REPRESENTING MEASURES IN
COMPACT GROUPOIDS

BY
JAMES W. ROBERTS

1. Introduction

The objective of this paper is to describe an abstract theory of representing
measures. To do this we consider a compact topological groupoid, i.e., X is
compact Hausdorff and -: X x X — X is continuous. (X, -) is commutative
if x-y=y-x for every x, ye X, and (X, -) is medial if W-x)-(y-z) =
(w-y)-(x-z) for every w, x, y, z € X. Observe that if X is a compact convex
subset of a locally convex topological vector space with - as the midpoint
function, then (X, +) is commutative and medial. Throughout this paper we
shall refer to such a set as simply a compact convex set. With this example in
mind define a real valued function f on a compact groupoid (X, *) to be convex
if for every x, ye X, f(x'y) < 3f(x) + 3f(»). Let C(X) denote the con-
tinuous real valued functions on X and let C denote the continuous convex
functions on X. An element x € X is called an idempotent if x - x = x and we
call the set of all idempotents of X the core of X and denote it by core X. A
class of functions K on a set S is said to separate points if for every x, y € S
with x # y, there exists fe€ K such that f(x) # f(»y). We shall say that K is
totally separating if x, y € S and f(x) = f(») for every fe K implies that
x = y. (X, ') is said to be strongly separated by its convex functions if C
separates the points in X and C is totally separating on core X. If (X, ‘) is a
compact medial groupoid that is strongly separated by its convex functions, then
(X, ) is called a compact mean space.

When X is a compact Hausdorff space then we shall let Q(X) denote the
regular Borel probability measures on X. Since Q(X) is exactly those regular
signed Borel measures u in the closed unit ball of C(X)* such that 1 du = 1,
Q(X) is weak* compact. If (X, -) is a compact groupoid and p, v € Q(X), then

1) = {7609 du) x 0
defines a norm one linear functional / on C(X) such that /(1) = 1. Hence
I(f) = §fd¢ for some ¢ € Q(X). We shall denote the measure ¢ by pu * v.
u * vis called the convex convolution of u with v. Now define a map S: Q(X) —
Q(X) by S(w) = p* u for every u e Q(X). Since - is continuous, it is easily
verified that S is weak* continuous. If u € Q(X) and x € X, then we say that u
represents x if for every f e C(X),

lim | fdS"(u) = f(x).

n— oo
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In this paper we shall investigate representing measures in the case when
(X, +) is a compact mean space. It will be shown that every measure in Q(X)
represents some point in core X and that core X is iscomorphic to a compact
convex set. Some applications and examples will be given. Finally, we will
develop a theory of compact groupoid valued integrals based on our notion of
representing measures.

2. Measures representing points

In this section we shall assume that (X, -) is a compact mean space and we
let C denote the continuous convex functions on S. To obtain a theory of
representing measures we must first investigate some of the properties of the
class of functions C.

ProposiTioN 2.1. (i) Iff,ge C,ando > 0, thenof + g € C and max (f, g) €
C

(ii) C — Cis dense in C(X).

(iii) Iffe Candf > 0, thenf? e C.

(V) If x,ye X and x # y, then there exists fe C such that f(x-y) <
) + 3.

Proof. (i) is a routine verification and by (i), C — C is a vector space. If
flafz, g1, 92 € C then

max (fi — g1,/2 — g2) = max (fy + g2, /2 + g1) — (91 + 92)-

Hence C — Cis a lattice. Since C — C contains constants and separate points,
C — C is dense in C(X) by the Stone-Weierstrass theorem. (iii) is easily
verified. If x, y € X such that x # y, then there exists f € C such that f(x) #
f(»). We may assume f > O since if ¢ < inf f(x), then f — ¢ > 0. By (iii),
f*e C. Butalso, fX(x-y) < 1f%(x) + 3f%(») as is easily shown.

If u, ve QX), we say u < v if for every fe C, [ fdu < §fdv. It is clear
that < is a partial ordering of Q(X).

LemMma 2.2, If u, ve QX), then uxv < 3u + %v. In particular, S(u) < u
for every u e QUX).

Proof. If fe C, then

ﬁwwv=fmwwWMxvm
sjﬁﬂw+imwwmxvm

=3 [rdu+ 4 [ra
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From this lemma we see that if u € Q(X) and f € C, then { f dS"u is a mono-
tone decreasing sequence.

The next lemma relies on the notion of the support of a measure. If yis a
regular Borel measure on a compact Hausdorff space Y, then the support of u
is the smallest of the compact sets whose complement has measure zero. The
support of u is denoted supp u and the following facts about supp p are easily
verified.

(i) IfOisopenin Y and O n supp u # 0, then u(0) > 0.

(i) If fgeC(Y), f=g, and for some x esupp u, f(x) > g(x), then
§fdp > | gdp.

Now let e: X —» Q(X) be defined by letting e(x) be the point mass measure
at x. We note that for a point mass measure e(x), S(e(x)) = e(x - x) and more
generally e(x) * e(y) = e(x ).

ProposITION 2.3. If pe QX) and S(u) = p, then there exists x € core X
such that u = e(x).

Proof. Suppose ue€ Q(X). Then the Baire sets in X x X are pu x pu
measurable. Thus there exists a measure v in Q(X x X) such that for every
feCX x X),ffdv=7{ffdu x u. Now supp v = (supp ) x (supp #). To
see this suppose x, y € supp u. If (x, y) € O for an open set O, then there
exists U, V open F, sets in X such that (x, ) e U x Vand U x V < O. But
then

vO0) = vU x V) = wU) x w(¥V) > 0.

(Actually, supp v = (supp u) x (supp u), but we do not require that much.)
Now suppose S(u) = p. If a, b € supp p and a # b, then there exists fe C
such that f(a b) < 3f(@) + 1/(b). But then

f £dS() = f FCxe+3) dux) x u(y)
< f BSG) + 30)) du(x) X u(y)

= ffd/,t.

This contradiction proves that supp u must consist of a single point, so that
u = e(x) for some x € X. But then e(x) = S(e(x)) = e(x-x). Hence xe
core X.

PROPOSITION 2.4, If ue QX), then there exists x € core X such that u
represents x.

Proof. If fe C, then {f fdS"u) is a monotone decreasing sequence of real
numbers bounded below by inf f(X). Thus lim,_,, § fdS"u exists. From this
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we deduce that {f fdS"u) has a limit for fe C — C. Since C — C is norm
dense in C(X), S"u must weak* converge to a linear functional in the closed
unit ball of the dual of C(X). Since {S"u} = Q(X) and Q(X) is weak* compact,
the limit must be a measure in Q(X).

If v = lim,,, S"u, then by the continuity of S, Sv = Slim,., S"u =
lim,_ , S"*'u = v. Thus v = e(x) for some x € core X.

By the above proposition we may define y: Q(X) — core X by Y(u) = x if
U represents x. At this point we note that if X is a compact convex set and if - is
the usual midpoint function, then our definition of representing measure agrees
with the usual definition, i.e., if fis a continuous affine function on X then
fe C n —C, so that for u e Q(X),

SWw) = '}ng fdS"(w) = ff dp.

PROPOSITION 2.5.  is continuous.

Proof. We first observe that core X is compact. Hence sets of the form
{x € core X: f(x) < a} with fe C and « real form a subbase for the topology
of X since C is totally separating on core X. If u € Q(X) and for f e C, f(Yy(n) <
a, then since lim,_,,, § fd(S"y) = f(Y(n)), there exists an integer »n such that
ffdS"u < a. Since S" is weak* continuous on Q(X), U = {v € QX):
Jfd(S™) < a} is a weak* open set in Q(X). But ue U and if v e U, then
S () < a. Hence Y is continuous.

PROPOSITION 2.6. Iffe C(X x X), ue QX),

o) = f 706, 9) d(S"B)(),

and g(x) = f(x, Y(u)), then g, € C(X) for every n and g, converges uniformly
tog.

Proof. 1t is easily seen that each g, € C(X). We first suppose that f(x, y)
is convex in its second coordinate, i.e., for every x, y,z€e X, f(x,yz) <
3(x, ») + 3f(x, 2).

Then for every x € X, g,(x) is a monotone decreasing sequence converging to
g(x). Since g € C(X), the convergence is uniform by Dini’s theorem. Now
let K be the class of all f(x, y) such that f(x, y) is convex in its second coordinate.
Iff, h e Kand « > O then it is easily shown that af + 4 € K and max (f, ) € K.
Furthermore, if 4, € C(X), h, € C, and f(x, y) = h(x) + h,(»), then fe K.
Hence K separates points in X x X. Thus by the Stone-Weierstrass theorem
K — K is dense in C(X x X). Since the result is true for each fe K — K,
a routine convergence argument proves the result for fe C(X x X).

PRrOPOSITION 2.7. If u, v € QX), then for each positive integer n, S™(u * v) =
(S™u) * (S™).
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Proof. We need only show that S(u * v) = S(u) » S(v) since the result
then follows by induction. If fe C(X),

ff as(u * v) = ff((W'x) (¥ z)) duw) x v(x) x p(y) x v(z)
- ff«w ) (- 2) du(w) X p() X ¥x) X W(z)

= [racsi « s,
This proves the equality.

ProposITION 2.8. If u, v e Q(X), then Y(u * v) = Y(u) - Y(v).
Proof. 1If fe C(X), then

f £dS™u xv) = f £d(S™) * (S™)

= f d(S"u)(x) f S - y) d(S™)(p).

Now [ f(x - y) dS"v(y) converges uniformly to f(x - y/(v)). Hence the limit of
the above sequence equals

lim | f(x-¥() dS"u)(x) = S (W) - ¥().

n— oo

Thus Y(u * v) = Y(u) - Y().
At this point we define the map 5: X — core X by n(x) = Y(e(x)) for every
x € X. nis called the core map and # is continuous since ¥ and e are continuous.

PROPOSITION 2.9. If x, y € X, then n(x * y) = n(x) - n(y).
Proof.
n(x - y) = Yle(x - y)) = Yle(x) x e(y)) = Y(ex)) - Y(e(y)) = n(x) - n(y).

ProposITION 2.10. Let fe C and x e core X; define g(y) = f(x-y) and
h(y) = f(x-n(y)). Theng, he C.

Proof.
g(y-z) =flx-(y-2)) =flx"x)(y-2))
=f((x"y):(x2)) < 3f(x-y) + 3f(x-2)
= 19(y) + 19(2),
h(y-z) = fx-n(y-z)) = flx- @) nz))
< 3G n(y) + 3fCx - n(2))
= 3n(y) + 3h(2).
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LemMmA 2.11. If fe C, then
@ mecC
and
() ifpy = pyandvy 2 v,
then

ffn dpy * vy 2 ffn di * V.
Proof. (i) is obvious. Now for fe C

[ v = [0 1 i x w0
= [0 [ 1) disto
> [an0) [0 0 s
= [706) - 1M x 310

- ffn ditz * vy.

It is similarly shown that
ff’? dp, * vy 2 ffﬂ du, * v,.

PRrROPOSITION 2.12. If p e Q(X), x € core X, and u > e(x), then Yy(u) = x.
Proof. 1If fe C, then

lim |fdS"u = f(Yw) = fa(Ww)) = lim Jn dS"p.

n— o

Applying Lemma 2.11 we see that

fﬁ? ds"u > f(n(x)) = f(x) for each n.

Hence f(Y(1)) = f(x). Since C is strongly separating, y(u) = x.

PropoSITION 2.13. If p, v e Q(X), and u < v, then Y(u) = Y(v).
Proof. If Yy(u) = x, then u > e(x). Therefore v > e(x). Hence y(v) = x.

ProposITION 2.14.  If u, v € Q(X), then
YGu + ) = @ - YO).
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Proof. %u + 3v = p*v. Since Y(u * v) = Y(u) - Y(v),
YGu + ) = v - YO).

3. Characterization of core X

If (X, -) and (Y, ) are topological groupoids and y: X — Y is a continuous
homomorphism of X onto Y, we say that Y is the homomorphic image of X.
If y is a homeomorphism, then y is called an iseomorphism and X and Y are
said to be iscomorphic. Recall that when we say that (X, -) is a compact convex
set we mean that X is a compact convex subset of a locally convex topological
vector space and x 'y = 4x + 3y. The main result of this section is the
following.

THeEOREM 3.1. If (X, ) is a compact mean space then (core X, *) is iseo-
morphic to a compact convex set.

First observe that Q(X) is a compact convex set and the map ¥: Q(X) —
core X is a continuous homomorphism. To prove the above theorem we shall
prove that the homomorphic image of a compact convex set is iscomorphic to
a compact convex set and this will be Theorem 3.5. Throughout this section
we assume that (Y, +) is a compact convex set and {: ¥ —» X is a continuous
homomorphism of Y onto X. We first prove three lemmas.

LemMa 3.2, Ifa e [0, 1] and x,, x5, y1, ¥, € Y such that Yy(x,) = Y(x,) and
Y(y1) = ¥(y2), then

Ylox, + (1 — 0)yy) = Ylax, + (1 — a)y,).

Proof. The result is clear in the case that « = } since ¥ is a homomorphism.
Similarly the result holds for « = } and « = . Continuing in this way the
equality is easily established for all dyadic rationals «, i.e., « = m/2" where m
and # are nonnegative integers. The proof'is by induction on n. Since the dyadic
rationals are dense in [0, 1] and ¥ is continuous, the equality holds for all
a e [0, 1].

LemMA 3.3. Ifae (0, 1], x;, x5, y € Y and
Yloxy + (1 — a)y) = Ylax, + (1 — a)y),
then Y(xy) = Y(x,).
Proof. Let E be the set of numbers a € [0, 1] such that
Y(ax; + (1 — a)y) = Y(ax, + (1 — a)y).

Since ¥ is continuous, E is closed. Since « € E, sup E > 0. To complete the
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proof we shall show that sup £ = 1. To do this we let § = sup E and we show
that 28/(f + 1) € E. Now

v (Bﬁxl + Bx, + a- ﬂ)J’) =y (ﬂxz +ad - .B)J’) + Bx,

+1 B+1 p+1 B+1 B+1

Since B € E, y(Bx, + (1 — B)y) = ¥(Bx; + (1 — B)y). Applying Lemma 3.2,
the above is equal to

Bx, + A1 =By . Bxy \_ 2x, (1 — By
"'( B+ 1 +ﬁ+1>*¢(ﬁ+1+ﬂ+1>

By the same argument
Bx, Bx, (1 =PBy\ _ 2x, , (1 =By
lp(ﬁ+l+ﬁr+1+/3+1>“'/’<B+1+/3+1>

Thus 28/(B + 1) e E.

If fe C(X) such that for every x, y € X, f(x*y) = 3/(x) + %f(»), then fis
called a continuous affine function. The following lemma is well known, but
we include it for completeness.

Lemma 3.4. If (X, ) is a compact groupoid whose class of continuous affine
Sfunctions separates points in X, then (X, *) is iseomorphic to a compact convex
set.

Proof. Let A be the class of continuous affine functions on X. If we let D
be the product of the intervals [inf f(X), sup f(X)] as f ranges over all f€ 4,
then D is a compact set in the product topology. Furthermore D is a convex
set. We define 6: X —» D by Pd(x) = f(x) where P is the projection of D into
[inf f(X), sup f(X)]. It is routinely verified that J is continuous. J is one-to-
one since A separates points in X. Since X is compact J is a homeomorphism
and 8(X) is compact. It is easily verified that 6(x - y) = 46(x) + 36(»). Thus
d(X) is a convex set in D and J is an iseomorphism of X onto §(X).

THeOREM 3.5. If (X, *) is a compact groupoid and X is the homomorphic
image of a compact convex set Y, then X is iseomorphic to a compact convex set.

Proof. Let A denote all continuous affine functions on Y and let L be the
set of fe A such that f(x) = f(y) for every x, y € Y such that y(x) = Yy(y).
We shall prove the theorem by showing that if y(x) # Y(y) for some x, y € Y,
then there exists fe L such that f(x) # f(»). This will complete the proof
since for any f € L, we may define g: X — R such that g(¥/(x)) = f(x) for every
x € Y. Such a function g is continuous since if E is a closed subset of the reals,
g~ (E) = Y(f1(E)) which is closed. It is routinely verified that g is affine
on X. Hence if we prove the above assertion, then the continuous affine
functions on X will separate points and we may apply Lemma 3.4.
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First we must make some observations about 4 and Y. If fe 4, let | f|| =
sup | f1(Y). With this norm, 4 is a closed subspace of C(Y) and is therefore a
Banach space. Further define 4: ¥ — 4* by d(x)(f) = f(x) for every fe A4
and x € Y. Then ¢ is an affine homeomorphism of Y onto a compact convex
subset of the closed unit ball W of A* in the weak* topology. For the sake of
simplicity we may assume that Y is a compact convex subset of W such that
every continuous affine function on Y is a linear functional in 4 and if fe 4,
then [f] = sup {|¥(f)|:ye Y}. We now show that if £ = {ax — (1 —
a)y:a€[0,1], and x, y e Y}, then E = W. Itis clear that E = W, and E is
a compact convex set. If w ¢ E, then there exists x € 4 such that

w(x) > sup {y(x): y € E} = sup {{y(x)|: y € Y} = |x|.

But then ||w| > 1 so that w ¢ W.
Now let H = {ax — ay: x, y € Y, Y(x) = Y¥(»), and « real}. Now suppose
that x, y € Y such that for some « € [0, 1],

ax — (1l —a)ye Hn W.
We shall show that « = 4 and Y(x) = Y(»). If ¢ is a nonzero constant in 4,
then
A =20):c=(x—-—0—-ay)co) =0

since ax — (1 — a)ye W. Hence « = 3. Now assume that for x',y' e Y
with Y(x") = Y(y') and for § > 0, 4x — 3y = px’ — By’. But then

% ﬂ r__ % ﬂ '
] i e Kl Pl B Feorl
Thus Y(x) = Y(y) by Lemma 3.3. We have thus shown that
WoH={3x-%yix,yeY and ¥(x) = y(»)}

so that W n H is a weak* closed subset of W. We have also shown that if
Y(x) # Y(p), then x — y ¢ H. By the Krein-Smulian theorem (see Dunford
and Schwartz [1, p. 429]) H is a weak* closed subspace of 4*. Hence if
Y(x) # Y(y) for x, y € Y, then there exists /'€ A such that f(x) # f(») where
f annihilates H. Since f annihilates H, f(a) = f(b) if Y(a) = Y(b). This com-
pletes the proof.

4. Applications

In this section we shall investigate some of the consequences of Theorem 3.1.
If S'is a set and C is a class of real valued functions on S, then C is preconvex
if for every (w, x, y, z) € S*, there is a unique p € S such that f(p) < 3(f(w) +
S(x) + f(») + f(2)), forall fe C. Observe that a preconvex class of functions is
automatically totally separating.
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THEOREM 4.1. If X is a compact Hausdorff space and C is a preconvex class
of real valued continuous functions on X, then there exists a compact convex set
Y and a homeomorphism ¢. Y — X such that f¢ is convex for every f e C.

Proof. 1If x, y € X, define x - y to be the unique point z such that 1f(x) +
31f(») = f(z) for every fe C. This point is obtained by applying the pre-
convexity of C to (x, x, y, y) € X*. We first prove that - is continuous. If
x,y€ X, feC, and a > 0, then let

U, 9) = {pe X: f(p) < 3(/(x) + () + a}.

If x and y are fixed, then since C is preconvex

Nl U, 0):feCoa>0} = {x-y}

Thus sets of the form U(f, «) form a subbase for the neighborhood base at
x - y. Now for any fixed U(f, ), let

W = {a:f(@) < fx) + a} x {b:f(b) < f(y) + a}.

Then W is open in X x X, (x,y) € W and - maps W into U(f, «). Thus - is
continuous. Now if (w, x, y, z) € X4, then

(W) + () + 1) + /@) 2 fw-x) (¥ 2)

and
W) + f(x) + () + @) =2 f((w+y): (w-2))

for every fe C. Hence W-x) (y-z) = (w-y)(x-z). The proof that - is
commutative is similar. If x € X, then f(x - x) < f(x) for every fe C. Hence
x-x = x. Thus core X = X. Thus (X, *) is a compact mean space such that
core X = X. Hence (X, *) is issomorphic to a compact convex set by Theorem
3.1. It is clear that such an iscomorphism carries the functions in C into con-
vex functions.

Lemma 4.2. If (X, -) is a compact groupoid whose continuous convex functions
are totally separating, then every element of X is an idempotent.

Proof. If x € X and fis convex, then f(x) > f(x - x). Since the continuous
convex functions are totally separating x = x - x.

Now if (X, ) is a compact groupoid, then a pseudometric d on X is convex
if for every (x, y, z) € X3,

dx,y-z) < 3dx, y) + 3d(x, z).

ProrosiTION 4.3.  If (X, -) is a compact commutative medial groupoid and the
topology of X is given by a family § of convex pseudometrics, then (X, -) is
iseomorphic to a compact convex set.

Proof. Suppose (x, y) € X x X and x # y. Then there exists d € & such
that d(x, y) > 0. If we define f(») = d(x, y) then fe C and f(x) < f(»).
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Hence C is totally separating. By Theorem 3.1 (X, ) is iscomorphic to a com-
pact convex set.

5. Extensions of the groupoid (X, )

There are four fairly straightforward ways of extending a compact medial
groupoid (X, -) to another such groupoid (Y, -). By an extension we shall
mean a map K: X — Y such that K is an iseomorphism onto its image in Y.
The first of these which we call a type one extension occurs if Y is any compact
Hausdorff space, K: X — Y is a homeomorphism onto its image, and there
exists y: ¥ — Y such thaty?> = y and (¥) = K(X). In that case we define - on
K(X) in the obvious way so that K is an iscomorphism onto K(X). - is then
extended to Y by x -y = p(x) - y(»). It is not difficult to show that by this
definition (Y, -) is a medial groupoid.

ProposiTiON 5.1. If (X, *) and (Y, *) are as above, then core Y = y(core X)
and if (X, *) is a compact mean space, then (Y, ) is a compact mean space.

Proof. Core Y = y(core X) is obvious. It is clear that the family of con-
tinuous convex functions on K(X) is strongly separating. If g is a continuous
convex function on K(X), then the function 4 defined by 4(x) = g(y(x)) makes
h a continuous convex function on Y. Also if fe C(Y) such that f(¥) < [0, 1]
and f(K(X)) = {0}, then fis convex. Using functions of these two types it is
clear that the continuous convex functions strongly separate points in Y.

A type two extension is the extension from (X, *) to (Q(X), *). Recall that
e: X - Q(X) where e(x) is the point mass measure at x. We have already
observed that e is an iseomorphism of X into Q(X). Furthermore, it is easily
verified that * is medial. Also we have already shown that core Q(X) =
e(core X) in Proposition 2.3.

ProrposITION 5.2. If (X, *) is a compact mean space, then (QX), *) is also a
compact mean space.

Proof. If we let C denote the continuous convex functions on X, then
C — Cis dense in C(X). Now if fe C, we may define g on Q(X) by g(u) =
§ f du for each u € Q(X). gis convex by Lemma 2.2. The class of such functions
separates points in Q(X) since C — Cis dense in C(X) and is totally separating
on e(X). Hence the continuous convex functions strongly separate points in
QX).

A type three extension of X extends X to the hyperspace of X which is denoted
by 2X. The hyperspace of X is the set of closed subsets of X. The hyperspace
topology on 2X is the weakest topology on 2% such that (sup f) is continuous
for every fe C(X). With this topology 2¥ is a compact Hausdorff space. If
E, F € 2%, then we define

ExF={x-y:xeE and yeF}
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A straightforward argument using nets and applying the compactness of X
shows that E * F e 2¥ and that * is continuous. It is also clear that * is medial.
We define K: X — 2*¥ by K(x) = {x}, and we see that K is an iseomorphism
of X into 2%. Now if E € core 2%, then E x E = E. If we define a set E to be
convex if E * E = E, then core 2% is the set of all closed convex subsets of X.

PROPOSITION 5.3. If X is a compact convex set, then (2%, ) is a compact
mean space.

Proof. We first observe that if fe C(X), then inf f = —sup (—f) so that
inf fis also continuous on 2X. Now if E, F € 2¥ and x € E, but x ¢ F, then there
exists a continuous convex function f such that f(x) < inf f(F). But then
inf f separates E and F. It is easily verified that inf f and sup f are convex on
2% if fis convex on X. Hence the class of convex functions on 2* is separating.
If E, F e core 2% then E and F are convex. Suppose E = Fand E # F. Then
there exists a continuous affine function on X such that sup f(E) < sup f(F).
The case when E ¢ F is handled above so that the continuous convex functions
on 2X are strongly separating. This completes the proof since (2%, ) is medial.

If {X,: « € I} is an indexed family of compact groupoids, then the product
X of these is also a compact groupoid where - is defined on X coordinate-wise.
If each X, is medial, then X is medial.

Furthermore, if fis a continuous convex function on X, then the function g
defined on X, by g(x) = f(x,) where x, is the ath coordinate of x makes g a
continuous convex function on X. Since it is clear that core X = n{core X,:
o € I}, it is easily seen that the class of continuous convex functions on X is
strongly separating if this is true for each X,.

Now suppose that (X, -) and (Y, -) are compact medial groupoids whose
continuous convex functions are strongly separating. If y, € core Y, then we
may define y: X —» X x Y by p(x) = (x, yo). We shall call such an extension
a type four extension. We note that if {y,} = core ¥, then y(core X) =
core (X x Y).

Using these four types of extensions initially applied to compact convex sets
and using products as well it is possible to construct a rather large variety of
examples of compact mean spaces other than compact convex sets. However,
it is probable that there are many compact mean spaces which are not con-
structible in this way.

6. Compact groupoid valued integrals

In this section we assume that (X, *) is a compact commutative medial
groupoid whose continuous convex functions are strongly separating. We
further suppose that (Y, B, u) is a probability measure space. A function f
from Y into X is measurable if £ ~!(O) € B for every open F, set O in X. There
are a number of definitions equivalent to this. In particular, any one of the
following three conditions is equivalent to the measurability of f:
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(i) f~YE) e B for every Baire set E.

(ii) The real valued function g(f(x)) is measurable for every g € C(X).

(iii) For every O open and E closed with E < O, there exists F € B such that
f~YE) €« F < f71(0). Now for every measurable f let uf~! denote the
Baire measure on X defined by (uf “!)(E) = u(f " '(E)). It should be noted
that every Baire measure has a unique extension to a regular Borel measure, so
that uf ~! can be identified with a regular Borel measure on X. It is further
noted that if g is a real valued Baire measurable function on X, then [ g duf ! =
§ g(f(x)) du(x). Now if fis a Baire measurable function from Y to X, then we

define [ fdu = Yuf ™).

PROPOSITION 6.1. If f and g are measurable, then f- g is measurable and
§f-gdu={fdu-[gadp.

Proof. Suppose O is open and E is closed with E = O. Then there exists
Uy...,Uy,and Vy,..., V, all open F, sets such that

(o y:xyeE} = Y Ui x Vi

and

C=

Ui x Vi < {(x, y): x* y € O}.

i=1

Thus
(797 = [ S W) 0 g7 W) < ()0,
This shows that there exists W € B such that
(f9)"HE) =« W <= (f9)”(0).

Now suppose 4 is a continuous convex function on X. Then

f hdu(f-g)" = f ) - 9(x) du
< f%h(f(x)) T 3h(g(x)) du

- %fhduf'l + %fhdug'l.

Thus
wfmt 4 dugt = w(fg)h
But also
ST TR 177 R (77 A R (77 §
Thus

V(9™ =¥ ™ g™ =y Ylug .
This establishes the equality.
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PROPOSITION 6.2. (Jensen’s Inequality). If f is a measurable function from
Y to X and g is a continuous convex function on X, then

f o) du) > g ( f fd)
Proof.
Jore) due) = o = owiur ) = o ( f rd).

PROPOSITION 6.3. If {f,) is a sequence of measurable functions converging
pointwise to f, then f is measurable and

lim |f, du = ffd,u.

Proof. Suppose g € C(X). Then gf, is B-measurable for each » and
lim g(f,(x)) = 9(f(x))

for every x € X. Hence gf is B-measurable. Thus f is measurable. Also, if
g € C(X), then

tim [ dGf = tim [of, du = [o du = [g dur=
by the bounded convergence theorem.
But then uf;, ! converges weak* to uf ~!. Since y is continuous,

tim (7, d = lim WGy = W™ = f £ d.

n—> oo

7. Open questions

There are a number of questions that I have been unable to resolve. These
are some of them:

(i) If X is a compact convex set, can one characterize all extensions
y: X —» Y where (Y, *) is a compact mean space and core ¥ = p(X)? What if
X is a single point?

(i) If (X, ‘) is a compact mean space such that X * X = X, does it follow
that X = core X'?

(iii) If (X, -) is a compact mean space and x ¢ core X, does there exist a
continuous convex function f such that f(x) > sup f(core X)? Is this true in
the case when X = Q(Y) for Y a compact convex set?

@iv) If (X, ) is a compact mean space, under what conditions on X is
(X, -) iseomorphic to Q(Y) or 2¥ for some compact convex set Y ?

(v) If (X, ) is a compact mean space, is (2%, ¥) a compact mean space?
Can Proposition 5.2 be generalized at all?



REPRESENTING MEASURES IN COMPACT GROUPOIDS 291

(vi) Is there a reasonable theory of representing measures when (X, *) is
not a compact mean space? What if we drop the condition that C be totally
separating on core X ?

(vii) O. H. Keller [3] proved that if X is a metrizable infinite dimensional
compact convex set, then X is homeomorphic to the Hilbert cube. Is it possible
to apply the results of Section 4 to obtain a topological Characterization of the
Hilbert cube?
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