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INTERPOLATION SETS AND EXTENSIONS OF
THE GROTHENDIECK INEQUALITY

BY

RON BLEI

The key step in the proof of the Grothendieck inequality is an "integral
representation" of the inner product in a Hilbert space (see Theorem 2.3 in 1],
for example)"

THEOREM. There is a compact abelian 9roup G, a constant K > 0, and a

function O" 2 L(G) so that

(i)
and

(ii)

for all x 12, It (x)ll glll12,

for all x, y e 12, (x, y)= (*(x) O03))(0)(, denotes convolution).

A natural task is to extend the above theorem and design an analogous
representation for the dual action between p and q, where p and q are conju-
gate exponents. This is what we do in this paper. The present work could be
viewed as a postscript to [1], and, indeed, methods here are modifications of
those used in [1].
We employ basic notation and facts of commutative harmonic analysis as

presented and followed in [5]. F, as usual, will be a discrete group and G 1"
will denote its compact dual group. In the first section, work will be performed
in the framework of (R) Z2 , the (compact) direct product of Z z, and
@ Zz t), its (discrete) dual group, the direct sum of Zz. Throughout,

r 0 will denote the system of Rademacher functions realized asE= {
characters in . In Section 1, we extend the notions of A(2) and Sidon sets:
F = F is an L(p) set, 1 < p < 2, if for every q5 e lP(F) there isf e L(G) so that

f= 4 on F, and f p. Analogously, F is an S(q) set, 2 < q < , if for every
dp lq(F) there is p e M(G)so that/ q on F and/ e . These notions lead to
an integral representation of the dual action between and (Theorem 1.3),
and to an extension of the classical Grothendieck inequality (Corollary 1.4).
Deserving a study for its own sake, the L(p) property is briefly examined in the
second section, where a class of L(p) sets is obtained as a subclass of A(q) sets of
a certain type (Theorem 2.2). We conclude with some questions.
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THE GROTHENDIECK INEQUALITY 181

I. A representation of the dual action between

Let 1 <_ p < q < . We set Ap(G)= {f L(G)’f p} and norm Ap(G) by

f A max {[I f
Similarly, we let M,,(G)= {p M(G):/ } and norm M,,(G) by

II ll  - max II ll }.

DEFINITION 1.1. (a) Let 1 < p < 2. F F is an L(p) set if whenever (p p

there is f A(G) so that f= (p on F. F is a uniformizable L(p) set if for all
0 < 6 < 1, there is fl,(F, 6) fl so that whenever (p l(F)there is a (uniformiz-
ing) f A,,(G) with the following properties"

(i) f= (p on V;

(iii) [If [v ][, [[][, (f [v denotes the restriction oqto v, where
denotes the complement of F).

(b) Let 2 < q . F c F is an S(q)set if whenever I(F)there is

M(G) so that fi on F. F is a unormizable S(q) set if for all 0 < < 1,
there is A(F, )= A so that whenever l(F) there is a (uniformizing)
p M(G) with the following properties"

(i) #=$onF;

The L(2) property is, of course, the usual A(2) property. The S() property is
the usual Sidonicity property, and uniformizable S(q) sets are referred to in [6]
as uniformizable p-Sidon sets (p and q are conjugate exponents). The S(q)
property, however, seems considerably sharper than p-Sidonicity and we prefer
the present terminology (F F is p-Sidon if

l(F) M(G)/{fi fi 0 on F}).
The proof of the following lemma is based on a standard use of Riesz

products.

LEMMA 1.2. Let 1 < p <_ 2 < q <_ (not necessarily conjugate exponents).
Then E {r.}=, c is a uniformizable L(p) and uniformizable S(q) set.

Proof (a) Let l<p<2andtpl"berealvalued.Let0<b<lbearbi-
trary and define the Riesz product (see p. 211 of [7])

h ([lll,/i) I-I (1 + (,(n)/llll,,)r.)- IIll,/i.
n=l
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A routine estimate yields Ilhll (llll/)(exp (32/2) + 1). Next, the spectral
analysis of h yields

h (ig/lldPllp)k-1 t(jl (jk)rj, ri,
k jk>".>jl

and, therefore, for all n 2 1, ff(r,)= (n). We estimate

2
( )p(k- 1)

j>"’>jl

as follows- For each k > 1,

jk> jl

Therefore,

O(J,)1" O(Jk)It’ --< k! jl, ..., jk=

(l}bllp/cS)[exp (csp)- 5p 1]

This proves that E is a uniformizable L(p) set. To prove that E is a uniformiz-
able S(q) set, we follow a similar route. Let q be real valued. For 0 < < 1,
the Mq(f) uniformizing measure is given by the Riesz product

H (1 + (6(n)/I llq)r.)-
n=l

In what follows below 0 < 6 < 1 is fixed, tip(E, 6)= tip and 2q(E, t)-- 2qare
L(p) and S(q) uniformizing constants for E, respectively.

THEOREM 1.3. For any 1 < p < 2 < q < there are functions

0" p Ap(f) and P" -+ M(f)
with the followin9 properties"

(i) II%(x){l [tip )]{111 and [Iv(y)ll [xq/(1 )]llyl for all
x p and y q.

(ii) Let 1 < p < 2 < q < c be conjugate exponents and x p, y q be arbi-
trary. Then (x, y)-(%(x),Vq(y))(o). Moreover, for any x, y el2,
(x, y)-- (2(x)* tI)2(;))(O)((’, ")denotes the dual action between p and (lP)*).

Proof Let Eo,..., E,, be an infinite collection of disjoint infinite subsets
of E {r,} so that jLo Ej E. Let t)j be the group generated by E = .
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From the "independence" of E in ), it is clear that j j, {0} for j :/: j’.
Routine arguments (see Chapter 3 in [5], for example) yield that for each
j 0,... there is a M(f) with the property

Next, we enumerate each Ej {r)}= and agree on a one-one correspondence
between E+ and E"

Ej+ B rj+ 1) Z) fijEj.
Fix 1 < p 2 < q < and let x p and y be arbitrary. We proceed to
define n(x) A(O)and W(y) M(O). By Lemma 1.2, select 9o Ap(O)and
Vo M(O) so that"

(i)o o(r)) x(n), bo(r) y(n)for all n;

(iii)o I1o Io 11 Ixll, lifo Io
Set fo ao 90, and Po ao Vo. We proceed by induction. Let j > 0. Select

9 Ap(O) and v M() so that"

(i)j 9j(,PJ))=-a(Z- ), bj(r) fij-I(Z-)) for all n’,

(ii)j ojlIA Jllxll, Ilvjl
(iii) 11 I1 J+lllxl,

Set a 9g and p a vg. Finally, define

p(x)= E (i and W(y)= E (i)JpJ (where i= -1).
j=o j=o

Observe that p(x) W(y)(0)= E=o (-1 j(0). We leave to the reader
the remaining details of the verification that p and W so defined satisfy the
requirements of the theorem.

We are now ready to state the extension of the Grothendieck inequality. In
order to recognize the classical inequality as an instance of this extension, we
formalize the following simple fact.

LEMMA 1.4. Let (a".) C. The following are equivalent"

(a) Z,... a". f,. O.(O) < sup,... (llfl I. ) fo all (f")=l aY/d
(gn)n=

(b) Zm,. amnSm [-hi < Iltll IIl[ for all (t")m=l and .).=x =s in

Proof (a)=:, (b). Let f"(o)= s" and 9,(o)= t, for all o f.
(b) (a). Integrate the inequality. |
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COROLLARY 1.5.
(amn)m,, C satisfy

Let 1 <_ p <_ and q be its conjugate exponent. Let

(a)

E a,.,.f,. f,,.(o) <_ sup

for a (f)_

If 1 <_ p < 2 < q <_ then there is Kp > 0 SO that

and (n)n= (22 Mq.

E amn(Xm’ Yn) gp sup (]lXm lip IlYn ]lq)
m,n m,n

x p lq"for all( m)m=l c and (yn)o=l c
(b) If 1 <_ q <_ 2 <_ p <_ c, then (1.1) implies that

(1.2) E amnfm * tn(O)
m,n

< sup (ll f- On (R))

for an (fm)-, a,,d ()=, t(a).

Moreover, it follows that there is K > 0 so that

(1.3)

for all (x)= and (y.)W=, = r.
< K sup (llXm [l Y. ]1)

Proof. (a) If 1 < p < 2 the assertion is an immediate consequence of
Theorem 1.3. When p 1, (1.1) is equivalent to

E
(Recall that

sup for all (fm):

A,(YI) A(t))= {fe L(O)’/’()}.).
Therefore, Em,n lain, <- 1, and the claim follows trivially.

(b) Observe that for all 2 < p < and 1 < q < 2, A,(f) L(R)(F) and
Mq(f)

_
L2(f). Therefore, (1.1)=, (1.2)is trivial. That (1.2)implies (1.3)is again

an irnmediate consequence of Theorem 1.3. |

Remarks. (1) In part (b) of 1.5, when p oo and q- 1, the implication
(1.1) = (1.3) is the classical Grothendieck inequality. For, in this case (1.1) is
easily seen to be equivalent to (1.2). On the other end, when p, q 2, the
implication (1.1)= (1.3)can be established with the aid of only the classical
Khintchin inequality and without the A(2) uniformizability property of E
(exercise).
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(2) A consequence of Corollary 1 in Section 4 of [4] is that the inner
product of 12 cannot be replaced in Grothendieck’s inequality by the dual
action between p and q, p =/= 2: If every array of scalars (am,)m,. that satisfies (a)
(or (b))of Lemma 1.4 also satisfies

(1.4) E amn(Xm’ Yn)
m,ll

< C sup (llx,, I1 IlY. I1)

Xfor all( m),.=, = l’, (Y.)=, = lq,

then p 2. Part (a) of Corollary 1.5 gives the (stronger) condition that should
be imposed on (a,.,),.,, in order that (1.4) hold where p =/= 2.

We recall the following.

2. L(p) sets

DEFINITION 2.1.
for all f L2v(G)

Let 2 < q < . F c F is a A(q) set if there is > 0 so that

(2.1) llfll Ilfll.
The "smallest" constant in (2.1) is the A(q) constant of F and is denoted by
A(q, F).

THEOREM 2.2. Let 1 <_ r < 2 and F {;}= c F be (a A(q) setfor all q) so
that A(q, F) < o qi/r for some fixed o > 0 and all 2 < q < . Then, F is a

uniformizable L(p) set for 2/r < p < 2.
We require two lemmas.

LEMMA 2.3. Let K >_ 1 be afixed inteoer and F {),}o= c r be a A(2K) set.
Let 1 < p < 2, c p, I111 1, and h ’,. c(n)y,. Then,

II(h") II. <- [A(2K. F)]2r/’.

Proof Define ff e 12 by if(n)= I(.)I"/ and let f= (’,. (n)y,)r. By the
hypothesis,

(2.3.1) f I1 [A(2K, F)]zr.
Clearly, for any y e F,

f()

and

Z ./,(,’..)
nl + + )nK

(hr) () E 4>(,,) "-4,(,,,,).
])nl + + )nK
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Therefore, we obtain
2

q,(,)... ()If()l
)’nl + + nK

?’n + + )nK

-> (h) ()
Finally, from (2.3.1) we obtain II(hK) lip N 1711/" [/(2K, F)]2/p.

LEMMA 2.4. Suppose F F has the property that for every 0 < 6 < 1 and
dp lP(F) there is f Ap(G) so that

f I-, II,, <- , 4, I1,,, f I 4,1,, < , 4, ll and f a,, --< fl lip
where depends only on 6 and F. Then, F is a uniformizable L(p) set.

Proof Let b0 b G p andfo Ap(G) be as in the hypothesis of the lemma.
Let 41 =J Iv 4. We continue by induction. For j > 0, let f Ap(G) be so
that

I1 I- [ <- 1 j lip, IIl I1 llj I and I Ap fll lp.
Let j+a = Iv j. Finally, let f= =o (- 1. We conclude that

f 1 , Ill Ivll (a ) [lll, and tlfltA /(1 ), I

Proof of Theorem 2.2. First, assume that F (-F)= ; for, otherwise
identify F F with F x {1} in F x Z where (F x {1}) (-F x {- 1}) =Oand
proceed to work in the latter setting. Further, without loss of generality we
assume that A(q, F w (-F)) q/. Let 0 < 6 < 1 be arbitrary and be an
arbitrary real valued finitely supported element of v, Ill, a. Let

f sin 6 (n)(7. + .) e L(G)= (n)(7. + .) + P

where P = 62J[2 (n)(7. + .)]2+/(2j + 1) By Lemma 2.3 and the
hypothesis, we obtain

(2.2.1) IIP p g (n)(7, + ,) 62J/(2j + 1)
j=

, Z (42 + 2W+ 2)/"/(22 + ).
j=l

Since 2/r p, we conclude that (2.2.1) is bounded by 506. Similarly, define

f sin 6 2 4(n)(7.- p.)/i
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Finally, letf= (f -/f2)/2 and verify thatf Ap(G)satisfies Ill < 50 ,
and fl- < 50 .
The proof of the theorem is completed by an application of Lemma 2.4. |

Questions (a) Theorem 2.2 is the present limit of our knowledge. Let F and
F2 be infinite and mutually disjoint subsets of a lacunary set in Z. Is
F + F2 = Z an L(p) set for some or all 1 < p < 2 (Recall that A(q, F + F2) is
O(q).)?

(b) By applying Drury’s line (see [3], for example), one proves that every
Sidon set is a uniformizable S(q) set for every 2 < q < . This, too, is the limit
to present knowledge. Are there non-Sidon sets which are S(q) sets for some
2 < q < c ? In particular, let F F be so that A(q, F) is (9(q) for s > 1/2. Is F
an S(q) set, e.g., for 2 < q < 4s/(1 2s) (the latter guess is prompted by results
in [2])?
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