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2-COHOMOLOGY OF SOME UNITARY GROUPS

BY

GEORGE S. AVRUNIN

In [1], we showed that the 2-cohomology of the group SU(n, q)with
coefficients in the standard module V l is generally zero. For SU(2, q),
which is, of course, equal to SL(2, q2), the only exceptions occur at q 2k with
k _> 2; in unpublished work, McLaughlin has shown that the second cohom-
ology group has dimension 1 over Fq2. For n > 2 and q > 3, the only possible
exceptions are at n 3 with q 4 or 3k and n 4 with q 4. In this paper, we
prove that H2(SU(n, q), V) has dimension 1 over Fq2 in the first case and
vanishes in the second. We also show that H2(SU(3, 3), V)is zero.

In Section l, we outline some basic results on the cohomology of groups. In
the second section, we compute HE(su(3, q), V) with q 4 or 3k, k > 1, while
the 2-cohomology of SU(4, 4) is determined in the third section. Finally, we
show H2(SU(3, 3), V)= 0 in the fourth section.

I. In this section, we describe some results on the cohomology of groups
which will be needed later. For a more complete discussion, the reader is
referred to [2] and [5].

Let 1 A G X 1 be an exact sequence of groups and let V be a (left)
G-module. From the Lyndon-Hochschild-Serre spectral sequence we get the
exact sequence

v")+ re(a, V)o-+ H’(A, v)),
where VA denotes the set of A-fixed points of V and H2(G, V)o is the kernel of
the restriction map res" H2(G, V)- H2(A, V)x.

If A and V are finite elementary abelian p-groups and Va V, we have the
exact sequence of X-modules

0 + Horn (A, V)
u
HZ(A, V)+--+ Alt2 (A, V)---+ 0,

where Alt2 (A, V) is the group of alternating F, bilinear forms from A to V. V is
the Bockstein operator with/(h) equal to the class of the 2-cocycle

#,(h)(a, b)= ((h(a) + h(b))’ h(a)’ h(b)*’)/p,
and e is defined at the cocycle level by e(f)(a, b)=f(a, b)-f(b, a).
We shall be most interested in the case where A and V are vector spaces over

some finite field K and dimr A 1. In this situation we can take advantage of
special direct sum decompositions of Hom (A, V) and Alt 2 (A, V) to simplify
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318 GEORGE S. AVRUNIN

the computations. We have Hom (A, V) isomorphic as X-module to
I_IH.(A, V), where H.(A, V) is the group of K-semilinear transformations from
A to V with component automorphism tr and tr ranges over the Galois group of
K over Fp. Also, Alt2 (A, V) is isomorphic as X-module to I_IA.,,(A, V), where

A.,,(A, V)= {dp" A x A --+ V[ dp(a, b)
T(a (R) b b (R) a) for some Te HomK (A (R) A, V)}

and a and z range over the Galois group of K with a < z in some fixed
ordering. The second decomposition is due to Landfizuri [4], who proved a
related, but more complicated, result for dimK A > 1.

Suppose G is a finite group and V is KG-module for some field K of charac-
teristic p. Multiplication by any r Z with (r, p)= 1 is an automorphism of
H"(G, V). If S < G, we have the corestriction map cor: H"(S, V) H"(G, V),
and the composition

coro res" H"(G, V)--+ H"(G, V)
is multiplication by the index [G’S]. It follows that if [G’S] is prime to p,
cor ores is an automorphism and res is injective. If S is normal in G, we get
H"(G, V) H"(S, V)G/s, but for any subgroup S with [G’S] prime to p,
dimr H"(S, V)a/s > dimr H"(G, V).

Finally, we give a condition which can sometimes be used to show that a
cocycle is not a coboundary. Let A be an abelian group and V a trivial A-
module. Let V be the free abelian group on the non-zero elements of V. Then if
f Z"(A, V), we define Af: A" l by

f(a,, a.)= E (sgn a)f(a,tl),

Iffis a coboundary, the terms of Af(a 1, a.) cancel in pairs and we see that
Af=0.

2. In this section, we show that H2(SU(3, q), V) has dimension 1 over Fq2
when q 3k, k > 1, or 4 and V is the standard module Fq32. We begin by
establishing a lower bound for the dimension of the cohomology group when
q= 3k.
McLaughlin has shown that, for j > 1, H2(SL(3, 3J), F) Fat. In the fol-

lowing lemma, we show that the restriction map H2(SL(3, 32k), V)-
H2(SU(3, 3k), V)is non-zero.

LEMMA 1. Suppose If] + H2(SL(3, 32k), V), k > 1, is not the zero class. Then

res [jT] [f] H2(SU(3, 3k), V)
is also non-zero.

Proof Obviously, it is enough to consider the restriction to a 3-Sylow
subgroup of SU(3, 32k). For convenience, let K Fa2k and let a--} h be the



2-COHOMOLOGY OF SOME UNITARY GROUPS 319

involutory automorphism. We take

U= 1 -0 1

for the 3-Sylow. Then, for elements

x= 0 1 -0 0 1

of U we can take

a, be K,b+b+ah=O

and y

f(x, y)= 0
0

We need to show this is not a coboundary.
Suppose to the contrary that f= 6g. Writing

g(x)= g()

we must have

1 -0 1

gz(x) + gz(Y)- tga(y) gz(xy) 0
ga(x) + ga(Y) ga(xY) 0

Taking y Z(U) so c 0, we get

g2(x) + gz(Y) aga(y) g:(xy)= gz(Y) + g:(x) gz(yx).

Since xy yx, we have (tg(y)= 0. Thus g vanishes on Z(U).
Keeping y Z(U), we also have

g,(x) + g,(y) + agz(y) g,(xy)=

and g,(y) + g,(x) + dg(x) g,(yx)= O.

These imply agz(y)- dg(x)=. Fixing x with a 1, we see that

d

is a constant for y Z(U). Thus a(ad + d)- dg(x)= for all non-
identity x in P, and so

o() C(a + Ca)+ a -(a + Ca)+ a.
d
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Since g3(X) is independent of d, d-2/3 must be constant for all d K with
d + d 0. It follows that KI -< 9, a contradiction.

THEOREM 1. Let K F2 and let V K3 be the standard module for
SU(3, q). If q 4 or 3, k > 1, then dimx H2(SU(3, q), V)= 1.

Proof. We will first compute H2(B, V) for B a Borel subgroup of SU(3, q).
Since su(3, q). B is prime to the characteristic of K, we have

dimx H2(B, V)> dim H’(SU(3, q), ).
Let a-+ h be the involutory automorphism of K as before and let K0 be the
subfield fixed by that automorphism.
As in the preceding lemma, let U be the Sylow subgroup

1 -g a, beK, b+b+ag=O
0 1

and let

T t/t t K
o

Then B is the semidirect product TU. Let Z Z(U); Z is a normal subgroup of
B and we have the exact sequences

0-+ n(n, V)o -+ n(n, v)-+ n(Z, V)/z,

H(/Z, Vz) -+ H(, V)o -+ H’(/Z, H’(Z, V)).

LEMMA 2. H2(Z, V)n/z O.

Proof. Suppose f Z2(Z, V)T. Writing

as usual and identifying Z with {b e K Ib + b-= 0} in the obvious fashion, we
have

(1 1 )tf b,- b2

1 (1 1 )fa b,,b2

A(b" b2)
f2(b,, b2)
fa(b,, b2)
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for all bl, b2 6 Z and all e K . Take y K\Ko and put /y. Then ff 1
but none of t, t--It and 1/-is 1. This showsf= 0, so Z2(Z, V)r 0. Since T is a
p’-group, for p the characteristic of K, this implies H2(Z, V)r 0 and finally
H2(Z, V)wz O.

LEMMA 3. If q 3k, k > 1, or q 4, then H2(B/Z, Vz) O.

Proof. Let {el, e2, e3} be the standard basis for V, so VZ (e 1, e2>. We
have

v i-i (v/z, vzy
since T is a if-group. We determine HZ(U/Z, (el>)r and Hz(U/Z, VZ/(el>)r,
and use this information to find H(U/Z, VZ)r.
We have the exact sequence

0 Hom (u/z, (e>)r H2(U/Z, <e,>y - Alt2 (u/z, (ex>)r 0.
We use the decompositions for Hom and Alt2 described in the first section,
making the obvious identification of U/Z with K. If h H,(U/Z, (ea>)r,
th2a/t) h(a), so h # 0 implies t2/t) 1 for all K Then tF-- t2 must
be an automorphism of K, but taking t 0, 1, this means

{ (1 + t)2
1+= 1+{"

This leads to t2- 2t-- -2 (t- -)2 0 for all K, which is absurd. We
conclude that Hom (U/Z, (e)r 0.

If b :/: 0 belongs to A,,(U/Z, (el)r, t(-{/t2)’(-/t2)= 1 for all e K . If
-1 e K, this is clearly false, so suppose q 4 where the condition reads
tt2at2 1. Writing t" t2x and t t2r with 0 < x < y < 4, we obtain

1+2x+ 1+2r+ --0 (mod24-1).
It is easy to see that this congruence has no solutions, giving Alt2 (U/Z,
<e,>)T 0. Thus H2(U/Z, <e,>)T 0.
Now we use the exact sequence to compute H2(U/Z, VZ/(el>)r. If

h 0 implies

h H(U/Z, VZ/<e>)r,

()=1 forallteK -.
Taking 4: 0, 1 in Ko shows this is impossible, so Hom (U/Z, VZ/(e 17)r 0. If
4 4:0 belongs to A,,,,(U/Z, VZ/(e))r, we must have
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Looking at Ko, we see this implies q < 4, so assume q 4 where the condition
reads t3t2t2= 1. Solving a congruence as above, we find that we can take
t’= t2 and t= t4, SO b(al, a2)= (a a a a)a for some a K.
We obtain a cocycle mapping onto this alternating form as follows. Choose

an F2-basis for U/Z, say xl, xn, and define f2(x, x) to be b(xi, x) if < j
and 0 otherwise. Then f2(al, a2)-fE(a2, al)= tk(al, a2) for all al, a2 e U/Z.
Suppose we can find a cocycle f Z2(U/Z, VZ) projecting onto f2. Then

and the cocycle condition gives alf2(a2, a3)= fifl(a2, a2, a3). Thus, if we put
o(al, a2, a3)= alf2(a2, a3), A0 0. Taking al 1, a2 09, a primitive cube
root of 1, and a3 K0 along with a suitably chosen F2-basis, we see that this is
not the case unless a 0. Thusf2 0 andfl Z2(U/Z, (e 1)). Combining this
with the fact that H2(U/Z, (el))r 0 completes the proof.

LEMMA 4. If q 3k, k > 1, or q 4, then dimr Hi(B/Z, Hi(Z, V))= 1.

Proof Again, it suffices to consider HI(U/Z, HI(Z, V)). Take
d Z1 (Z, V) and write

We have

d= d2
d3

(dl(bl + b2) ( dl(bl) + dl(b2) + blda(b2))dE(b1 + b)| d2(bl) + dE(b2)
+ +

We note that d2 and d3 are homomorphisms of abelian groups. The cobound-
aries BI(Z, V) are the maps

for some va e K, so if we write 0 e Z(U/Z, H{Z, V))r as

we see that a belongs to

n (v/z, n (z, Hom (C/Z, Hom (Z,
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We show this map is zero. If q 4, take b b2 in the expression for
d(b4-b2) above to see d3=0 for all d6Z(Z, V). If q=3k, put
W V/(ex, e2). We have

Horn (U/Z, Horn (Z, I_I/-L(v/z,/-/o(z, w))L

where z runs through the Galois group of K over the prime field and a runs
through the Galois group of Ko.

If h e He(U/Z, Ho(Z, W))T

h(a)(b) ?
so if h 4: 0,

t

On Ko, this condition reads

1
h(a)h(b) for all e K

=1 for all K

and, writing t= tax on Ko and t" at, We have

1+3x4-2.3r=0(mod3k-l) with0_<x,y<k.

The only solution is x 0, y 1 and k 2, so we have t t or t- t" t3 and--- 9. Checking, we see that the original condition fails on Fs, and we con-
elude that H(U/Z, Hi(Z, W))T 0. This implies that 9 0 for all a U/Z.

Identifying Z with Ko as usual, we have BI(Z, V) Homro (Z, (ex>). Then

H(U/Z. Hx(Z. V))T H(U/Z. nom (Z. <el. e>)/nomKo (Z. (e.>))T,

since 0 0 implies 9 is a homomorphism. We write
Hom (Z. <e.. ez>)/Homtco (Z. <e.>)as

nomKo (Z. <ez>)@ I_IH.(Z. <e. ez>).

where r runs through the non-identity members of the Galois group of Ko
over F3.

Suppose d Zx(U/Z, H,(Z, (el, e2>))T for some t # 1. If q 4, we have
-, and stability gives

_t2a I 1
tcl

_t2a I 1

1
b dta(b)
b -dt22a(b)
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If a 0, we can take a- 1/2 a7 to get a-3 a(b) da(b) and a-4 d2(b)
da2(b). The cocycle condition reads da21+a’-(b)= da21(b) + da2"(b) so if dz 0, we
must have a -, a-4 additive. This is not the case on F 16, so d 2 0. Now we get
da? +(b) d(b) + d(b) so ifd 0, a a-3 must be additive. This isn’t true
either, so d 0.
Keep q 4 and take d Z(U/Z, Homro (Z, (e2)))r. This time stability

gives

1
2 dt2a(b) da(b).

and, taking t= a7 again, we see (b)= da(b). Since d is Ko-linear, we have
Hda(b) abve2 for some v K. Thus, ifq 4, dimr (U/Z, H(Z, V))= 1 and

the group is generated by [d], where d(a) is the cohomology class of the map

b

Now assume q 3, k > 1, and take d e Z(U/Z, H{Z, (e , e)))r for some
1. From stability, we have

la/t2 ( 1. dtb).

Taking t=- 1, this reads da(b)= d(b), but the cocycle condition gives
d+(b)= d(b) + d2(b), so

0 -(b)= d(b) + d(b)= ed(b).

Thus d2 0 and dx Hom (U/Z, H(Z, (e))r. Suppose
d n(c/z, n(z, (e>))

for some z in the Galois group of K. Then we have

so if d O, t(/t)(1/t)= 1 for all e K . On Ko, this reads tt, so
writingt=taonK0 and =t’,wehave3+2.3- l0(mod 3- 1)
with 0 N x, < k. The only solution is x k 1, so t t and t
or -. Returning to K, we see t must be t.

This argument also shows H(U/Z, Hom {Z, <e)))r 0, so

dim. (U/Z, (Z, ))r= 1.

Lemm 2 through 4 and the exact sequences imply that dim H(B, V) 1,
so dim H{SU(3, q), V) N 1. With Lemma 1, this completes the argument for
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q 3k, k > 1. For q 4, we exhibit a cocycle class in H2(B, V)0 mapping to [d]
in H(B/Z, Hi(Z, V)). For

1 ai bi )0 1 -hi 6U,
0 0 1

define f(px, P2)to be

a6a2bo + aa + aa + (b, + b2)a, a2 )a, b2 + aabo + a, aSao + aa22bo + a, a52 + asia2
al a2

where bo is a fixed element of K with b0 + bl 1. Computation shows thatfis
fixed under the action of T and [f] maps to [d], so [f] =fi 0 in H2(B, V). Since
the 2-Sylow subgroups of SU(3, 4) are trivial intersection sets, [f] is a stable
class in H2(B, V) and so H(SU(3, 4), V) :/: o. The upper bound obtained above
gives dimr H2(SU(3, 4), V)= 1. This completes the proof.

3. In this section we prove that H2(SU(4, 4), V)= 0, where, as before, V is
the standard module for the special unitary group. The methods used are
similar to those in the preceding section and we will use much of the same
notation" K is F16 K0 is F4, and so on. Additionally, for T GL(n, K), we
write for ()-.

THEOREM 2. H2(SU(4, 4), V)= 0.

Proof Take P < SU(4, 4) to be the stabilizer of a maximal totally isotropic
subspace W of V. [SU(4, 4): P] is prime to 2, so it suffices to show
H2(p, V) 0. Since 0 W V V/W 0 is an exact sequence ofP-modules
we can prove H2(p, V)= 0 by showing that H2(p, W) and H2(p, V/W) both
vanish. We show H2(p, W)= 0 below; the arguments for H2(p, V/W)are
similar.
P is a semidirect product LU where, with respect to an appropriate basis,

and

U acts trivially on W, so we have the exact sequences

0 H2(p, W)o H2(p, W) H2(U, W)L,

H2(L, W) H2(p, W)o H’(L, Hi(U, W)).
H2(L, W) is zero because L has central elements acting fixed-point-free on W.
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LEMMA 5. H2(U, W)" 0.

Proof It suffices to show that Hom (U, W)L and Alt2 (U, W)L are zero. We
identify U with the set of2 x 2 Hermitian matrices over K and L with the set of
T GL(2, K) having determinants in Ko. With these identifications, L acts on
U by T H THT, and it is not hard to see that U is a simple L-module.
Suppose h Uom (U, W). Then Th(T-S)= h(H)for all H U, T L,

and the kernel of h is an L-submodule. Thus, ifwe can show ker h 4: 0, we have
h=0.
Take

A=( )and T=(t0 0_)
for some t s K of norm 1, t 4= 1. Then T- A A and we have h(A) Th(A).
Since T is free of eigenvalue 1, it follows that h(A)= 0, whence h 0. Thus
Horn (U, W) 0.

Suppose Alt (U, W) with (H, U) 0 for some H. Since U is a simple
L-module, this would imply 0. Keep A as above and put

B= (: ), C= ( 10) and D=( :)
where 0 is a solution of X2 + X + co 0 in K, co a primitive cube root of
1. {A, B, C, D} is a Ko-basis for U and we have 0 02 + co2 0 + 1 and
00= 0 +co + 0=co.

Let

Then

R= 0 -1

b6
b

(2) RoB=
1

a a(t

fib+a6 -a abO + a60 _a o
(3) RoC=

a
(4) RoD=

h
a

0 ao 0
a a

Take (p e Alt2 (U, W), so Tdp(T-H , T-XH2 )= dp(H, H2) for all
T L, H, H2 U. From (1), with ah 1 and b 0, we get dp(A, kA) 0 for
all k Ko. From (1) and (2), again taking a 1 and b 0, we get b(A,
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kB) 0 for all k Ko. Choosing b so that a6e Ko, wesee from (1) and (3) that

a 0

Since the left side is independent of the particular choice of b, this means that

Similarly,

We also note that, for k Ko,

SO

for some x 6 K.

for some y K.

Let r/= x//0. We have

( )oA=oo2A and ( )oC=D,

b(coZA, D)= (
Thus y (.o2qx. Also,

So

Finally,

th(B’D)=( 0)x+y

so we have

and

( 0)A=2B and (

lo) o-io

which says og(x + y)=

i )dp(k2B, D)= k(x + y)

)(A, C)
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Since y co2r/x, this gives cox + r/x flx which leads to (co2 + + 0)x2 0.
As 0 + 0 1, this implies x 0, and then y 0. Using the facts that

(1 ) (10 ) (10 )0
oA=A, oC=kC and oD=kD for kKo,

we have $(A, kC)= dp(A, kD)= 0 for all k Ko.
Thus b(A, U) 0 and we have shown that Alt2 (U, W)L 0. This completes

the proof of the lemma.

LEMMA 6. Hi(L, Hi(U, W))= O.

Proof. Since U acts trivially on W, this is really

H’(L, Hom (U, W))- H’(L, Homro (U, W)) O) H’(L, H,/(U, W)).
Suppose h Homro (U, W) and take 2 Ko, so

We have

so L has central elements acting fixed-point-free on Homro (U, W) and

Hi(L, HOmKo (U, W))= 0.

Thus, H’(L, H’(U, W))= H’(L, H,(U, W)).
Take f ZI(X, H,/(U, W)). Since the diagonal subgroup of L has order

prime to 2, we can assume that f vanishes on the diagonal subgroup. Put

From

we get

and from
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we have

(6) h,_x (20 0#) h.

Put h(A)= b(x),, where A (o )as before. (5) gives

a(x+ ;’,) la(x)+a(y)+xb(y)
b(x + b(x) + b(y) ]"

Taking x y, we see b 0 and a is additive. From (6), we have

x
so taking 2 1 and/ Ko, we see a(x)= a(#-x) for all t Ko. The addi-
tivity of a then implies a(x) O.

Next put hx(C) t() Again we see from (5) that d 0 and c is additive.,d(x)/.

From (6), we have

so for 2 Ko, x//2c(x) c(,x). Then c(x)= x//xc(1)for x Ko. Now let
h(D) ,,(x)U(x))" Again we have s 0 and r additive. (6) tells us that

0

0

If 2 K0 and p 1, this gives r(2x)= x//2 r(x). Taking 2 r/= V/0 and p 0,
it says r(m0x)= tic(x), so m2r(0) c(1).

Let hx(B)= ,(x) We have,v(x) l"

u(x+ [u(x,l hy((x22.+ i,(x)!
Take x y Ko to obtain 0 xc(y)+ xv(y)= xc(1) + xv(x), whence
x(c(1) + v(x)) 0. We also see that v is additive, so c(1) 0 and u is additive. It
follows that r(O) c(1)= 0, and we take 2 0, 0- above to observe
that

O)h(, (; 0
0 (Or(1)+c(l)) (01))

Now, we have seen that r is additive, so r(O) r(O + m)= r(O)+
r(o)= 0r(1). We have just seen r(0)=0 and we know r(m)= or(1), so
(o + 0)r(1)= 0. This implies r(1)= 0; together r(1)= 0 and r(O)= 0 imply
r 0, and this in turn gives c 0.
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u is additive, and it follows from (6)that u(2x)= 2u(x) for 2 Ko. Thus, to
determine u, we need to find u(O). We get

U(- Ix) ---U(X)
from (6). Taking 2 0, / 0-1, we have u(02) 0xu(1 0to2u(1). But
u(02) u(O + to)= u(O) + u(to)= u(O) + tou(1). Then u(O)= (to + 0to2)u(1).
Taking 2 r/and # r/-1, we get directly u(O)= r/tou(1). So

(to + 0to2 + r/to)u(1)= 0.

We have (to + 0toE + r/to)E o92(1 + 09202 + 0)= 0 -= 0, so u(1)= 0. This im-
plies u 0, and we have shown thatfvanishes on a 2-Sylow subgroup.of L. We
conclude that Hi(L, Hi(U, W)= O.

This completes the proof that HE(P, W)= 0. Similar arguments give H2(p,
V/W) 0, and together these results imply HE(P, V) O.

4. H2(SL(3, 3), V) is non-zero if k > 1, but the cohomology group van-
ishes when k 1 [6]. We saw above that HE(SU(3, 3k), V)is also non-zero for
k > 1. In the next theorem we show that the analogy is complete.

THEOREM 3. HE(SU(3, 3), V)= 0.

Proof Take B, U, Z and T as in Section 2. Let

0-} V--} E -} SU(3, 3)-} 1

be an extension of SU(3, 3) by V; we will show the extension is split.
Choose e and f in E with

n(e)= 0 1 -a3 and rt(f)= 0 1 0
0 0 1 0 0 1

Computation gives the commutator

(7) w2 e, v2
W3 /33

av2 -b b/3 3 cw3

a3v3 [e, f].
0

If the bottom component of [e, f] is non-zero, there is a non-trivial F3 T-map

U/Z ()F3 Z ---} V3 0 1/33 e K
/33

but, checking the eigenvalues of the T-action on U/Z, Z and V3, we see this is
impossible. Hence the V3 component of [e, f] is zero.
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Elementary arguments about the cohomology of cyclic groups show that we
can choose e and f of order 3. Take x of order 3 with

t(x)= 1 -1
0 1

x is inverted by an involution in E; we may assume that involution is t, where

r(t)= 0 0
0 0 2-3

and 2 is a gnerator of the multiplicatiw group of F9 satisfying

It is clear from (7) that we can choose a y with

/t(y 1) 0 1 0 and Ix, Y l]
0 0 1

In fact, x commutes with the nine elements of shape

0 y.
0

Computation shows that all the elements of the coset Vyx have order 3, and we
see that we can choose an element y in this coset such that 2 centralizes y and
[x, y] has shape

0
0

If e as above has order 3 and a 4= 0, then, for v e V, ve has order 3 if and only
if

It follows from (7) that ve has order 3 if and only if [re, y] [e, y]. We will use
this property to identify elements of order 3.

Let z t2xt 2 and consider xz, which is in the same coset as t-lxty. We
claim t- lxty has order 3. Since t2yt 2 y, tyt- y- . Thus o(t- Xxty)
o(xy- ). (xy- 1)3 [y- a, x]X[x- , y], but x centralizes [x, y] and thus [y- 1, x],
so this is

[y-1, X][X-1, y] [y-1, X][X, y]" [y-1, X][X, y]-I IX, y]Y-x[X, y]-1.
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-1But y acts trivially on [x, y] since [x, y] has shape

0
0

and we have

(0)00
Hence, to see o(xz) 3, it suffices to show [xz, y] [t-lxty, y]. Straightfor-

ward computation shows that

[t-xty, y] -27[x, y] and [xz, y] (1 + 22)[x, y].

Since ,2
__

/], 1, the computators are equal and xz had order 3.
Now take a tx, b tz and c t4. {a, b, c} is a set of 3-transpositions

no two of which commute. We have b 4: (b), so, by a theorem of Fischer [3],
(a, b, c) is a homomorphic image of a group of order 54. Since (a, b, c) covers
((t4), U, a subgroup of order 54 of SU(3, 3), (a, b, c) has order 54. It follows
that the extension splits.

McLaughlin and Griess have obtained other proofs of this result.
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