivial ideal 1
of R for wch (1 + 1) R is a subset of H, then the cyclotomy of R with
respect to H may be determined by considering the ring R/1 as is easily seen.
Thus we may assume that H contains no such subset and we shall call such
subgroups primitive. Let Hx be the subgroup of characters on R which are
trivial on H. Then it is clear that there are primitive characters of G contained
in H+/-.

PROPOSITION 3.
in H. Then

Proof

Let 71, 7r2, 7rlTr2 be primitive characters of R contained

/(, ") E ",()(z)(, z)-.
r, in R /H

We have that

r(.,)r(.) X l(’)2(’)tr/.
tr, in R x/H

71:171;2(a)71:1 /r2(1).

Now take a a nonunit and define H as in Lemma 8. Then
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since nl, 72 are in H+/-. Now

X (-. ,-%x(c) + Z (x, xxJx(c)
#inR/H

(#- , #-) + S
# in R /H

where Z in the sum S runs through all irreducible characters of except for
the characters ;t, with # in R/H. Furthermore

s Z IHI e(c.. c.. C)xc(C,)

X c(C,, c,, c)zdc,)
C

where C runs through all H orbits of R+ consisting of nonunits. Therefore

r(.)r() X =.(.)(,)(*-’. *"-tr, in R /H

+ X n.O)(,)c(C., c..
a, vinR/H

Let v a-lz in the second sum so that that sum becomes

n2(*)2(v)(C.. C, C)zc(C).
a, in R /H

Fix C to be an H-orbit in R/ composed of nonunits of R and fix a in C. For
each H-orbit Ca of R+, fix some element xp in Cp. Then c(C,, C.v, C) is the
number of pairs (h, h2) in H x H which are solutions to

hix + h2xov a.

This equation has the same number of solutions as ha + h4xv axe-,. Let I
be the annihilator of a. Then the image of (1 4- I) c R under the natural
map of R onto R/H is a nontrivial subgroup of R/H and we have shown
that c(C,, C,C) viewed as a function of a is constant on cosets of this subgroup.
Thus since 12 is primitive, the second sum above is 0. Therefore,

r(=.)r(=) ()()(-’, ,-’).n,
a, , # in G/H

Z nx(a)2()(a,

Thus fl(:n2) Z,,,, n(a)r2(t)(a,)..
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6. Computations and examples

Let R, 1, 2 be finite commutative P.I.R.’s and let R R1 R2. Then
if (#, 1, 2 and f are the cyclotomic groups of R, 1, 2 and R, we see
that (9 is canonically isomorphic to f91 x (92. We use this isomorphism to
identify f#, 1, 2 with subgroups of f and this identification identifies
R+, 1, 2 and R, 1, 2 with subgroups of R+ and R respectively in
the usual way. IfH is a subgroup ofR, 1, 2 and H HtH2 is viewed as a
subgroup of R then R/H is canonically isomorphic to R/Ht x R/H2 and
again we use this isomorphism to identify R’/H, 1, 2 with subgroups of
R/H.

LEMMA 9. With notation as above let tr be an element of R [H and write
tr trtr2 with tr in R]H, 1, 2. Let be the subgroup R Hof. Then if
the characters 7. ofH, 1, 2 are viewed as characters on , 7., Z,1Z,,.

Proof This lemma follows from the fact that induction of characters com-
mutes with direct products [2, 43.2].

COROLLARY. Let tr, z be elements of R/H and write tr trttr2, zlz2;
trf, zf in R/H, 1, 2. Then (tr, Z)H (try, T1)HI(0’2, T2)H2.

We now fix R to be an arbitrary finite commutative P.I.R., let H be a sub-
group of R and let K be a subgroup of H. Pick coset representatives
try, tr2,..., trs of H in R and z, z2,. zt of K in H. Then as is well known
the elements trzj form a complete set of coset representatives of K in R

LEMMA 10. (ai, trj)n = E, (tr6k, trz)r.

Proof Since for i, j 1, 2,..., s, the cosets Htr, Htr are respectively the
disjoint unions of the cosets Ktriz,k, k 1,..., and Ktrlz, I 1,..., t, the
result follows from Definition 6.

Now write R as a product of primary rings R, 1, 2,..., s and let H
be the image in R of H under the natural map. Then letting K I-I= Hi
viewed as a subgroup ofR, it follows from Lemmas 9 and 10 that to determine
the cyclotomic constants of R with respect to H it is sufficient to know the
cyclotomic constants of R with respect to H for 1, 2,..., s.

6.1. Primary rings

Let q p" where p is an odd prime and let F be the finite field of q elements.
Let Tr be the trace mapping from F to Fe. Then we may define a nondegenerate
symmetric balanced map [ ] from F x F to C by

[a, b]= exp(2niTr (ab))P
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For the remainder of this paper it will be implicit that [ ]q is to be used
whenever the cyclotomy of Fq or of some ring of which F is a direct summand
is discussed. We note that F is cyclic of order q 1 so that we may pick a
generator g of F.

If H is any subgroup of Fq then there is a divisor e of q 1 such that H
consists precisely of the elements 1, #e, 02e,..., #(s-1) where f (q 1)/e.
Thus we may pick the elements 1, g,..., g- as coset representatives of H in

F. If we now define (i, J)e, qi, and C by (i, J)e (9i, gJ)H, r/i r/0’, C Co,
then it may be seen [91 that (i, j), r/i, Ci are just the e-cyclotomic numbers,
periods, and classes as they are usually defined. Furthermore, the F and fl
functions defined in Section 5 correspond exactly to the classical Gauss and
Jacobi sums and the results of Section 5 provide an exposition of the properties
of these sums. The techniques of Section 5 may also be applied to provide a
proof of a result due to Jacobi which appears to be considerably simpler than
the proof usually given.

LEMMA 11. Letp 2, let ZOo be the character ofF defined by %(g) -1
and let zc be any character ofF except for ro and the identity character. Then

r(o)r(2) (4)r()r(o).

Proof. By definition

fl(zr, Zro)= ro(X)r(1-x).
x in Fq

Since

we see that

Let y 1/2(1 + x). Then

n(1 x) 0,
x inFq

fl(Tr, zr0)= :(1-x2).
x in Fq

fl(n, :o) :(2y(2 2y))
y in Fq

zff4) zr(y)n(1 y) r(4)fl(z,
y in Fq

Therefore, by Lemma 8,

r()r(zo) zr(4)
F(zrZCo) F(zr2)

or F(zco)F(zr2) zr(4)F(r)F(zr:o).

We note that this proof is a step by step imitation ofthe proof ofan analogous
result for the F-function of a locally compact field as given in I-8, p. 155!.
The corollary to Lemma 4 may be applied to yield a form for the cyclotomic

"period equation."
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LEMMA 12. The polynomial YI- (x 1) is the characteristic polynomial
of the matrix A (atj) where aj (i,j)e- fo,, i,j O, 1,..., e- 1.
Here, io 0 ife is odd, io el2 ife is even, and 6i, is the Kronecker delta.

Proof. Since 1 #(q- 1)/2, it is clear that c(Co, C, {0}) f6, to and that
c(Co, {0), C) dio, . Let B be the (e + 1) x (e + 1) matrix where bij
(i,J)e, i,j 0, 1,..., e 1; b ffi,o, 0, 1,..., e; b,, fio,, J
0,..., e. Then by Lemma 4, B has eigenvalues r/o, r/l,..., r/e_t, f.
Now let It be the x t identity matrix, let x be an unknown, let R be the

1 x e matrix all of whose entries are f- x, and let S be the e x 1 matrix
whose ith row is ffi, to. Then since

e-1

c(Co, {O}, C) + c(Co, C,, Cj) f forj 0,1,...,e- 1,
i=0

we have

IB- xle+xl
((i,j)- xle) S (A- xle) S

R f-x 0 f-x
(f- x)lA- xIl

so that A has precisely /o, e,..., r/e- for its characteristic roots.
We note that Lemma 4 states that the e x e matrices Bk h(..) with

b.. (i k,j k)e, i,j O, 1, e 1" be ffi,k+fo, O, e"

bej 6k., j 0, 1,..., e may be simultaneously diagonalized for k
0, 1,..., e 1. By taking products of matrices BkBt, diagonalizing, and taking
traces on both sides, one obtains quadratic equations in the cyclotomic constants
which provide an alternate means of deriving explicit formulae for these con-
stants at least for e 3, 4. Since it is known [18] that such quadratic equations
cannot suffice to determine the constants (i, J)7 for example, it may be con-
jectured that the cubic relations determined by diagonalizing products of the
form BBtB, may provide the missing data.

Next, let R be a primary finite commutative P.I.R. and let P be its prime ideal.
Then RIP is a finite field and hence the cyclotomy of R with respect to a given
subgroup H may be determined as in the discussion above if H contains 1 + P
as a subgroup. On the other extreme, ifH is primitive, it appears to be a difficult
matter to obtain any explicit formulae.
Even the simplest case, R Z/p2Z, H Gp involves solving the congruence

xp + 1 y (mod p2) which plays an important role in the history of Fermat’s
theorem2 [13].

6.2. Galois Domains

In [15], the phrase Galois Domain is used to describe those finite commuta-
tive P.I.R.’s all of whose primary summands are fields. In this and later papers

2 The author wishes to thank Morris Newman for his correspondence on this matter.
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[-16-], [17-1, the cyclotomy of a Galois Domain is determined with respect to a
cyclic subgroup of the units whose generator is a product of generators of the
groups of units of the primary summands. The major result in these papers is
seen to follow immediately from Lemmas 9 and 10.

PROPOSITION 4 (Storer). Let R Fqt, 1, 2,..., n where the numbers q
are powers ofdistinct primes and are oftheform q ef + forfixed e with the
numbersf relatively prime in pairs. Let # generate the group ofunits ofRv Let
R Rx R2 (’’" ( Rn and let 9 I-I g in R. Let H (9). Then:

(1) The elements I-I’=2 g’, s 0, 1,..., e- 1 form a complete set of
representatives of the cosets ofH in R.

(2) Ifgiven (n 1)-tuples (s), (t) we write ((s), (t))for

i=2 i=2 H

then

where (

e-1 e-1

((s), (t)) (j, k)1) (s, + j, t, + k)’)

k=O j=O i=2

)) is an e-cyclotomic numberfor R.
Proof The proof of (1) consists of a straightforward calculation as does

verification ofthe fact that the elements gJ,j 0, 1,..., e form a complete
set of representatives for the cosets of G in H. Since G is precisely the sub-
group 1-[ H described in the discussion following Lemma 13, the result now
follows from Lemmas 9 and 10.

6.3. Kloosterman and hyper-Kloosterman sums

Let q be a prime power and let R Fq ) Fq. We write elements of R as
pairs of elements in F. Let H be the subgroup of R consisting of pairs (a, b)
with ab 1. Then the elements (1, u) u in F form a complete set of repre-
sentatives of H in R and we write (u, v) for ((1, u), (1, v))e.

DEFINITION 10. For u in F, let K(u) be the Kloosterman sum

exp(2niTr (x+u/x))xinFq p

PROPOSITION 5. (1) (U, V) 1 + n0((U- /))2 2(u + /)) + 1)where no
is defined as in Lemma 11 and is extended to F by letting n0(0) 0.

(2) r/(1,,) K(u).

Proof (u, v) is equal to the number of solutions to (x, x-1) + (y, uy-1)
(1, v) for x, y in F. Thus we have x + y 1 and x-1 + uy-1 v so that
(u, v) is seen to be the number of solutions to

vx2 + (u v- 1)x + 1 O;
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that is (u, v) 2, 1, 0 according to whether (u v 1)2 4v (u v)2
2(u + v) + 1 is a square, is equal to 0, or is a nonsquare.

Let (1,1) be the character on R+ identified with (1, 1) (see Section 3). Then

,u .( u) .’,.-,, )(1, u)
x in F

--EXinFq exp(27:iwr(x+ux-1))p
K(u).

Proposition 5 may be used to give character-theoretical proofs for the "cyclo-
tomic" properties of Kloosterman sums described in [11]. As an example we
prove"

PROPOSITION 6 (Lehmer).

(1) K(u)K(cu) q251, q 1.
in Fq

(2) ., K(u)K(cu)K(du) q2(c, d) q2 + 2q + 1.
uinFq

(3) KZ(u)KZ(cu) q3(1 + 61,c) q(2 + no(C))- 3q 1.
in F

Proof (1) Let C(1,o) (respectively Co,1) be the H-orbit of R+ consisting
of the elements (u, 0) (respectively (0, u)) with u in F. Then since ZI,.) is real,

1,c (X(1,1), X(1,c)).
1 r IC(,.)l(,)(,=.) / IC(1,o)l(x(a, 1)(1, O))(X(1,c)(1, 0))
I1 LuinFq

+ [C(o, 1)l(X(1, 1)(0, 1))(X(1.c)(O, 1)) + (X(1.1)(0, O))(X(1,c)(O, 0))].
Now (1,.)((1, 0)) Z(1,.)((O, 1)) 1 for u in Fq as is easily seen. Thus

q2(q 1)1,c (q 1) X K(u)K(cu) + 2(q 1) + (q 1)2
uinFq

so that
K(u)K(cu) q21,c- q 1.

(2)

SO

u in Fq

(c, d) (X(1.d), X(1, 1)X(1,c))

q2(q 1)
(q 1) Z

uinFqX
K(u)K(cu)K(du)

2(q- 1) + (q 1)31
A., K(u)K(cu)K(du) q2(c, d) q2 + 2q + 1.

u in Fq
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(3) Using the results of Sections 3-4 it is seen that

X,c) E (1, uc-)x(,,,) + (, o)
uinFq

where ’(o, o) is the identity character on R+. Therefore

(Z(, ), Z( , )Z, ))...e E (1, uc )(z(, ), ;t( , )it( , u))
uinFq

+ (q 1)(Z, >, , >), (1, uc-)(1, u) + q 1.
inFq

Now (1, uc-) + Xo(U(U uc)) so

X (1, uc-X)(1, u) p- 1 + X Uo(U(U-4C))+ X
in Fq uinFq uinFq

+ ro((U 4)(u 4c))
in Fq

q- 1- 1- 1 + q6,c- 1- tOo(C)

(see [15, p. 58] for such computations.)
Thus we have

(2 + 61, )q 5 no(C) (g(1,1), g(1,1)gl, ))
1

--q2(q_ 1)
(q 1)

o(U(U 4))

K2(u)K2(cu)
u inFq

+ 2(q- 1) + (q 1)’]
d

or . K2(u)K2(cu) qa(1 + 5,c) q2(2 + no(C)- 3q 1).
in Fq

In addition we obtain the following formula which may be of interest.

LEMMA 13.
e--1 f-1

(s, t)e(i S, j t)e (gi+eu, gj+ev) for i, j O, 1,..., e 1.
8, t=O U, v=O

fori, j=O, 1,...,e- 1.

Proof Let G be the subgroup of R consisting of all pairs (a, b) such that
ab is an eth power in F. Then (R G) e and we may take elements
(1, y), 0, 1,..., e as representatives of G in R. By Lemmas 9 and
10 we have

e--1

((1, gi), (1, gJ)),
s, 0
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DEFINITION 11.
man sum

On the other hand we also clearly have
f-1

((1, g’), (1, gJ)),. X ( g’ +e"’ gj +
tG O=0

As in Section 6.1, Lemma 4 may be utilized to obtain a "period equation"
for Kloosterman sums. As the matrix manipulations are similar to those in the
proof of Lemma 12 we merely state the result.

LEMMA 14. The equation (x + 1)1-[ (x- K(u)) is the characteristic
equation.[or the p x p matrix A (a) where aj (i, j) (p 1)6i,ffor
i,j 1, 2,..., p 1; where alp -p 1, ap 1, 2, 3,..., p and
where ai, 2(1 61),j 1, 2,...,p 1.

We now comment briefly on hyper-Kloosterman sums.

For u in F let Kn(u) be the n-dimensional hyper-Klooster-

exp (2hiTr. (’= x+up I-IT=

where the sum is over all points (x) with x in F, 1, 2,..., n. We note
that K(u) Kl(U).

If we define Rn to be the ring which is a direct sum of n + copies of Fq and
if we let H be the subgroup ofR consisting of all (n + 1)-tuples (x) such that
I-[.=+ x 1 then exactly as in Proposition 5 we obtain’

PROPOSITION 7. /t, .) K,(u).

We remark that an application of the general theory to the ring R, will suffice
to determine those properties of the hyper-Kloosterman sum that have been
called "cyclotomic." For specific properties see 1-12!.
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