COMPONENT TYPE THEOREMS FOR FINITE GROUPS IN CHARACTERISTIC 2

BY
Richard Foote

I. Introduction

In recent years Aschbacher blocks or constrained components have entered the limelight in the theory of finite simple groups, not only in their connection with pushing up theorems but also as a possible direction for revising some of the classification program. In this paper the basic foundations are laid for a theory of blocks closely analogous to that for ordinary components in M . Aschbacher's fundamental work [3]. Since the development and present status of the theory of blocks is described in detail in the survey article [17] which serves as an introduction to this paper, only the technical essentials are repeated here together with some comments about the proofs.

Definitions. A subgroup J of a finite group H is called a block of H if and only if (i) $J \unlhd \unlhd H$, (ii) $J=J^{\prime}$, (iii) $J / O_{2}(J)$ is quasisimple and (iv) J has a unique non-central 2-chief factor; if $H=J$, we simply say J is a block. For a block J let

$$
U(J)=\left[O_{2}(J), J\right] \quad \text { and } \quad \tilde{U}(J)=U(J) / U(J) \cap Z(J) .
$$

For any finite group G let

$$
\mathscr{B}(G)=\left\{J \mid J \text { is a block of } N_{G}(S) \text { where } S \in S y l_{2}\left(C_{G}\left(J / O_{2}(J)\right)\right)\right\} .
$$

If J_{1}, J_{2} are blocks which are subgroups of a group G, write $J_{1} \rightarrow J_{2}$ if and only if $J_{1} \subseteq J_{2}$ with $U\left(J_{1}\right)=\left[O_{2}\left(J_{2}\right), J_{1}\right]$ and for some 2-subgroup T of $N_{G}\left(J_{2}\right), \bar{J}_{1}$ is a component of $C_{\bar{J}_{2}}(T)$, where an overbar denotes the natural projection of J_{2} onto $J_{2} / O_{2}\left(J_{2}\right)$. Extend \rightarrow via chains to a partial order on $\mathscr{B}(G)$ and let $\mathscr{B}^{*}(G)$ be the maximal elements under this order.

Say a block J is of $L_{2}\left(2^{m}\right)$-type if and only if $J / O_{2}(J) \cong L_{2}\left(2^{m}\right)$ and $\tilde{U}(J)$ is the natural 2-dimensional $\mathrm{F}_{2 m} L_{2}\left(2^{m}\right)$-module for $J / O_{2}(J)$ viewed as a module over \mathbf{F}_{2}. Finally, say a subgroup J of a finite group H is an $\Omega_{4}^{+}\left(2^{m}\right)$-block if and only if (i) $J \unlhd \unlhd H$, (ii) $J=J^{\prime}$, (iii) $J / O_{2}(J) \cong \Omega_{4}^{+}\left(2^{m}\right)=L_{2}\left(2^{m}\right) \times L_{2}\left(2^{m}\right)$, and (iv) J has a unique non-central 2-chief factor which is the natural 4-dimensional $\mathbf{F}_{2^{m}} \Omega_{4}^{+}\left(2^{m}\right)$-module for $J / O_{2}(J)$ viewed as a module over \mathbf{F}_{2}.

[^0]The main theorems can now be stated:
Theorem A. Let J be a block and let x be an involution in Aut (J); then x centralizes a 2-element in $J-Z(J)$ and, moreover, if $U^{\prime}(J)$ is abelian, x centralizes an involution in $J-Z(J)$.

Theorem B. Let x be an involution in the finite group G, J a block of $C_{G}(x), K$ a block of G and assume the outer automorphism group of $K / O_{2}(K)$ is solvable; then one of the following holds:
(1) $J \subseteq K$ with $U(J) \subseteq U(K)$;
(2) $K \neq K^{x}$ and $J=C_{K K x}(x)^{\prime}$;
(3) $[J, K]=1$.

Theorem C. Let G be a finite group with a maximal 2-local subgroup M and block J of M such that M is the unique maximal 2-local subgroup of G containing J; then either $M=G$ or $J \unlhd M$.

Theorem D. If G is a finite group of characteristic 2 type and J is a block in some maximal 2-local subgroup M of G, then $J \in \mathscr{B}(G)$.

Theorem E. If G is a finite group of characteristic 2 type and $J \in \mathscr{B}^{*}(G)$ with J not of $L_{2}\left(2^{m}\right)$-type for any m, then J is a block of some maximal 2-local subgroup M of G and M is the unique maximal 2-local subgroup of G containing J.

Theorem F. If G is a finite group of characteristic 2 type and $J \in \mathscr{B}^{*}(G)$ with J of $L_{2}\left(2^{m}\right)$-type, then either
(1) J is a block of a maximal 2-local subgroup M of G and M is the unique maximal 2 -local subgroup of G containing J, or
(2) $J \subseteq K$ where K is an $\Omega_{4}^{+}\left(2^{m}\right)$-block of some maximal 2-local subgroup M of G and M is the unique maximal 2 -local subgroup of G containing K.

Theorem G. If J_{1}, J_{2} are distinct blocks with $J_{1} \rightarrow J_{2}$, then one of the following holds:
(1) $\bar{J}_{1} \cong A_{n}, \bar{J}_{2} \cong A_{n+2 k}$, and $\tilde{U}\left(J_{i}\right)$ is the irreducible constituent of the natural permutation module for J_{i} over $\mathbf{F}_{2}, i=1,2$;
(2) $\bar{J}_{1} \cong S p_{2 n}(q)^{\prime}, \bar{J}_{2} \cong \Omega_{2 n+2}^{ \pm}(q), q$ a power of $2, n \geq 1$, and $\tilde{U}\left(J_{i}\right)$ is the natural $\mathbf{F}_{q} \bar{J}_{i}$-module viewed as a module over $\mathbf{F}_{2}, i=1,2$;
(3) $\bar{J}_{1} \cong U_{4}(2), \bar{J}_{2} \cong Z_{3} \cdot U_{4}(3)$, and $\operatorname{dim}_{F_{2}} \tilde{U}\left(J_{2}\right)=12, \operatorname{dim}_{F_{2}} \tilde{U}\left(J_{1}\right)=8$.

In the literature the blocks J with $U(J)$ abelian seem to be of primary interest so in Theorems A and C where the arguments handle the cases $U(J)$ abelian, $U(J)$ non-abelian, the former is treated first for those who wish to skip the latter case; indeed, Theorem A is trivial when $U(J)^{\prime}=1$ but since it tidies up the proofs of Theorems B and C, it may be worth the inordinately large effort required to complete the non-abelian case.

Theorem B was proven by M. Aschbacher, K. Harada and the author in 1977 at the ongoing conference at Caltech that spring. Using an approach of \mathbf{R}. Gilman, Harada has proved this theorem without recourse to Theorem A.

The proof of Theorem C follows the argument of Aschbacher's Standard Form Theorem (specifically, Theorem 5 of [3]) although the endgame is different. The presence of Theorem A makes matters smoother than the original, especially when $U(J)$ is abelian.

The remaining arguments generalize results of Aschbacher in [7] and [9] and in some cases in our more general setting the arguments are easier. The main technical difficulty is in the discussions related to the proof of Theorem G where cores and standard form problems cause the grief. This could be swept under the carpet by invoking the Unbalanced Theorem and complete solutions to certain standard form problems but it seems clearer to maintain independence from these Gargantuan tools.

I am especially indebted to Michael Aschbacher for some helpful conversations and correspondence and, in particular, for the crucial observation, Lemma 6.1.

II. Preliminary lemmas

Throughout the paper we make constant use of the immediate consequence of the 3 -subgroups lemma: if X is perfect and $[X, A, A]=1$, then $[X, A]=1$. Using this one verifies that for a block or $\Omega_{4}^{+}\left(2^{m}\right)$-block J and normal subgroup A of J either $A \subseteq Z(J)$ or $U(J) \subseteq A$.

Lemma 2.1. If J, K are distinct blocks or $\Omega_{4}^{+}\left(2^{m}\right)$-blocks of G then $[J, K]=1$.
Proof. Let $H=O_{2}(G), \bar{G}=G / H$. By subnormality of blocks, \bar{J}, \bar{K} are semisimple subnormal subgroups of G and $J=(J H)^{(\infty)}, K=(K H)^{(\infty)}$, so $\bar{J} \neq \bar{K}$. Since J normalizes $K H, J$ normalizes K and so acts on $\tilde{U}(K)$. Since K acts irreducibly on $\tilde{U}(K), H$ centralizes $\tilde{U}(K)$.

Suppose $[\bar{J}, \bar{K}]=1$. Then \bar{J} commutes with the irreducible action of \bar{K} on $\tilde{U}(K)$ so \bar{J} centralizes $\tilde{U}(K)$. Since $[J, K] \subseteq O_{2}(K)$ and $K / U(K)$ is semisimple, $[K, J] \subseteq U(K)$. Thus $[K, J, J] \subseteq Z(K)$ so by the 3-subgroups lemma applied to $K / Z(K),[K, J] \subseteq Z(K)$. Thus $[J, K, K]=1$, so $[J, K]=1$ as claimed.

If $[\bar{J}, \bar{K}] \neq \overline{1}$, then at least one of \bar{J}, \bar{K} is isomorphic to

$$
\Omega_{4}^{+}\left(2^{m}\right) \cong L_{2}\left(2^{m}\right) \times L_{2}\left(2^{m}\right)
$$

and, interchanging J, K if necessary, we may assume there exists \bar{J}_{1}, a component of \bar{J} of type $L_{2}\left(2^{m}\right)$, with $\left[\bar{J}_{1}, \bar{K}\right]=\overline{1}$ and $\bar{J}=\bar{J}_{1} \times \bar{J}_{2}$ with $\bar{J}_{2} \subseteq \bar{K}$. Pick the preimage J_{1} with $J_{1}=\left(J_{1} H\right)^{(\infty)}$. By the argument of the preceding paragraph applied to J_{1} in place of $J,\left[J_{1}, K\right]=1$. Because $\tilde{U}(J)$ is the direct sum of 2 natural $F_{2^{m}} L_{2}\left(2^{m}\right)$-modules for $\bar{J}_{1}, U(J)=\left[O_{2}(J), J_{1}\right] \subseteq J_{1}$. But then \bar{J}_{2} centralizes $\tilde{U}(J)$, a contradiction.

Lemma 2.2. Let J be a block, $V=\left[O_{2}(J), J\right]$.
(a) If V is abelian, $V \subseteq \Omega_{1}\left(Z\left(O_{2}(J)\right)\right)$,
(b) If V is non-abelian, $V^{\prime}=\phi(V)$ is elementary abelian, $C_{J}(V)=Z(J)$.

Proof. (a) Note that because J acts irreducibly on $V / V \cap Z(J)$, $\left[O_{2}(J), V\right] \subseteq Z(J)$. Let $\bar{J}=J / V$ so \bar{J} is quasisimple and acts on V. For $\bar{j} \in O_{2}(\bar{J}), v \in V,[v, j]=z \in Z(J)$; thus for all $x \in J,\left[v^{x}, j\right]=z$ so $\left[v v^{x}, j\right]=1$. Since $V=\left\langle v v^{x} \mid v \in V, x \in J\right\rangle, V \subseteq Z\left(O_{2}(J)\right)$, as desired.
(b) If $V^{\prime} \neq 1$, since $J=O^{2}(J)$ acts non-trivially on $V / V^{\prime}, J$ acts non-trivially on $\Omega_{1}\left(V / V^{\prime}\right)$ so the non-central 2-chief factor of J lies in $\Omega_{1}\left(V / V^{\prime}\right)$, whence $V / V^{\prime}=\Omega_{1}\left(V / V^{\prime}\right)$. Since $V^{\prime} \subseteq Z(J), V^{\prime}$ is elementary abelian.

Finally, $\left[J, C_{J}(V)\right] \subseteq C_{J}(V)$ and as $V^{\prime} \neq 1, V \nsubseteq C_{J}(V)$. Since $O(J) \subseteq Z(J)$ it follows that J centralizes $C_{J}(V)$ as claimed.

Lemma 2.3. Let K be a block of G, x an involution in G, J a block of $C_{G}(x), W$ a subgroup of $N_{G}(K)$ of order 4.
(a) If $K \neq K^{x}$, then $K_{0}=C_{K K x}(x)^{\prime}$ is a block of $C_{G}(x)$ isomorphic to a central quotient of K and the map $k \rightarrow k k^{x}$, for all $k \in K$, is a homomorphism of K onto $K_{0} ;$ either $J=K_{0}$ or $[J, K]=1$.
(b) $\Gamma_{1, W}(K)$ contains a fourgroup and if w is an involution in $N_{G}(K)$, $\left|C_{K}(w)\right|_{2} \geq 8$ or $m\left(C_{K}(w)\right) \geq 2$.

Proof. (a) Suppose $K \neq K^{x}$ so, by Lemma $2.1\left[K, K^{x}\right]=1$. Let

$$
\overline{K K^{x}}=K K^{x} / K \cap K^{x}
$$

so $\overline{K K^{x}}=\bar{K} \times \bar{K}^{x}$ and $\bar{L}=C_{\overline{K K x}}(x) \cong \bar{K}$. Let L be the complete preimage of \bar{L} in $K K^{x}$ so, because \bar{L} is perfect and $K \cap K^{x} \subseteq Z\left(K K^{x}\right), L^{\prime}=L_{0}$ is also perfect; moreover, clearly $K_{0} \subseteq L_{0}$. However, $\left[x, L_{0}\right] \subseteq Z\left(K K^{x}\right)$ so $\left[x, L_{0}, L_{0}\right]=1$, whence $L_{0} \subseteq C_{K K x}(x)^{\prime}=K_{0}$. It is also clear that $k \rightarrow k k^{x}$ is a homomorphism of K into K_{0} whose image covers \bar{L}. Since this image and K_{0} are both perfect and agree modulo a central subgroup, equality holds as claimed. Finally, suppose $J \neq K_{0}$ so, by Lemma $2.1,\left[J, K_{0}\right]=1$. Let y be an odd order element of J. As y permutes the blocks of G but centralizes K_{0}, y normalizes $K K^{x}$, and, since $|y|$ is odd, y normalizes both K and K^{x}. For $k \in K$,

$$
1=\left[k k^{x}, y\right]=[k, y]\left[k^{x}, y\right]
$$

so $[k, y] \in K \cap K^{x} \subseteq Z(K)$. Thus $[y, K, K]=1$ so $[y, K]=1$ which proves $J=O^{2}(J)$ centralizes K as claimed.
(b) Let $V=U(K)$ so $N_{G}(K)$ acts on V and $m\left(V / V^{\prime}\right) \geq 3$. If V is abelian, for every involution $w \in N_{G}(K), m\left(C_{V}(w)\right) \geq 2$ so all parts of (b) follow in this case. Thus we may assume $V^{\prime} \neq 1$ and since V^{\prime} is elementary abelian, by similar reasoning $m\left(V^{\prime}\right) \leq 2$.

Let $T \in S y l_{2}(K)$ with T normalized by W. If $\Gamma_{1, W}(T)$ has 2-rank 1 it follows that every characteristic abelian subgroup of T is cyclic. Since T^{\prime} is cyclic by Theorem 5.4.9 of [20], $[\tilde{U}(J), T]$ has order 2 , so some subgroup T_{0} of T of index
≤ 2 in T centralizes $\tilde{\mathscr{O}}(J)$, contrary to $T / O_{2}(J)$ acting faithfully on $\tilde{O}(J)$. This proves the first assertion of (b).

Now suppose w is an involution in $N_{G}(K)$ with $m\left(C_{K}(w)\right)=1$. If

$$
V^{\prime}=\left\langle v_{1}, v_{2}\right\rangle \cong Z_{2} \times Z_{2},
$$

then we may assume $v_{1}^{w}=v_{1} v_{2}, v_{2}^{w}=v_{2}$, whence $\left|C_{K /\left\langle v_{2}\right\rangle}(w)\right|=\left|C_{K}(w)\right|$. It therefore suffices to assume $V^{\prime}=\langle v\rangle \cong Z_{2}$ and prove for any $w,\left|C_{K}(w)\right|_{2} \geq 8$. Let

$$
C=\{a \in V \mid[a, w] \in\langle v\rangle\}
$$

so $C /\langle v\rangle=C_{V / V}(w)$. If $|C /\langle v\rangle| \geq 8$, it follows that $\left|C_{V}(w)\right| \geq 8$, as desired. Assume $|C /\langle v\rangle|<8$, so $\left|V / V^{\prime}\right| \leq 16$ whence $V / V^{\prime} \cong E_{16}, K / O_{2}(K) \cong A_{5}$, $V \cong Q_{8} Y D_{8}$ and $|C /\langle v\rangle|=4$. Since $\operatorname{Aut}(V) \cong E_{16} \cdot O_{4}^{-}(2)$ and w is not a transvection on V, there exists $k \in K-O_{2}(K)$ with $k^{-1} w$ centralizing K. Thus $\left|C_{V}(w)\right|=\left|C_{V}(k)\right|=4$ and $k \in C_{K}(w)-V$, so $\left|C_{V}(w)\right|_{2} \geq 8$, as needed.

Lemмa 2.4. If $L=A_{n}$ is a standard component in $G=A_{n+4}$ and V is an irreducible $\mathbf{F}_{2} G$-module in which $[V, L] / C_{[V, L]}(L)$ is the natural module for L (i.e. the non-trivial irreducible constituent of the n-dimensional permutation module over \mathbf{F}_{2}), then V is the natural module for G.

Proof. See [13].

Lemma 2.5. Suppose $H=\Sigma_{n}, n \geq 7, V$ is a faithful $\mathbf{F}_{2} H$-module such that

$$
\left[V, H^{\prime}\right] / C_{\left[V, H^{\prime}\right]}\left(H^{\prime}\right)
$$

is the natural module for H^{\prime} (as in Lemma 2.4) and suppose t_{1}, t_{2} are involutions in $H-H^{\prime}$ with t_{1} a transposition; then either t_{2} is a transposition or

$$
\operatorname{dim}_{\mathbf{F}_{2}}\left[V, t_{1}\right]<\operatorname{dim}_{\mathbf{F}_{2}}\left[V, t_{2}\right] .
$$

Proof. Let $V_{0}=\left[V, H^{\prime}\right], V_{1}=C_{V}\left(H^{\prime}\right), \tilde{V}=V_{0} / V_{0} \cap V_{1}$. By 11.3 of [5], $\left|H^{1}\left(\hat{V}, H^{\prime}\right)\right|=1$ if n is odd, 2 if n is even. Note that $t_{1} \equiv t_{2}\left(\bmod H^{\prime}\right)$ implies [$\left.V_{1}, t_{1}\right]=\left[V_{1}, t_{2}\right]$. If n is odd, since \tilde{V} is self-dual, $V=V_{0} \oplus V_{1}$, and in this case if t_{2} is not a transposition, $\operatorname{dim}_{\mathbf{F}_{2}}\left[V_{0}, t_{2}\right]>1=\operatorname{dim}_{\mathbf{F}_{2}}\left[V_{0}, t_{1}\right]$ as desired. If n is even, $\left|V: V_{0}+V_{1}\right| \leq 2$ and $\left|V_{0} \cap V_{1}\right| \leq 2$. In this case if t_{2} is not a transposition, since $n>7 \operatorname{dim}_{\mathbf{F}_{2}}\left[\tilde{V}, t_{2}\right] \geq 3$, whence as $\operatorname{dim}_{\mathrm{F}_{2}}\left[V_{0}, t_{1}\right]=1$,

$$
\operatorname{dim}_{\mathbf{F}_{2}}\left[V_{0}+V_{1}, t_{2}\right]>\operatorname{dim}_{\mathbf{F}_{2}}\left[V_{0}+V_{1}, t_{1}\right]+1,
$$

which suffices to establish the lemma.
Lemma 2.6. Let G be a group generated by a conjugacy class D of odd transpositions with $O(G)=1$ and $G / S(G) \cong L_{2}(q)$ or $S z(q), q=2^{m}>2$; let $E \subseteq G$ with $E \cong E_{q}$. Assume $E^{*} \subseteq D, E$ is tightly embedded in G and if E_{1}, \ldots, E_{n} are distinct commuting conjugates of $E,\left\langle E_{1}, \cdots, E_{n}\right\rangle=E_{1} \times \cdots \times E_{n}$. Then $S(G)=1$.

Proof. Note that since D is a class and $E^{\#} \subseteq D$ with $m(E) \geq 2, G=G^{\prime}$. Proceed by induction on $|G|$ and let M be a minimal normal subgroup of G.

First consider $M=\langle z\rangle \cong Z_{2}$. Let $E \subseteq T \in S y l_{2}(G), E_{1}, \ldots, E_{n}$ the G conjugates of E in T, so, by the odd transposition property and our assumptions,

$$
\left\langle E_{1}, \ldots, E_{n}\right\rangle=E_{1} \times \cdots \times E_{n} .
$$

Note that E covers a Sylow 2-subgroup of $G / S(G)$ and Sylow 2-subgroups of $G / S(G)$ are T.I.-sets, so

$$
N_{G}(T)=N_{G}\left(E_{1} \times \cdots \times E_{n}\right) .
$$

Since $E^{\#} \subseteq D$ and the fusion of elements of $E^{\#}$ takes place in $N_{G}\left(E_{1} \times \cdots \times E_{n}\right)$, by the T.I. property of E we may pick $h \in N_{G}(T) \cap N_{G}(E)$ with $\langle h\rangle S(G) / S(G)$ a Cartan subgroup of $G / S(G)$. Since D is a class of odd transpotions it follows that for all $e \in E, e \sim_{G} e z$. Thus for $\bar{G}=G /\langle z\rangle, \bar{E}$ is tightly embedded in \bar{G}. Suppose $z \in\left\langle E_{1}, \ldots, E_{n}\right\rangle$: write $z=e_{1} \ldots e_{n}, e_{i} \in E_{i}$ and without loss of generality $e_{1} \in E_{1}=E, e_{1} \neq 1 ; h$ normalizes E and so normalizes $E_{2} \times \cdots \times E_{n}$, whence

$$
z=z^{h}=e_{1}^{h} e_{2}^{h} \ldots e_{n}^{h} \quad \text { where } e_{1}^{h} \neq e_{1}
$$

contrary to z having a unique expression in this direct product. Thus

$$
\left\langle\bar{E}_{1}, \ldots, \bar{E}_{n}\right\rangle=\bar{E}_{1} \times \cdots \times \bar{E}_{n}
$$

so by induction, $S(\bar{G})=\overline{1}$. Clearly $G \nsubseteq S L_{2}(5)$ and since in $\widehat{S z(8)}$, $e \sim e z$, $e \in E^{\#}, \widehat{S z(8)}$ is not generated by odd transpositions. These are the only possible perfect extensions of \bar{G} by Z_{2}, so $|M| \neq 2$.

Now M is an irreducible $\mathrm{F}_{2} \mathrm{G} / \mathrm{O}_{2}(G)$ module and by the proof of 4.1.8 of [28], E acts quadratically on M. By Lemmas 2.1 and 2.5 of [30], $k=\operatorname{dim}_{\mathrm{F}_{2}} C_{M}(E)=$ $\frac{1}{2} \operatorname{dim}_{\mathbf{F}_{2}} M$. By hypothesis therefore $\left\langle E^{M}\right\rangle=E_{1} \times \cdots \times E_{2^{k}}$ which is absurd in view of $\left\langle E^{M}\right\rangle \subseteq E M, k \geq 2$. This contradiction completes the proof of the lemma.

Lemma 2.7. Let $H=O_{2 n}^{ \pm}\left(2^{m}\right), n \geq 2, m \geq 1, V$ the natural $2 n$-dimensional $\mathbf{F}_{2 m}$-module for H viewed as a module over \mathbf{F}_{2}, and let $G=\operatorname{Aut}(V) \cong G L_{2 n m}\left(F_{2}\right)$.
(a) If $H \nRightarrow O_{6}^{+}(2), H^{1}\left(H^{\prime}, V\right)=0=H^{1}\left(H^{\prime}, V^{*}\right), V^{*}$ the dual module to V.
(b) Let $H \cong O_{4}^{+}\left(2^{m}\right), T \in S y l_{2}\left(N_{G}(H)\right), T_{0}=T \cap H^{\prime}$; then

$$
T / T_{0} \cong Z_{2} \times Z_{2^{k}}
$$

where $2^{k} \| m$ and there is an element f of T of order 2^{k} which induces a field automorphism on H.

Proof. (a) The case $n=2$ is 4.27 of [6] and 2.7 of [7]. Now the same argument as Lemma 2.2 of [29] yields the general result.
(b) By the irreducible action of H^{\prime} on $V,\left|C_{G}\left(H^{\prime}\right)\right|$ is odd. It is clear that since we are considering \mathbf{F}_{2}-automorphisms such an element f exists, and since f acts on H and $\left|H: H^{\prime}\right|=2, T / T_{0}$ is at least as big as claimed. Since $H^{\prime}=L_{1} \times L_{2}, L_{i} \cong L_{2}\left(2^{m}\right)$, a Sylow 2-subgroup of Out $\left(H^{\prime}\right)$ is of type $Z_{2 k} \backslash Z_{2}$. If T / T_{0} is not as described it follows that there exists $f_{1} \in T$ with f_{1} inducing an outer automorphism on L_{1}, an inner automorphism on L_{2} and with $f_{1}^{2} \in T_{0}$. Replacing f_{1} by $f_{1} a$, for suitable $a \in L_{2}$ we may assume f_{1} centralizes L_{2}. Since the coset $f_{1} L_{1}$ contains an involution which is a field automorphism of order 2 on L_{1}, we may assume f_{1} is such an involution. Now $\left[V, f_{1}\right]$ admits L_{2} so since V is the direct sum of two natural irreducible modules for $L_{2},\left[V, f_{1}\right]$ is an irreducible $\mathbf{F}_{2} L_{2}$-module. Since $C_{L_{1}}\left(f_{1}\right) \cong L_{2}\left(2^{m / 2}\right)$ commutes with the action of L_{2} on $\left[V, f_{1}\right], C_{L}\left(f_{1}\right)^{\prime}$ centralizes $\left[V, f_{1}\right]$ contrary to all odd order elements of L_{1}^{*} acting Frobeniusly on V. This contradiction completes the proof of (b).

Lemma 2.8. Let $H=Z_{3} \cdot U_{4}(3) \cdot Z_{2}$ where H has a faithful irreducible 12dimensional module V over F_{2} such that for some involution $t \in H-H^{\prime}, C_{H}(t)$ has a component $L \cong U_{4}(2)$ and V has a unique non-trivial irreducible $\mathbf{F}_{2} L$-constituent. Let

$$
G=\operatorname{Aut}(V) \cong G L_{12}\left(\mathbf{F}_{2}\right), \quad T \in \operatorname{Syl}_{2}\left(N_{G}\left(H^{\prime}\right)\right), \quad T_{0}=T \cap H^{\prime}, \quad Z=Z\left(H^{\prime}\right) .
$$

(a) $T / T_{0} \cong Z_{2}$ or $Z_{2} \times Z_{2}, t T_{0}$ contains exactly two H-classes of involutions and if a, b are representatives of these,

$$
C_{H^{\prime}}(a) \cong Z_{3} \times U_{4}(2), \quad C_{H^{\prime}}(b) \cong Z_{3} \times\left(S L_{2}(3) \mid Z_{2} / Z\left(S L_{2}(3) \mid Z_{2}\right)\right) ;
$$

if $T / T_{0} \cong Z_{2} \times Z_{2}$, there is a coset $u T_{0}$ of order 2 in T / T_{0} with

$$
u T_{0} \neq t T_{0} \quad \text { but } \quad\left\langle u, H^{\prime}\right\rangle / Z \cong\left\langle t, H^{\prime}\right\rangle / Z,
$$

$t u T_{0}$ contains exactly two H-classes of involutions and if c, d are representatives of these, $C_{H^{\prime}}(c) \cong \Sigma_{6}, C_{H^{\prime}}(d) \cong U_{3}(3)$.
(b) If e is an involution in $t H^{\prime}, \operatorname{dim}_{\mathbf{F}_{2}}[V, e]=2$ or 6.
(c) $\operatorname{dim}_{\Gamma_{2}}[V, L] / C_{[V, L]}(L)=8$.

Proof. Note that $S U_{6}(2)$ contains a subgroup H with the requisite properties so the situation is not vacuous, by Theorem 16.1.12 of [14]. Since Z acts Frobeniusly on $V, C=C_{G}(Z) \cong G L_{6}(4)$ and $N_{G}(Z)=C\langle f\rangle$ where f induces an involutory field automorphism on C.

The claims in part (a) are simply assertions about Aut $\left(U_{4}(3)\right)$. Since Out $\left(U_{4}(3)\right) \cong D_{8}$ and only a fourgroup in Out $\left(U_{4}(3)\right)$ normalizes a 3-fold cover (and since $\left|C_{G}\left(H^{\prime}\right)\right|$ is odd), $T / T_{0} \cong Z_{2}$ or $Z_{2} \times Z_{2}$. Note by the structure of $C_{H}(t) \unrhd \unrhd L, t$ is a reflection in $H /\langle x\rangle \subseteq O_{6}^{-}(3)$; moreover, by 15.1 of [14], if $T / T_{0} \cong Z_{2} \times Z_{2}$ there is a coset $u T_{0} \neq t T_{0}$ with $\left\langle u, H^{\prime}\right\rangle / Z \cong H / Z$. The classes of involutions in the coset $t\left(H^{\prime} / Z\right)$ are represented by a reflection and a product $a_{1} a_{2} a_{3}$ of three distinct commuting reflections so the structure of the
centralizers is easily computed. Finally, we may pick d in the $\operatorname{coset} t u T_{0}$ with matrix representation

$$
\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

acting on H^{\prime} / Z in its usual matrix representation as $U_{4}(3)$, (e.g. [25]) so $C_{H^{\prime} / Z}(d) \cong U_{3}(3)$. Also, $\left\langle d, H^{\prime}\right\rangle / Z \subseteq O_{6}^{-}(3)$ so it acts on the natural projective module V. Thus there is one other class of involutions in the coset $d H^{\prime}$ and if c represents this class, $[V, c]$ has \mathbf{F}_{3}-dimension 4 and Witt index 1, whence $C_{H^{\prime}}(c) \cong \Sigma_{6}$.

To prove (b) and (c) we make use of Lemma 6.1 which asserts that L centralizes [V, t] and $V / C_{V}(t)$, so, in particular, t does not act freely on V. Thus t centralizes Z and so $H \subseteq G L_{6}(4), \operatorname{dim}_{F_{4}}[V, t]=1$ or 2 . Since $\operatorname{dim} V / C_{V}(t)=$ $\operatorname{dim}[V, t]$ and L acts on $C_{V}(t) /[V, t]$ we must have $\operatorname{dim}_{\mathbf{F}_{4}}[V, t]=1$ and since $L \nsubseteq G L_{3}\left(\mathbf{F}_{4}\right)$,

$$
\operatorname{dim}_{F_{4}}[V, L] / C_{[V, L]}(L)=4
$$

We may pick commuting H-conjugates a_{1}, a_{2}, a_{3} of t with span $\left\{\left[V, a_{i}\right] \mid i=\right.$ $1,2,3$,$\} of dimension 3$ over \mathbf{F}_{4}, whence $\operatorname{dim}_{\mathbf{F}_{4}}\left[V, a_{1} a_{2} a_{3}\right]=3$ and $a_{1} a_{2} a_{3}$ is an involution in $t H^{\prime}$. This completes the proof of both (b) and (c).

Lemma 2.9. Suppose $H \unlhd G$ with H isomorphic to one of $A_{n}, S p_{n}(q), U_{n}(q)$, $\Omega_{n}^{ \pm}(q), S z(q), q$ even, $\Omega_{n}^{ \pm}(q), q=3$ or $5, F_{22}, F_{23}, F_{24}^{\prime}$ or $L_{2}(q) \backslash A_{n}, q$ even ≥ 4, and assume $H=H^{\prime}$. If $K \subseteq G$ with $E \in S y l_{2}(K), E$ elementary abelian of rank $\geq 2, K=O(K) E, K$ tightly embedded in G and K acting faithfully on H, then $|O(K)| \leq 3$.

Proof. Assume $O(K) \neq 1$. Since $m(E) \geq 2$, there exists $e \in E^{\#}$ with $1 \neq O\left(C_{K}(e)\right) \subseteq O\left(C_{G}(e)\right)$. Since K acts faithfully on H, by inspection $H \nRightarrow S p_{n}(q), U_{n}(q), S z(q), F_{22}, F_{23}, F^{\prime}{ }_{24}, H \neq \Omega_{n}^{ \pm}(q),(n, q) \neq(2,4),(4,2),(4,4), q$ even, $\left.H \nRightarrow L_{2}(q)\right\} A_{n},(n, q) \neq(1,4),(2,4)$. By Theorem 4.9 of $[11] H \nRightarrow \Omega_{n}^{ \pm}(q)$, $q=3$ or 5 . Thus the only possibilities for H are A_{n} or $\left.A_{5}\right\} Z_{2}$ and the result is easily checked in these instances.

Lemma 2.10. Let G be a group generated by a conjugacy class D of odd transpositions with G^{\prime} semisimple, let V be a faithful irreducible $\mathbf{F}_{2} G$-module and assume, for $e \in D, C_{G}(e)$ has a component L such that V has a unique non-trivial irreducible \mathbf{F}_{2} L-constituent. One of the following holds:
(1) $L \cong A_{n}, G \cong \Sigma_{n+2}, V$ is the non-trivial irreducible constituent of the natural $(n+2)$-dimensional permutation $\mathbf{F}_{2} G$-module, $n \geq 5$;
(2) $L \cong S p_{2 n}\left(2^{m}\right)^{\prime}, G \cong O_{2 n+2}\left(2^{m}\right), V$ is the natural $(2 n+2)$-dimensional $\mathrm{F}_{2 m} G$-module viewed as a module over $\mathrm{F}_{2}, n \geq 1, m \geq 1$;

$$
\begin{equation*}
L \cong U_{4}(2), G \cong Z_{3} \cdot U_{4}(3) \cdot Z_{2}, \operatorname{dim}_{F_{2}} V=12 \tag{3}
\end{equation*}
$$

$$
\operatorname{dim}_{F_{2}}[V, L] / C_{[V, L]}(L)=8
$$

Proof. By the Main Theorem of [2] we may identify (G, D); the only instances in which the centralizer of an odd tranposition contains a component are when $G / S(G)$ is one of the following: $\Sigma_{n}, O_{2 n+2}^{ \pm}\left(2^{m}\right), O_{n}^{ \pm}(q), q=3$ or $5, F_{22}$, F_{23} or F_{24}; moreover, in each of these cases for $e \in D,\langle e\rangle \leq N_{G}(L)$, $\langle e\rangle \in S y l_{2}\left(C_{G}(L)\right)$ and any proper subgroup of G containing $\langle e\rangle L$ is contained in $N_{G}(L)$. It is convenient to use Lemma 6.1 to see that L centralizes [V, e]. Let G be the semidirect product $V G$, so from these remarks it follows that $[V, e]\langle e\rangle$ is a T.I.-set in \boldsymbol{G}. By 7.11 of [8], L, G are one of the pairs described by conclusions (1)-(3) so it remains to identify the module structure of V.

If $G \cong \Sigma_{n}$, by 7.10 of [8], V is the $F_{2} G$-module described in conclusion (1).
Next assume $G \cong Z_{3} \cdot U_{4}(3) \cdot Z_{2}$ so $C_{G}(e)=\langle e\rangle \times Z \times L, L \cong U_{4}(2)$, and, for each 3-subgroup T of $C_{G}(e), T$ has a subgroup $\Delta(T)=T \cap L$ of index ≤ 3 in T with $\Delta(T) \cap Z=1$ and $\Delta(T)$ centralizing [$V, e]$. Let $X=[V, L]$, $Y=C_{X}(L) W=X / Y$ so W is an irreducible $F_{2} L$-module. Let z be a 2-central involution in L and since z^{L} the unique class of root involutions in L we may choose $g \in G$ such that $e^{g}=e z$.

We show that $[W, z]$ is a T.I.-set under the action of L. For suppose $x \in L$ and

$$
[W, z] \cap\left[W, z^{x}\right] \neq 0
$$

Let $\bar{w} \in[W, z] \cap\left[W, z^{x}\right], \bar{w} \neq \overline{0}$ so there exists $w \in[X, z]-\{0\}$ and $y \in Y$ with $w y \in\left[X, z^{x}\right]$. By Lemma 6.1 (or because $X=[V, L]$), e centralizes X so $w \in\left[X, e^{g}\right], w y \in\left[X, e^{g x}\right]$. Let

$$
\begin{aligned}
& \Delta_{1}=\left\langle\Delta(T) \mid T \in S y l_{3}\left(C_{L \times z}\left(e^{g}\right)\right)\right\rangle, \\
& \Delta_{2}=\left\langle\Delta(T) \mid T \in S y l_{3}\left(C_{L \times z}\left(e^{g x}\right)\right)\right\rangle,
\end{aligned}
$$

so, since $O^{3}\left(C_{L}(z)\right) \cong S L_{2}(3) Y S L_{2}(3)$, it follows that

$$
\Delta_{i} \cong S L_{2}(3) Y S L_{2}(3) \text { or } \quad Z_{3} \times\left(S L_{2}(3) Y S L_{2}(3)\right)
$$

Moreover, because Δ_{i} centralizes Y and is generated by 3-elements, Δ_{i} centralizes $w Y=w y Y=\bar{w}, i=1,2$. Because

$$
\langle z\rangle=Z\left(O_{2}\left(\Delta_{1}\right)\right) \text { and }\left\langle z^{x}\right\rangle=Z\left(O_{2}\left(\Delta_{2}\right)\right),
$$

if $z \neq z^{x}, H=\left\langle\Delta_{1}, \Delta_{2}\right\rangle \nsubseteq C_{L}(z)$, so since $C_{H}(z)$ has an intrinsic component of 2-rank 1, by inspection in $U_{4}(2)$ (or by Theorem 1 of [16]), necessarily $H=L$. Since $\bar{w} \neq \overline{0}$ and L acts irreducibly on $W, z=z^{x}$ as needed to prove $[W, z]$ is a T.I.-set.

By Proposition 1.3 of [30] and the irreducible action of L on W,

$$
\operatorname{dim}_{\mathbf{F}_{2}} W=8 \text { and } \operatorname{dim}_{\mathbf{F}_{2}}[W, z]=2
$$

If $v \in Y \cap\left[X, e^{g}\right], v \neq 0$, then by Lemma 6.1, $C_{G}(v) \supseteq\left\langle L, e, L^{g}, e^{g}\right\rangle$ which, as noted earlier, forces $L=L^{g}$, a contradiction. Thus $\left[X, e^{g}\right] \cap Y=0$ and so

$$
\operatorname{dim}_{\mathbf{F}_{2}}\left[X, e^{g}\right]=2=\operatorname{dim}_{\mathbf{F}_{2}}[X, z] .
$$

By Lemma 12.1 .11 of [14] there are $5 L$-conjugates of z which generate L, whence $\operatorname{dim}_{\mathbf{F}_{2}} X \leq 10$. Since z inverts an element t of order 3 in $L,[V, t]=$ $[X, t]$ has \mathbf{F}_{2}-dimension ≤ 4. Pick $h \in G$ such that $t^{h} \notin N_{G}(L)$ so by a previous remark $G=\left\langle L, e, t^{h}\right\rangle$; since $X \subseteq C_{V}(e), G$ normalizes $C_{V}(e)+\left[V, t^{h}\right]$, so $C_{V}(e)$ has codimension ≤ 4 in V. Note also that since Z acts Frobeniusly on V, by Clifford's Theorem applied to $Z\langle e\rangle, \operatorname{dim}_{\mathbf{F}_{2}}[V, e]$ is even.

Since D is a class of 3-transpositions and $L=\left\langle D_{e}\right\rangle$ has 3 orbits on D it follows that we may pick $f \in A_{e}$ such that $G=\langle L, f\rangle$. Since G normalizes $X+[V, f], \operatorname{dim}_{F_{2}} V \leq 14$. If $\operatorname{dim}_{F_{2}}[V, e]=4$, then as $X \subseteq C_{V}(e)$ and $Y \subseteq[V, e], \quad \operatorname{dim}_{\mathbf{F}_{2}} X / Y \leq 6$ which is not true. Thus $\operatorname{dim}_{\mathbf{F}_{2}}[V, e]=2$, $\operatorname{dim}_{\mathbf{F}_{2}} V \leq 12$ and, as above, since $\operatorname{dim}_{\mathbf{F}_{2}} X / Y=8, \operatorname{dim}_{\mathbf{F}_{2}} V=12$, as needed.

Finally, suppose $G \cong O_{2 n+2}^{+}\left(2^{m}\right), n \geq 1$, so $C_{G}(e) \cong Z_{2} \times S p_{2 n}\left(2^{m}\right)$, and first consider the case $n=1$. Since $L \cong L_{2}\left(2^{m}\right)$, by 7.7 of [8] applied in $C_{G}\left(e_{j}\right)$ to the T.I.-set $\left[V, e^{g}\right]\left\langle e^{g}\right\rangle$, where $e^{g} \in(\langle e\rangle \times L)-\{e\}$, for suitably $g \in G$, $W=[V, L] / C_{[V, L]}(L)$ is the natural $\mathbf{F}_{2 m} L_{2}\left(2^{m}\right)$-module for L viewed over \mathbf{F}_{2}. Since $\left|H^{1}(L, W)\right|=2^{m}, \operatorname{dim}_{\mathbf{F}_{2}}[V, L] \leq 3 m$. Moreover, if t is an element of $L^{\#}$ of odd order, $\operatorname{dim}_{\mathrm{F}_{2}}[V, t]=2 m$. Let $h \in G$ with $t^{h} \notin N_{G}(L)$; by inspection L is maximal in G^{\prime} so $\left\langle L, t^{h}\right\rangle=G^{\prime}$. Thus G^{\prime} normalizes $[V, L]+[V, t]$, and since V has a unique non-trivial irreducible $\mathbf{F}_{2} L$-constituent, G normalizes this space as well. This proves $\operatorname{dim}_{\mathrm{F}_{2}} V \leq 5 m$. If $G \cong O_{4}^{-}\left(2^{m}\right) \cong L_{2}\left(2^{2 m}\right)\langle e\rangle$ where e induces a field automorphism, by Lemma 2.6 of [30] $\operatorname{dim}_{\mathbf{F}_{2}} V=4 m$ and V is either the natural $F_{2 m} L_{2}\left(2^{2 m}\right)$-module or the natural $F_{2 m} \Omega_{4}^{-}\left(2^{m}\right)$-module for G^{\prime}; in the first instance, however, V would be a free $\mathrm{F}_{2}\langle e\rangle$-module and L would have two non-trivial irreducible constituents, a contradiction. If

$$
\left.G \cong O_{4}^{+}\left(2^{m}\right) \cong L_{2}\left(2^{m}\right)\right\} Z_{2}
$$

let G_{1}, G_{2} be the components of G interchanged by e. For each i, V is the sum of (more than one) isomorphic irreducible $F_{2} G_{i}$-modules, whence by Lemma 2.6 of [30] each of these is either the natural $\mathbf{F}_{2 m} L_{2}\left(2^{m}\right)$-module or the natural $\mathbf{F}_{2^{k}} \Omega_{4}^{-}\left(2^{k}\right)$-module, $2 k=m$, so $\operatorname{dim}_{\mathbf{F}_{2}} V=4 m$. For $E \in S y l_{2}\left(G_{1}\right),[V, E]$ and $C_{V}(E)$ admit G_{2}, whence the only possibility is $\operatorname{dim}_{\mathbf{F}_{2}}[V, E]=2 m=$ $\operatorname{dim}_{\mathbf{F}_{2}} C_{V}(E)$. Since E acts quadratically, V is the sum of natural $\mathbf{F}_{2 m} L_{2}\left(2^{m}\right)$ modules for G_{1} and for $G_{1}^{e}=G_{2}$. Thus if W is such a natural module over $F_{2 m}$, $V \cong W \otimes_{\mathbf{F}_{2}} W$ as an $\mathrm{F}_{2} G$-module, which is the natural module for $O_{4}^{+}\left(2^{m}\right)$, as desired.

We have already treated the case $G \cong O_{6}^{+}(2) \cong \Sigma_{8}$. Consider the case $G \cong O_{6}^{-}(2)$; so $C_{G}(e)=\langle e\rangle \times L^{*}$ where $L^{*} \cong \Sigma_{6}$ and we may choose $g \in G$ such that $L^{*}=L\left\langle e^{g}\right\rangle$. By 7.10 of [8] applied to $L^{*}, \operatorname{dim}_{F_{2}}[V, L] / C_{[V, L]}(L)=4$ so by 11.3 of $[5], \operatorname{dim}_{\mathbf{F}_{2}}[V, L] \leq 5$. For a 3-cycle t in $L, \operatorname{dim}_{F_{2}}[V, t]=2$. Let $h \in G$
with $t^{h} \notin N_{G}(L)$, whence $G^{\prime}=\left\langle L, t^{h}\right\rangle$ so G^{\prime}, and hence also G, normalizes $[V, L]+\left[V, t^{h}\right]$. This proves $\operatorname{dim}_{\mathbf{F}_{2}} V \leq 7$ and since L centralizes $[V, e]$ and $V / C_{V}(e)$ it follows that e induces an \mathbf{F}_{2}-transvection on V. Thus $\operatorname{dim}_{\mathbf{F}_{2}} V=6$ and V is the natural $\mathrm{F}_{2} \mathrm{O}_{6}^{-}$(2)-module for G.

Let $G \cong O_{2 n+2}^{+}\left(2^{m}\right) \nsubseteq O_{6}^{ \pm}(2), n \geq 2$, and proceed by induction. Let H be the centralizer in G of some hyperbolic plane chosen so that $e \in H$ and $H \nVdash O_{6}^{+}(2)$. Since $H^{\prime} \cong \Omega_{2 n}^{ \pm}\left(2^{m}\right)$, by Lemma $2.7, \quad V=V_{0} \oplus V_{1}$ where $V_{0}=\left[V, H^{\prime}\right]$, $V_{1}=C_{V}\left(H^{\prime}\right)$, and by induction V_{0} is the natural module. If e does not centralize V_{1}, let $v \in\left[V_{1}, e\right]-\{0\}$; then $C_{G}(v) \supseteq\langle e, L, H\rangle=G$, a contradiction. Thus

$$
\operatorname{dim}_{\mathbf{F}_{2}}[V, e]=\operatorname{dim}_{\mathbf{F}_{2}}\left[V_{0}, e\right]=m
$$

Let $h_{1}, h_{2} \in G$ with $G=\left\langle H, e^{h_{1}}, e^{h_{2}}\right\rangle$, whence $V=V_{0}+\left[V, e^{h_{1}}\right]+\left[V, e^{h_{2}}\right]$ has \mathbf{F}_{2}-dimension $\leq(2 n+2) m$. Now $V \otimes_{F_{2}} F_{2^{m}}$ is isomorphic as an $\mathbf{F}_{2} G$-module to a direct sum of m copies of V; also $V_{0} \otimes_{\mathbf{F}_{2}} F_{2^{m}}$ is the direct sum of m natural $\mathbf{F}_{2^{m}} O_{2 n}^{ \pm}\left(2^{m}\right)$-modules for H. Thus if $V \otimes_{\mathbf{F}_{2}} \mathbf{F}_{2^{m}}=U_{1} \oplus \cdots \oplus U_{m}$ is a KrullSchmidt $\mathrm{F}_{2 m} G$-module decomposition, since H acts non-trivially on each U_{i}, $\left.U_{i}\right|_{H}=W_{i} \oplus T_{i}$ where W_{i} is the natural $\mathbf{F}_{2 m} O_{2 n}^{ \pm}\left(2^{m}\right)$-module for H and T_{i} is a trivial module. Because e centralizes V_{1}, e centralizes T_{i} and so e induces a $\mathbf{F}_{2 m}$-transvection on $U_{i}, 1 \leq i \leq m$. As an \mathbf{F}_{2}-module, therefore, each U_{i} is the natural module for $O_{2 n+2}^{ \pm}\left(2^{m}\right)$, as desired.

III. The Proof of Theorem A

Throughout this section let J, x be as given by the hypothesis of Theorem A, let $V=U(J), Z=V \cap Z(J)$ and let $\overline{J\langle x\rangle}=J\langle x\rangle / O_{2}(J\langle x\rangle)$. We may clearly assume $O(J)=1$.

We first dispose of the case when V is abelian, that is, (by Lemma 2.2) when

$$
V \subseteq \Omega_{1}\left(Z\left(O_{2}(J)\right)\right.
$$

Let P be a subgroup of J of odd prime order with \bar{P} normalized by \bar{x}, where the Baer-Suzuki Theorem [1] is used if $\bar{x} \neq \overline{1}$. Thus x normalizes $[V, P]$ and so has a non-trivial fixed point therein. Since $[V, P] \cap Z(J)=1$ and V is elementary abelian, the result holds in this case. Henceforth it is assumed that $V^{\prime} \neq 1$.

The following lemma due to J. G. Thompson facilitates the proof of Theorem A.

Lemma 3.1. If t is an involution acting on a solvable group S with

$$
C_{S}(t) \subseteq O_{2}(Z(S))
$$

then t inverts a 2^{\prime}-Hall subgroup of S.
Proof. First note that if u is an involution acting on a solvable group H with $H=O_{2,2^{\prime}}(H)$ and u inverting $H / O_{2}(H)$, then an easy induction on $|H|$ shows u normalizes (hence inverts) a 2^{\prime}-Hall subgroup of H.

Now let $G=S\langle t\rangle$ be a counterexample to Lemma 3.1 of minimal order and let $\bar{G}=G / O_{2}(G)$. If $C_{G}(\bar{t})$ is a 2-group, \bar{t} inverts $O(\bar{G})$ and since $\bar{G} / O(\bar{G})$ acts faithfully on $O(\bar{G}), \bar{G}$ has a normal 2 -complement (which is inverted by \bar{t}); in this situation, by the initial paragraph G is not a counterexample. Thus there is a subgroup P of G of odd prime order with $\bar{P} \subseteq C_{G}(\bar{t})$, whence

$$
G=O_{2}(G) P\langle t\rangle=O_{2}(G) P .
$$

Moreover, $\langle t, P\rangle$ is also a counterexample so $G=\langle t, P\rangle$. In particular, if $H=O_{2}(G), H=\left\langle t^{P}\right\rangle$ so $H^{\prime}=\phi(H)$ and H / H^{\prime} is a cyclic $\mathrm{F}_{2} P$-module. Let $K=[H, P]$ so $K / \phi(K)$ is a direct sum of non-isomorphic $\mathrm{F}_{2} P$-modules. Thus if $f \in C_{H}(P)$ with $f \equiv t(\bmod K), H=K\langle f\rangle$ and $[K, f] \subseteq \phi(K)$. Since t and P commute in their action on $Z(K)$ and $[Z(K), P] \cap Z(G)=1, P$ centralizes $Z(K)$.
We now prove K has class 2 . For suppose A is a characteristic abelian subgroup of K and let $W=\left[\Omega_{1}(A), P\right]$. Since $W \cap Z(G)=1, W W^{t}=W \times W^{t}$ and since t centralizes $D=\left\{w w^{t} \mid w \in W\right\}, D \subseteq Z(G)$. Thus $W W^{t}=W D$ admits $\langle t, P\rangle$ and so is normal in G. However t is conjugate in $\langle W, t\rangle$ to every involution in $\left(W W^{t}\right) t$, so $G / W W^{t}$ is also a counterexample to the lemma. By minimality of $G, W=1$, i.e. P centralizes every characteristic abelian subgroup of K. By Lemma 5.17 of [27], K is special. Let $\phi_{f}: K / K^{\prime} \rightarrow K^{\prime}$ by $\phi_{f}(k)=[k, f]$. It follows that ϕ_{f} is an $\mathbf{F}_{2} P$-module homomorphism. Since K / K^{\prime} is a Frobenius $\mathrm{F}_{2} P$-module and K^{\prime} is a trivial module, $\operatorname{Hom}_{\mathrm{F}_{2} P}\left(K / K^{\prime}, K^{\prime}\right)=0$, whence $[K, f]=1$. However, $t=k f$, for some $k \in K$ and since t centralizes $k, k \in Z(G)$; but then t centralizes K, the desired contradiction.

Continuing the proof of Theorem A, we proceed by induction and assume $J\langle x\rangle$ is a counterexample of minimal order. It will be necessary to establish a number of properties of $J\langle x\rangle$ before utilizing Thompson's lemma in a setup where a contradiction can be reached.

First observe that x centralizes $Z(J)$. For otherwise there exist $z_{1}, z_{2} \in Z(J)^{*}$ such that $z_{1}^{-1} x z_{1}=x z_{2}$ with $\left[x, z_{2}\right]=1$. Putting $\hat{J}=J /\left\langle z_{2}\right\rangle$, the minimality of J forces the existence of a 2 -element $t \in J$ with $\hat{t} \notin Z(\hat{J})$ and $[t, x] \in\left\langle z_{2}\right\rangle$. Since either t or $t z_{1}$ centralizes x and neither lies in $Z(J)$, we have the desired contradiction.

Next suppose for some subgroup P of odd prime order in J, \bar{x} centralizes \bar{P}. Then $V_{0}=[V\langle x\rangle, P]$ admits P and x. Let $x_{1} \in V_{0} x$ with $\left[x_{1}, P\right]=1$ and let $Z_{0}=V_{0} \cap Z$, so x and P commute in their action on V_{0} / Z_{0}. Let $Q \supseteq Z_{0}$ with $Q / Z_{0}=C_{V_{0} / Z_{0}}(x)$, so Q admits P with $Q / Z_{0}=\left[Q / Z_{0}, P\right] \neq Z_{0} / Z_{0}$. Since $x \equiv x_{1}\left(\bmod V_{0}\right),\left[Q, x_{1}\right] \subseteq Z_{0}$. As in the proof of Lemma 3.1 the map

$$
\phi_{x_{1}}: Q / Z_{0} \rightarrow Z_{0}, \quad \phi_{x_{1}}(q)=\left[q, x_{1}\right],
$$

is an $F_{2} P$-module homomorphism and since $\operatorname{Hom}_{\mathrm{F}_{2} P}\left(Q / Z_{0}, Z_{0}\right)=0$, $\left[Q, x_{1}\right]=1$. Now let $v \in V_{0}$ with $x=v x_{1}$. Note that $v^{2}, x_{1}^{2} \in Z_{0}$, whence

$$
1=x^{2}=v^{2} x_{1}^{2}\left[v, x_{1}\right],
$$

and so $\left[v, x_{1}\right] \in Z_{0}$, that is, $v \in Q$. Since x_{1} centralizes $Q,[x, v]=1$, so $v \in Z_{0}$. But then x centralizes Q, contrary to $Q \nsubseteq Z_{0}$. This proves $C_{\bar{J}}(\bar{x})$ is a 2-group.

Let P be any subgroup of J of odd prime order p inverted by x (such subgroups exist by the Baer-Suzuki Theorem), $V_{0}=[V, P], V_{1}=C_{V}(P)$. By arguing as in the previous paragraph with $x_{1} \in V_{1}$ and $q \in V_{0}$, we obtain $\left[V_{0}, V_{1}\right]=1$. Let

$$
V_{0} / V_{0}^{\prime} \cong E_{22 n}, \quad V_{0}^{\prime} \cong E_{2 m}
$$

and let Q be the complete preimage in V_{0} of $C_{V_{0} / V_{0}^{\prime}}(x)$, so as x is free on V_{0} / V_{0}^{\prime}, $Q / V_{0}^{\prime} \cong E_{2^{n}}$ and $Q / V_{0}^{\prime}=\left[V_{0} / V_{0}^{\prime}, x\right]$. We show Q is abelian. If $a \in Q, v \in V_{0}$ and $z=[a, v]$, then

$$
z=z^{x}=\left[a^{x}, v^{x}\right]=\left[a z_{1}, v^{x}\right] \quad \text { where } z_{1}=\left[x, a^{-1}\right] \in Z
$$

so $[a, v]=\left[a, v^{x}\right]$, whence $\left[a, v v^{x}\right]=1$. Since $Q=\left\langle Z \cap V_{0}, v v^{x} \mid v \in V_{0}\right\rangle, a$ centralizes Q, for all $a \in Q$, as desired. Now for $a \in Q-V_{0}^{\prime},\left\langle Q, V_{0}^{\prime}, V_{1}\right\rangle \subseteq C_{V}(a)$ and so

$$
\left|V: C_{V}(a)\right| \leq 2^{n}
$$

This means $A=[V, a]$ has order at most 2^{n}. Let $\hat{J}=J / A$, so \hat{J} is a block and since \hat{P} acts non-trivially on $\hat{a} \in Z\left(O_{2}(\hat{J})\right)$, the non-central 2-chief factor for \hat{J}, namely \hat{V} / \tilde{Z}, lies in $Z\left(O_{2}(\hat{J})\right)$, whence $V^{\prime} \subseteq A$ by Lemma 2.2(a). In particular, $V_{0}^{\prime}=V^{\prime}=A$ so $m \leq n$. However, $[Q, x] \subseteq V_{0}^{\prime}$ so $2^{m} \geq|[Q, x]|=\left|Q: C_{Q}(x)\right|$, and as $C_{Q}(x)=V_{0}^{\prime},\left|Q: C_{Q}(x)\right|=2^{n}$, whence $n \leq m$. This proves $m=n$ and since

$$
\left|V_{0}: C_{V_{0}}(x)\right|=2^{2 n}
$$

x is conjugate in $V_{0}\langle x\rangle$ to every involution in $V_{0} \cdot x$. Thus every element of $Q x$ is an involution, x inverts Q and $Q \cong Z_{4} \times \cdots \times Z_{4}$ (n copies).

By considering $\widehat{J}=J / V_{0}^{\prime}$ as above we obtain $V^{\prime} \subseteq V_{0}^{\prime}$ and so $V_{0}^{\prime}=V^{\prime}=$ $\phi(V)$.

We next show x centralizes V_{1} / Z. If $v_{1} \in V_{1}$ and $v_{1}^{x} \not \equiv v_{1}(\bmod Z)$, it follows that $u=v_{1} v_{1}^{x}$ has order 4 and is inverted by x. However, $u^{2} \in V^{\prime}$ so there exists $v \in V_{0}$ such that $v^{-1} x v=x u^{2}$, and therefore $u v \in C_{J}(x)$, contrary to $u v \notin Z(J) .{ }^{1}$

Now let $N=N_{J\langle x\rangle}(P)$ and note that N acts on both V_{0} and V_{1}. Let

$$
x \in S \in S y l_{2}(N) \quad \text { and } \quad R=S \cap C_{J\langle x\rangle}(P) .
$$

We first show R centralizes V_{0}. If not, pick $r \in R-C\left(V_{0}\right)$ with $r^{2},[r, x] \in C\left(V_{0}\right)$. For $q \in Q$,

$$
[q, r]^{x}=\left[q^{x}, r^{x}\right]=[q z, r[r, x]],
$$

where $z=q^{2} \in Z$; so $[q, r]=[q, r]^{x}$, proving $[q, r] \in Z$. Thus $[Q, r] \subseteq Z$ and so

$$
\left[V_{0}, r\right]=\left[Q^{P}, r\right] \subseteq Z
$$

[^1]As usual, r induces an $\mathbf{F}_{2} P$-module homomorphism from V_{0} / V_{0}^{\prime} to Z, whence $\left[V_{0}, r\right]=1$, as claimed. Note that if y is an odd order element of N centralizing $V_{0} Z / Z$, then $[x, y]$ centralizes V / Z so $[x, y] \in O_{2}(J)$, whence $y=1$ in view of $C_{\bar{J}}(\bar{x})$ being a 2 -group. Now if Sylow p-subgroups of J are not cyclic, there exists $X \subseteq N$ with $P \subseteq X$ and $X \cong Z_{p} \times Z_{p}$. Since X is faithful on V_{0} / V_{0}^{\prime}, by Schur's lemma there exists $y \in X$ such that $2 n>\operatorname{dim}_{\mathbf{F}_{2}}\left[V_{0} / V_{0}^{\prime}, y\right] \geq n$. Let $v \in C_{V_{0}}(y)-Z$, so as usual v centralizes $\left[V_{0}, y\right]$. But

$$
C_{V_{0}}(v) \supseteq\left\langle v,\left[V_{0}, y\right], V^{\prime}\right\rangle
$$

and the latter group has order exceeding $2^{2 n}$, contrary to $\left|\left[V_{0}, v\right]\right|=$ $\left|V^{\prime}\right|=2^{2 n}$. This proves that Sylow p-subgroups of J are cyclic, and, in particular, N contains a Sylow p-subgroup of J. Next we show $S=R\langle x\rangle$. If this is not true, since S / R is cyclic, there exists $s \in S$ with $s^{2} \equiv x(\bmod R)$ and, of course, $[s, x]$ centralizing V_{0}. Then for all $q \in Q,[q, s]^{x}=[q, s]$, so $[Q, s] \subseteq V_{0} \cap$ $Z=V_{0}^{\prime}$. Also, for $q \in Q-Z$ and $v \in V_{0}$ if $z=[q, v]$, then $z=\left[q, v^{s}\right]$ so $\left[q, v v^{s}\right]=1$ which gives

$$
\left[V_{0}, s\right] \subseteq C_{V_{0}}(q)=Q
$$

But then s acts as an involution on V_{0} / V_{0}^{\prime} contrary to s^{2} acting identically to x on V_{0} / V_{0}^{\prime}. Now let $M=C_{N}\left(V_{1} / Z\right)$. Since R centralizes V_{0}, \bar{R} acts faithfully on V_{1} / Z, so $\bar{R} \cap \bar{M}=\overline{1}$. Thus $\langle\bar{x}\rangle$ is a Sylow 2-subgroup of \bar{M}. Note that $C_{\bar{N}}(\bar{x})$ therefore covers \bar{N} / \bar{M} so $O^{2}(\bar{N}) \subseteq \bar{M}$ and \bar{M} has a Hall 2^{\prime}-subgroup which is inverted by \bar{x}. Since P was arbitrary subject to being inverted by x (and by properties of involutions x inverts an element of order p_{1} for each odd prime divisor p_{1} of $|M|$), applying these results to each odd prime divisor of $|M|$ gives that M has a cyclic 2^{\prime}-Hall subgroup P^{*} inverted by x and P^{*} is a Hall subgroup of J. Let $1 \neq P_{1} \subseteq P^{*}$ so $\left[V, P_{1}\right] \subseteq V_{0}$. By arguing with P_{1} in place of P, x acts trivially on $C_{V / Z}\left(P_{1}\right)$ so $\left[V, P_{1}\right]=V_{0}$. Note that $[R, x]$ centralizes V / Z so $[R, x] \subseteq O_{2}(J)$. Also, $\left[R, P_{1}\right]$ centralizes V / Z so $\left[R, P_{1}\right] \subseteq O_{2}(J) \cap N=$ $V_{1} Z(J)$, hence

$$
\left[R, P_{1}\right]=\left[R, P_{1}, P_{1}\right]=1
$$

Since P_{1} was arbitrary, $R \in S y l_{2}\left(C_{J\langle x\rangle}\left(P_{1}\right)\right)$, for all $1 \neq P_{1} \subseteq P^{*}$. Finally, if $x^{g} \in S$, for some $g \in J$, then as $C_{\bar{J}}(\bar{x})$ is a 2-group, $\overline{x^{g}}$ inverts \bar{P}, so $x^{g}=x r$, for some $r \in R$; but then x^{g} is free on V_{0} / V_{0}^{\prime} and since $\operatorname{dim}_{F_{2}}[V / Z, x]=n, x^{g}$ centralizes V_{1} / Z, so $\bar{r}=\overline{1}$, i.e. $\bar{x}=\overline{x^{g}}$.

In summary, J, x satisfy the following:
(1) x is an involution acting on J with $C_{J}(x) \subseteq O_{2}(Z(J))$;
(2) if P is a subgroup of J of odd prime order p inverted by x, then
(a) Sylow p-subgroups of J are cyclic,
(b) $N_{J\langle x\rangle}(P)=\left(R \times P^{*}\right)\langle x\rangle$, where P^{*} is a cyclic Hall subgroup of J inverted by x and $R \in \operatorname{Syl}_{2}\left(C_{J\langle x\rangle}\left(P_{1}\right)\right.$), for all $1 \neq P_{1} \subseteq P^{*}$,
(c) $[R, x] \subseteq O_{2}(J)$,
(d) if $x^{g} \in R\langle x\rangle$, for some $g \in J, x x^{g} \in O_{2}(J)$.

Although one would expect an easy contradiction at this point it seems that a considerable amount of elementary argument is yet required and that the best course is to consider all groups J satisfying (1) and (2) (not just for J a block). The final contradiction will be immediate once we have established:
(*) If J, x are any pair satisfying (1) and (2), then $J\langle x\rangle=O_{2}(J) H\langle x\rangle$, where H is a cyclic 2^{\prime}-Hall subgroup of J inverted by x.

To prove (*) we proceed by induction and let J be a counterexample of minimal order. Note that every proper subgroup of $J\langle x\rangle$ containing x satisfies (1) and (2) so these are described by the conclusion of $(*)$. By Lemma 3.1, J is not solvable so by minimality of $J, J=J^{\prime}$ and $J / S(J)$ is simple. Moreover,

$$
S(J)\langle x\rangle=O_{2}(J) H\langle x\rangle
$$

where H is cyclic and inverted by x. Let $\overline{J\langle x\rangle}=J\langle x\rangle / O_{2}(J\langle x\rangle)$ so \bar{J} is quasisimple. Since $N_{J\langle x\rangle}(H)$ covers \bar{J} and contains x, by minimality of $J\langle x\rangle$, $H \leq J\langle x\rangle$. By Frobenius' normal p-complement theorem together with property ($2 a$), $H=1$, so \bar{J} is simple. Note that $C_{\bar{J}}(\bar{x})$ is necessarily a 2-group so we may pick $T \in \operatorname{Syl}_{2}(J\langle x\rangle)$ with $C_{\overline{J\langle x\rangle}}(\bar{x}) \subseteq \bar{T}$.

Let \bar{t} be any involution in $Z(\bar{T})$ and let \bar{M} be a maximal subgroup of $\overline{J\langle x\rangle}$ containing $C_{\overline{J\langle x\rangle}}(\bar{t})=\bar{M}_{0}$. If $\bar{M}_{0}=\bar{T}$, by a result of Baumann [12], $\bar{J} \cong L_{2}(q)$, $U_{3}(q), S z(q), L_{3}(q), S_{4}(q), q=2^{n}$ or $L_{2}(q), q=2^{n} \pm 1$. As $C_{\bar{J}}(\bar{x})$ is a 2-group, by Lemma 2.10 of [12], \bar{x} induces inner automorphisms on \bar{J}; but then in every case x lies in a proper subgroup of $J\langle x\rangle$ which does not satisfy the conclusion of (*). Thus $\bar{M}_{0} \neq \bar{T}$ so we may write $M=O_{2}(M) H\langle x\rangle$ where H is a cyclic 2^{\prime}-Hall subgroup of M inverted by x and $H_{0}=H \cap M_{0}$ is a 2^{\prime}-Hall subgroup of M_{0}. Since $C_{J\langle x\rangle}\left(H_{0}\right)$ covers $C_{J\langle x\rangle}\left(\bar{H}_{0}\right)$ we may assume $\left[t, H_{0}\right]=1$, whence by (2b), $[t, H]=1, H$ is a Hall subgroup of $J, H=H_{0}$ and $M=M_{0}$. For any $1 \neq P \subseteq H, N_{J\langle x\rangle}(P)$ covers $N_{J\langle x\rangle}(\bar{P})$ so by (2b), (2c) and the fact that

$$
C_{\overline{J\langle x\rangle}}(\bar{x}) \subseteq \bar{T} \quad \text { and } \quad C_{\overline{J\langle x\rangle}}(\bar{t})=\bar{M}
$$

$N_{\overline{J\langle x\rangle}}(\bar{P}) \subseteq \bar{M}$. Finally, if $x^{g} \in M$, for some $g \in J, \overline{x^{g}}$ inverts \bar{H} so by properties of involutions there exists $m \in O_{2}(J\langle x\rangle)$ such that $x^{g m}$ inverts H; then there exists $h \in H$ such that $x^{g m h} \in T$. By property (2d) $\overline{x^{g m h}}=\bar{x}$ so $\overline{g m h} \in C_{\overline{J\langle x\rangle}}(\bar{x}) \subseteq \bar{M}$, whence $\bar{g} \in \bar{M}$. Thus $x^{g} \in M \Leftrightarrow g \in M$ and, by the structure of $M, x^{g} \in T \Leftrightarrow g \in T$.

Now if N is any proper subgroup of $J\langle x\rangle$ containing T, then \bar{N} is 2constrained: for otherwise some odd prime order subgroup P of N inverted by x would have $\left[O_{2}(\bar{N}), \bar{P}\right]=\overline{1}$; but then since $C_{J\langle x\rangle}(P)$ covers $C_{\overline{J\langle x\rangle}}(\bar{P})$, (2c) forces \bar{x} to centralize $O_{2}(\bar{N})$ and since $\bar{T}=O_{2}(\bar{N})\langle\bar{x}\rangle$, a previous argument applied to $\bar{t}=\bar{x}$ gives a contradiction. Secondly, if \bar{N} is any 2-local subgroup of $\bar{J}\langle x\rangle$ containing \bar{x}, then either $\bar{N} \subseteq \bar{M}$ or $(|\bar{N}|,|\bar{M}|)=2^{a}$, for some a. For as x lies in a unique Sylow 2-subgroup of $J\langle x\rangle, \overline{N \cap T} \in S y l_{2}(\bar{N})$; suppose some
odd prime p divides $|\bar{N}|$ and $|\bar{M}|$ and let P be a Sylow p-subgroup of N inverted by x. Since Sylow p-subgroups of J are cyclic, there exists $g \in J$ such that $\quad P^{g} \subseteq M ; \quad$ and finally, as $\quad x^{g} \in N_{J\langle x\rangle}\left(P^{g}\right) \subseteq M, \quad g \in M \quad$ so $N=(N \cap T) N_{N}(P) \subseteq M$, as claimed.

Now suppose there is an involution \bar{t}_{1} in $Z(\bar{T})$ with $C_{\overline{J\langle x\rangle}}\left(\bar{t}_{1}\right) \nsubseteq M$. Let

$$
\bar{M}_{1}=C_{J\langle x\rangle}\left(\bar{t}_{1}\right), \quad \bar{M}_{2}=C_{\overline{J x\rangle}}\left(\bar{t}_{1}\right) .
$$

The arguments using \bar{t} also apply to show that \bar{M}_{1}, \bar{M}_{2} are maximal subgroups of $\overline{J\langle x\rangle}$ and, by the previous paragraphs, $\bar{M}, \bar{M}_{1}, \bar{M}_{2}$ are 2-constrained 2-locals with $|\bar{M}|_{2,},\left|\bar{M}_{1}\right|_{2^{\prime},},\left|\bar{M}_{2}\right|_{2}$, pairwise coprime. Thus for two of these subgroups, say $\bar{M}, \bar{M}_{1}, 3 \nmid|\bar{M}|,\left|\bar{M}_{1}\right|$. Since $Z(\bar{T}) \notin \bar{M}$ or \bar{M}_{1}, by the Thompson factorization Lemma 5.54 of [27] one sees that $J(\bar{T}) \unlhd \bar{M}$ and \bar{M}_{1}, contrary to \bar{M}, \bar{M}_{1} being distinct maximal subgroups. This shows $\bar{M}=C_{\overline{J\langle x\rangle}}\left(\Omega_{1}(Z(\bar{T}))\right.$).
As before, if \bar{x} inverts some subgroup \bar{P} of odd prime power order p^{x} and $p||M|$, then $\bar{P} \subseteq \bar{M}$. If $\langle u\rangle$ is a subgroup of 2-power order inverted by x, then $u \in M$: for let u be of minimal order with respect to $u \notin M$; then $u^{2} \in M$ and $x u^{2}=x^{u} \in M$ so $u \in M$, a contradiction. Now for all $g \in J, x$ inverts $[g, x]$ so since $J=[J, x] \nsubseteq M$, there exists Q of odd prime order q inverted by x and $q \nmid|M|$. Let $N_{0}=N_{J\langle x\rangle}(Q), S \in \operatorname{Syl}_{2}\left(C_{J\langle x\rangle}(Q)\right)$. If $\bar{S}=\overline{1}$, then $\langle\bar{x}\rangle$ is a Sylow 2 -subgroup of $N_{\overline{J\langle x\rangle}}(\bar{Q})$. Since Sylow q-subgroups of J are cyclic but J does not have a normal q complement, $\langle\bar{x}\rangle \in \operatorname{Syl}_{2}\left(N_{j}(\bar{Q})\right.$), that is, $\bar{x} \in \bar{J}$. However, $\overline{J\langle x\rangle}$ cannot be simple, otherwise by Thompson's transfer lemma [5.38 of 27] there exists $g \in J$ such that $\overline{x^{\theta}} \in O_{2}(\bar{M})$, whereas no such $g \in M$ exists. This argument proves $\bar{S} \neq \overline{1}$ so let \bar{N} be a maximal (2-local) subgroup of $\overline{J\langle x\rangle}$ containing $N_{\overline{J\langle x}\rangle}(\overline{\mathbf{S}})$.

We first show \bar{N} contains \bar{T}. In any case since T is the unique Sylow 2subgroup of $J\langle x\rangle$ containing $x, T_{0}=T \cap N \in S y l_{2}(N)$. Let Q^{*} be a 2^{\prime}-Hall subgroup of N inverted by x. Assume $T_{0} \neq T$ and let $a \in N_{T}\left(T_{0}\right)-T_{0}$ with $a^{2} \in T_{0}$. If \bar{N} is not 2 -constrained, by (2b), $\bar{N}=\left(\bar{Q}^{*} \times O_{2}(\bar{N})\right)\langle\bar{x}\rangle$, and by maximality of \bar{N} and the fact that \bar{x} centralizes $O_{2}(\bar{N})$ by (2c),

$$
O_{2}(\bar{N}) \cap O_{2}(\bar{N})^{\bar{a}}=\overline{1}
$$

This forces $\bar{S}=O_{2}(\bar{N}) \cong Z_{2}$. Since $N_{\bar{T}}(\overline{\mathbf{S}})=\bar{S} \times\langle\bar{x}\rangle$ has order $4, Z(\bar{T})=\langle\bar{t}\rangle$ has order 2 and $\bar{t} \in\{\bar{x}, \bar{x} \bar{s}\}$ where $\bar{S}=\langle\bar{s}\rangle$. As noted before, \bar{x} is not central in \bar{T} so $\bar{t}=\bar{x} \bar{s}$ and $\bar{x} \bar{a}=\bar{x} \bar{t}$. This, however, contradicts property (2d) applied in $N(H)$ and so proves that \bar{N} is 2-constrained. Since $Z(\bar{T}) \subseteq Z\left(O_{2}(\bar{N})\right)$ but $\bar{N} \nsubseteq \bar{M}, Q^{*}$ acts faithfully on $Z\left(O_{2}(\bar{N})\right)$. If $\left|Q^{*}\right|>3$ it follows that $J\left(\bar{T}_{0}\right) \leq \bar{N}$ and so $N\left(J\left(T_{0}\right)\right) \supsetneqq \bar{N}$, a contradiction. It remains to treat the case when $\left|Q^{*}\right|=3$ and no non-trivial characteristic subgroup of T_{0} is normal in \bar{N}. By a result of Glauberman [9], \bar{N} has exactly one non-central 2 -chief factor which lies in $\Omega_{1}\left(Z\left(O_{2}(\bar{N})\right)\right.$), hence equals $\bar{W}=\left[\Omega_{1}\left(Z\left(O_{2}(\bar{N})\right)\right), \bar{Q}^{*}\right]$. Since \bar{Q}^{*} acts nontrivially on the Frattini quotient of $O_{2}(\bar{N}), \bar{W} \nsubseteq \phi\left(O_{2}(\bar{N})\right)$ whence

$$
\begin{gathered}
O_{2}(\bar{N})=\bar{W} \times \bar{S}, \quad \bar{S}=C_{T_{0}}\left(Q^{*}\right), \quad \bar{W} \cong Z_{2} \times Z_{2} \\
\overline{W\langle x\rangle} \cong D_{8} \quad \text { and } \quad[\bar{S}, \bar{x}]=\overline{1}
\end{gathered}
$$

Since $\bar{S} \cap \bar{S}^{a}=\overline{1},|\bar{S}| \leq 8$, and since \bar{a} normalizes $Z\left(\bar{T}_{0}\right)$, if \bar{S} is abelian, $|\bar{S}|=2$. Recall that \bar{t} is an involution in $Z(\bar{T}) \cap Z\left(\bar{T}_{0}\right)$ and $\bar{t} \notin \bar{S}$; moreover, by property (2d) applied in $N(H), \bar{x} \simeq \bar{x} \bar{t}$, so $\bar{t} \notin \bar{W}$. Let $Z(\bar{S})=\langle\bar{s}\rangle, \bar{W}=\langle\bar{w}, \bar{u}\rangle$ where $\bar{w} \in Z\left(T_{0}\right)$, so $\bar{x}^{\bar{u}}=\bar{x} \bar{w}$ and $\bar{t}=\bar{s} \bar{w}$. If $|\bar{S}|=2, \bar{T}_{0} \cong D_{8} \times Z_{2}$ and necessarily $\bar{s}^{\bar{a}}=\bar{s} \bar{w}$, contrary to $N(\bar{S})$ not containing a Sylow 2 -subgroup of $\overline{J\langle x\rangle}$. Thus $|\bar{S}|=8$ and $\bar{s}^{\bar{a}}=\bar{w}$. Now $\bar{x}^{\bar{a}}$ inverts \bar{Q}^{*} and so $\bar{x}^{\bar{a} \bar{u}}=\bar{x}^{a} w$. Thus $\bar{x}^{\bar{a} \bar{u} \bar{a}-1}=\bar{x} \bar{s} \bar{s}$ so with $g=a u a^{-1} k$ for suitable k chosen in $O_{2}(J\langle x\rangle)$ so that x^{g} normalizes Q^{*} one sees that property $(2 \mathrm{~d})$ is violated in $N_{J\langle x\rangle}\left(Q^{*}\right)$. This contradiction proves $\bar{T} \subseteq \bar{N}$.

As decided earlier since $\bar{T} \subseteq \bar{N}, \bar{N}$ is 2-constrained so

$$
\bar{Z}=\Omega_{1}(Z(\bar{T})) \subseteq \bar{Z}^{*}=\Omega_{1}\left(Z\left(O_{2}(\bar{N})\right)\right)
$$

Moreover, $\bar{Z}=C_{\bar{Z} *}(\bar{x})$ and since for every involution \bar{t} in $\bar{Z}, C_{\overline{J\langle\underline{x}\rangle}}(\bar{t})=\bar{M}$, $\bar{Z}^{*}=\left[\bar{Z}^{*}, \bar{Q}^{*}\right]$. Thus \bar{x} acts freely on \bar{Z}^{*} and so $\bar{x} \sim \bar{x} \bar{t}$, for each $\bar{t} \in \bar{Z}^{\#}$. It follows that $(2 \mathrm{~d})$ is again violated in $N(H)$. This contradiction completes the proof of $(*)$ and hence also of Theorem A.

Remarks. The referee has observed that at the indicated point the following alternate argument shortens the proof of Theorem A.

By the same argument that showed $m \leq n, Q Z=Z\left(C_{V Z}(y)\right)$, for all $y \in Q Z-Z$, so $Q Z / Z=Q^{*}$ is a TI-set in $V Z / Z=V^{*}$. Now let $\bar{X}=C_{G}\left(Q^{*}\right) \cap$ $C_{\bar{G}}\left(V^{*} / Q^{*}\right)$ and form the semidirect product, H, of \bar{G} with V^{*}; let $W=X Q^{*} \subseteq H$. From the TI property of Q^{*} it follows that W is an elementary abelian TI-set in H and since $Q^{*}=\left[V^{*}, x\right], \bar{x} \in \bar{X}^{\#}$. By [8] the members of $\bar{X}^{\#}$ are root involutions in \bar{G} and \bar{G} is described in [8] or [28], whereas by [8] or [28] $\bar{x} \in O_{2}(\bar{Y})$, for some $\bar{Y} \subseteq \bar{G}$ with \bar{Y} not a 2-group, contrary to Lemma 3.1.

The author has listed his longer but more elementary proof in order to avoid using the deep results of [8] and [28]. Since the principal application for Theorem A is in the proof of Theorem C it seems desirable to maintain such independence, for, as noted in [17], if one uses the classification of characteristic 2 type groups in which a maximal normal elementary abelian 2-subgroup of some maximal 2-local is a TI-set (which relies ultimately on [28]), the proof of Theorem C in characteristic 2 reduces immediately to the "easy" case when $U(J)$ is abelian.

IV. The proof of Theorem B

Throughout this section, G is a minimal counterexample to the assertion of Theorem B, so $G=\langle K, J, x\rangle$. Let $L=\left\langle K^{G}\right\rangle=K_{1} Y K_{2} Y \cdots Y K_{n}$ with $K=K_{1}$. The proof proceeds in a series of steps.
(4.1) $\quad O(G)=1$.

For it is easily seen that $G / O(G)$ is also a counterexample.

$$
\begin{equation*}
Z(G)=1 \tag{4.2}
\end{equation*}
$$

For if z is an involution in $Z(G)$, let $\bar{G}=G /\langle z\rangle$; then $\left|C_{G}(\bar{x}): \overline{C_{G}(x)}\right| \leq 2$ so \bar{J} is a block of $C_{\bar{G}}(\bar{x})$. It follows that \bar{G} is also a counterexample so by minimality we must have $Z(G)=1$.
(4.3) $n>1$.

Suppose to the contrary $n=1$ and let $V=U(K), \bar{G}=G / V$. If J centralizes V,

$$
[J, K] \subseteq K \cap C_{G}(V) \subseteq O_{2}(K)
$$

so $[\bar{J}, \bar{K}, \bar{K}]=\overline{1}$ whence by the 3 subgroups lemma, $[J, K] \subseteq V$. But then $[K, J, J] \subseteq[V, J]=1$ so the 3 subgroups lemma shows $[K, J]=1$, a contradiction. Since J does not centralize V and $J=O^{2}(J)$, by the $P \times Q$ lemma J does not centralizes $C_{V}(x)$, from which it follows that $U(J) \subseteq V$.

By assumption \bar{J} induces inner automorphisms on \bar{K} and since $\bar{J} \nsubseteq \bar{K}$ there is a perfect normal subgroup E of $K J$ with $\overline{K J}=\bar{K} Y \bar{E}$. Because E commutes with the irreducible action of \bar{K} on $\tilde{U}(K), E$ centralizes $\tilde{U}(K)$. Thus $[K, E$, $E] \subseteq Z(K)$ so by the 3 subgroups lemma, $[K, E] \subseteq Z(K)$; another application of this lemma gives $[E, K]=[E, K, K]=1$. Thus $E \cap K \subseteq Z(K)$ and since $Z(G)=O(G)=1$ and $G=E K\langle x\rangle, Z(K)=1, E K=E \times K$ and E is quasisimple. Now $[K J, x] \subseteq K$ so $[E, x] \subseteq C_{G}(K) \cap K=1$. Since $E \leq G$ and E is quasisimple, $[E, J]=1$. But then E is centralized by $\langle K, J, x\rangle=G$, which is absurd. This contradiction establishes (4.3).
(4.4) x normalizes each K_{i}.

For if $K_{i}^{x}=K_{j}, i \neq j$ let $K_{0}=C_{K_{i} K_{j}}(x)^{\prime}$ so by Lemma 2.3, K_{0} is a block of $C_{G}(x)$. Since G is a counterexample $K_{0} \neq J$ so $\left[K_{0}, J\right]=1$. But by Lemma 2.3 [$\left.K_{i}, J\right]=1$ and so $K \subseteq\left\langle K_{i}^{J\langle x}\right\rangle \subseteq C_{G}(J)$, a contradiction.

$$
\begin{equation*}
Z(L)=1 \tag{4.5}
\end{equation*}
$$

Notice that $Z(L)=Z\left(K_{1}\right) Z\left(K_{2}\right) \cdots Z\left(K_{n}\right)$ and $Z(L)$ is a 2-group. Suppose $Z(L) \neq 1$ and $\operatorname{let} \bar{G}=G / Z(L)$, so $\bar{L}=\bar{K}_{1} \times \cdots \times \bar{K}_{n}$. Since $Z(G)=1, J \nsubseteq L$ and J acts non-trivially on $Z(L)$. Because $J=O^{2}(J)$, by the $P \times Q$ lemma, J acts non-trivially on $C_{Z(L)}(x)$, hence $U(J) \subseteq Z(L)$. By Theorem A there exists t a 2-element in $C_{K}(x)$ with $\bar{t} \neq \overline{1}$. Since \bar{J} permutes the \bar{K}_{i} transitively and $n>1, \bar{J}$ does not centralize $\left\langle\overline{t^{\bar{J}}}\right\rangle$; so since \bar{J} is quasisimple, $\bar{J} \subseteq[\bar{J}, \bar{t}] \subseteq \bar{L}$, a contradiction. This also proves:

$$
\begin{equation*}
U\left(K_{i}\right) \text { is abelian and } L=K_{1} \times K_{2} \times \cdots \times K_{n} \tag{4.6}
\end{equation*}
$$

Now let $V_{i}=U\left(K_{i}\right), V=V_{1} \times \cdots \times V_{n}, A_{i}=C_{V_{i}}(x), B_{i}=\left[V_{i}, x\right]$,

$$
A=A_{1} \times \cdots \times A_{n}, \quad B=B_{1} \times \cdots \times B_{n}
$$

so $A \supseteq B$ and $A / B \cong\left(A_{1} / B_{1}\right) \times \cdots \times\left(A_{n} / B_{n}\right)$. Since J acts non-trivially on $A, U(J) \subseteq A$. If $B \neq 1, J$ acts non-trivially on B and if $A \neq B, J$ acts
non-trivially on A / B. Since $A \subseteq C_{G}(x), A J$ has a unique non-central 2-chief factor so either $B=1$ or $A=B$. We argue that the former equality holds, so assume to the contrary $A=B$. This means x acts freely on each V_{i} and so is conjugate in $\left\langle V_{i}, x\right\rangle$ to each involution in $V_{i} x$; by a Frattini argument there is (a 2 element) $t \in C_{K}(x)$ with $t \notin V_{1}$. As before, however, $J \subseteq[J, t] \subseteq L$ contrary to $n>1$. Indeed, a similar argument shows $C_{K_{i}}(x) \subseteq V_{i}$ so in summary we have
(4.7) $\quad U(J) \subseteq V \quad$ and $\quad C_{K_{i}}(x)=V_{i}, 1 \leq i \leq n$.

The latter equality means $\left[K_{i}, x\right] \subseteq K_{i} \cap C_{G}(V)=O_{2}\left(K_{i}\right)$ and so:

$$
\begin{equation*}
x \text { centralizes } K_{i} / V_{i}, 1 \leq i \leq n \tag{4.8}
\end{equation*}
$$

Now let $H=N_{J}(K)$, so $|J: H|=n$. By the argument of (4.6) applied with B_{1} any non-zero $\mathrm{F}_{2} H$-submodule of V_{1} and $A_{1}=V_{1}$ and $A_{i}, B_{i} J$-conjugates of these for $i>1$, one easily sees we must again have $A_{1}=B_{1}$, that is,
(4.9) $\quad H$ acts irreducibly on V_{1} (and non-trivially since $\left|V_{1}\right|>2$).

Let $M=K H, \bar{M}=M / C_{M}\left(V_{1}\right), U=V_{1}, U^{*}=V_{1}\langle x\rangle$ and $\bar{E}=C_{\bar{M}}(\bar{K})$.

$$
\begin{equation*}
\bar{E}=\overline{1} \tag{4.10}
\end{equation*}
$$

For since \bar{E} commutes with the irreducible action of \bar{K} on U, \bar{E} is cyclic of odd order. Suppose $\bar{E}=\langle\bar{y}\rangle \neq \overline{1}$, whence $U=[U, \bar{y}]$. But then $U^{*}=\left[U^{*}, \bar{y}\right] \times$ $C_{U *}(\bar{y})$ and since \bar{y} centralizes $U^{*} / U,\left|C_{U *}(\bar{y})\right|=2$. Since $\langle\bar{y}\rangle \leq \bar{M}, \bar{H}$ fixes $C_{U *}(\bar{y})$. However, H has a unique non-trivial fixed point on U^{*}, namely x, hence $\langle x\rangle=C_{U *}(\bar{y})$. But then $[x, K]=1$, contrary to (4.7).

Now let P be a minimal normal subgroup of \bar{H} chosen, if possible, within \bar{K}. By (4.9), $[U, P]=U$ and so $C_{\underline{U *}}(P)=\langle x\rangle$. Since $C_{K}(x) \subseteq \frac{U}{\bar{K}}$ and P fixes x, $\bar{P} \nsubseteq \bar{K}$ and so we must have $\bar{H} \cap \bar{K}=\overline{1}$. Since therefore \bar{H} induces outer automorphisms on \bar{K}, by assumption \bar{H} is solvable so \bar{P} is a p-group for some odd prime p. If $p \| \bar{K} \mid$, let $\bar{Q}=C_{K}(\bar{P}) \neq \overline{1}$, whereas if $p \nmid|\bar{K}|$, let \bar{Q} be a Sylow q-subgroup of \bar{K} normalized by \bar{P}, for some odd prime q dividing $|\bar{K}|$. In any case,

$$
U^{*}=\left[U^{*}, \bar{Q}\right] \times C_{U *}(\bar{Q})
$$

both factors admit \bar{P}, and $\left[U^{*}, \bar{Q}\right] \subseteq U$. Since \bar{P} has a unique non-trivial fixed point, x, on U^{*} and $x \notin U$, we must have $x \in C_{U *}(\bar{Q})$. This again contradicts (4.7) and so completes the proof of Theorem B.

V. The proof of Theorem C

Throughout this section G, J, M satisfy the hypotheses of Theorem C and set

$$
D=\left\langle J^{M}\right\rangle=J_{1} Y J_{2} Y \cdots Y J_{n} \quad \text { with } J=J_{1}
$$

Proceeding by way of contradiction assume $M \neq G$ and $J \not \ddagger M$; thus $O_{2}(G)=1, n>1$, and for any 2 -element t of $M^{\#}$ centralizing J_{i}, for some i, $C_{G}(t) \subseteq M$. Also, since $m(J)>1, O(G) \subseteq M$ and so $[O(G), D]=1$.

The proof proceeds in a sequence of lemmas, the first of which explores the action of tightly embedded subgroups on blocks.

Lemma 5.1. Let K be a block, $1 \neq T$ a 2-group acting on K with $T \cap K=1$, $T \in \operatorname{Syl}_{2}(P)$ where $P \subseteq T K$ and P is tightly embedded in TK. Let

$$
T \subseteq S \in S y l_{2}(T K) \quad \text { with } N_{S}(T) \in S y l_{2}\left(N_{T K}(T)\right)
$$

and assume $|T| \geq\left|N_{S}(T): T\right|$. Then $[T, K]=1$.
Proof. Note that if $[T, K] \subseteq O(K)$, then since $O(K) \subseteq Z(K),[T, K, K]=1$ whence $[T, K]=1$; thus we may assume $O(K)=1$. The hypotheses of the lemma are set up so that Theorem 3 of [3] applies directly. Let W be the weak closure of T in S with respect to K so we conclude $W \unlhd T K$ and one of the following holds: (a) $W=T$; (b) $W=T \times T^{x}=N_{S}(T)$, for some $x \in K$ and $W^{\prime}=1$ (note that since $|S / W|>2$, conclusion 5 of Theorem 3 is impossible). Since (a) is the assertion of the lemma, assume by way of contradiction that (b) holds and let $V=U(K)$. Since $W \subseteq O_{2}(T K), 1 \neq[W, K] \subseteq O_{2}(K)$, so $V \subseteq W$ and hence V is elementary abelian. Let

$$
\overline{T K}=T K / W=T K / C_{T K}(W)
$$

For any involution \bar{x} in $\bar{K}, W=T \times T^{\bar{x}}$ so $W \cap K=[W, \bar{x}] \subseteq V$, whence $V=[W, \bar{x}]=C_{W}(\bar{x})$. Since \bar{x} centralizes $V, \bar{x} \in O_{2}(\bar{K}) \subseteq Z(\bar{K})$. Let Q be a subgroup of K of odd prime order, so $[Q, x] \subseteq V$. Thus $W=[W, Q] \times C_{W}(Q)$, both factors admit \bar{x} and $1 \neq[W, Q] \subseteq V$. But \bar{x} centralizes $[W, Q]$ and

$$
\operatorname{dim}_{\mathbf{F}_{2}} C_{W}(Q) \cap C_{W}(\bar{x}) \leq \frac{1}{2} \operatorname{dim}_{\mathbf{F}_{2}} C_{W}(Q)
$$

so \bar{x} cannot act freely on W. This contradicts a previous remark and so establishes the lemma.

Lemma 5.2. J is not tightly embedded in M and, in particular, $O_{2}(Z(J)) \neq 1$.
Proof. Since $n>1$ and $M=\mathscr{M}\left(J_{i}\right), 1 \leq i \leq n$, J is tightly embedded in M if and only if J is tightly embedded in G. Assuming this to be so, suppose $g \in G-N_{G}(J)$ and $J^{g} \cap N_{G}(J)$ has even order. Let $T \in S y l_{2}\left(J^{g} \cap N_{G}(J)\right)$, $P=T\left(J^{g} \cap J\right)$ so $T \in S y l_{2}(P)$ and P is tightly embedded in $T J$. From the symmetry between J and J^{g} it follows that $|T|=\left|N_{T J}(T): T\right|_{2}$ so the hypotheses of Lemma 5.1 are satisfied. The conclusion gives $\left[J, J^{g}\right]=1$. Since g was arbitrary in $G-N_{G}(J)$, Theorem 1 of [4] asserts that either $J \unlhd \unlhd G,\left\langle J^{G}\right\rangle$ has a strongly embedded subgroup, or J has abelian Sylow 2-subgroups, all of which are impossible. This proves J is not tightly embedded in G or M and since for $i>1, J \cap J_{i} \subseteq Z(J),|Z(J)|$ is even, as claimed.

For the remainder of this section let $Z=\Omega_{1}\left(O_{2}(Z(D))\right)$.
Lemma 5.3. If W is a fourgroup in M such that for some $g \in G-M$, $C_{H}(w) \subseteq M^{g}$, for all $w \in W^{\#}$, then W normalizes each J_{i}.

Proof. Suppose the lemma is false so that with suitable renumbering $J_{1}^{x}=J_{2}$, for some $x \in W$. By the proof of Lemma 2.8 of [3], since $J_{1}=O^{2}\left(J_{1}\right) \nsubseteq M^{g}, N_{W}\left(J_{1}\right) \neq 1$. Let

$$
\langle y\rangle=N_{W}(J), \quad K=C_{J_{1} J_{2}}(x)^{\prime} .
$$

By Theorem A, $C_{J}(y) \nsubseteq Z(J)$ so $1 \neq\left[C_{J}(y), K\right] \subseteq M^{g}$. Again $J \nsubseteq M^{g}$ whence $U(J)=\left[C_{J}(y), K\right]$. Since $U(J)$ acts on Z^{g} we may pick $z \in Z^{g \#}$ with z centralizing $\langle U(J), x\rangle$, so $z \in C_{G}(U(J)) \subseteq M$, and $J_{i}^{z}=J_{i}, i=1$, 2. Let $U=[z, K]$, so $U \subseteq Z^{g}$. Notice also that $[z, J] \subseteq C_{J}(U(J))$ so if $U(J)$ is non-abelian $C_{J}(U(J))=Z(J)$ and it follows that $[z, J]=1$; since $C_{G}(z) \subseteq M^{g}$, this is impossible, i.e. $U(J)^{\prime}=1$.

First assume $U \neq 1$ sosince K is a block in $C_{M}(x), U=U(K)$. Let $j \in J-O_{2}(J)$ with $j^{2} \in O_{\underline{2}}(J)$ and let $\bar{J}=J / C_{J}(U(J))$. Since \bar{j} inverts an element of odd prime order in $\bar{J}, C_{U(J)}(j) \nsubseteq Z(J)$. By definition of $K, U(J) \subseteq U \cdot U\left(J_{2}\right)$ and $\left[j, U\left(J_{2}\right)\right]=1$, so j must have a non-trivial fixed point a on U. Then $j \in C_{G}(a) \subseteq M^{g}$ so $J=[j, K] \subseteq M^{g}$, again a contradiction.

Thus $[K, z]=1$, so for every $j \in J, 1=\left[j j^{x}, z\right]=[j, z]^{j x}\left[j^{x}, z\right]$, so

$$
[j, z] \in J \cap J^{x} \subseteq Z(J)
$$

It follows that $J \subseteq C_{G}(z) \subseteq M^{g}$, the final contradiction.
Lemma 5.4. $n=2$.
Proof. Assume to the contrary $n \geq 3$.
Suppose first that for all $g \in G-M,\left|J^{g} \cap M\right|$ is odd. Then for x an involution in $J, x^{g} \in M \Leftrightarrow g \in M$; also if $x^{m} \in x^{G} \cap C_{G}(x)$ and $y=x x^{m} \neq 1$, then since $n \geq 3$ and $x^{m} \in J_{i}$, for some i, y centralizes $J_{j}, j \in\{2,3, \ldots, n\}-\{i\}$, so $C_{G}(y) \subseteq M$. Suppose $y^{g} \in M \Leftrightarrow g \in M$, for any such product y; then by Theorem 3.3 of [3] (since $\left\langle J^{G}\right\rangle$ is perfect), $\left\langle x^{G}\right\rangle$ has a strongly embedded subgroup, which is easily seen to be false. Thus for suitable $y=x x^{m}$ and $g \in G-M, y \in M^{g}$. Since $n \geq 3, y$ centralizes a fourgroup W of D^{g} such that $C_{G}(w) \subseteq M^{g}$, for all $w \in W^{\#}$. (This follows from Lemma 2.3 and Theorem A although it is easy to verify directly.) By Lemma $5.3, W$ normalizes J and so clearly $\left|J \cap M^{g}\right|_{2} \neq 1$, contrary to assumption.

Pick $g \in G-M$ such that $J^{g} \cap M$ has even order, let T be a 2-group in $J^{g} \cap M$ of maximal order subject to $\left\langle J^{T}\right\rangle \neq D$ and let $T \subseteq T^{*} \in S y l_{2}\left(J^{g} \cap M\right)$. Note that $n \geq 3$ implies $T \neq 1$. Let Q be a T-invariant Sylow 2-subgroup of $\left\langle J^{T}\right\rangle \cap M^{g}$. Since $n \geq 3, m(Q) \geq 2$ (again, use Lemma 2.3 and Theorem A or direct argument), so by Lemma 5.3 applied to $g^{-1}, \Omega_{1}(Q)$ normalizes J^{g}. Thus
$m\left(T^{*}\right) \geq 2$ by Lemma 2.3(c) and so $\Omega_{1}\left(T^{*}\right)$ normalizes J. Finally, by Theorem A, $T^{*} \nsubseteq Z\left(J^{g}\right), Q \cap J \nsubseteq Z(J)$.

Let $R=N_{Q}(T)$; we show $R=Q$. Note that as $Q \cap T=1, T R=T \times R$. If $x \in N_{Q}(R T)-R$, then $T \subset T T^{x} \subseteq R T$, so $T_{0}=T T^{x} \cap R \neq 1$. Since $x \in M^{g}$ and $n \geq 3, T_{0}$ centralizes J_{j}^{g}, for some j, which is incompatible with $T_{0} \subseteq Q$ centralizing J_{i}, for some i. Thus $R=Q$ and since $Q \cap J \nsubseteq Z(J),\left\langle J^{T}\right\rangle=J$. By maximality, $T^{*}=T$. Let $P=T\left(J^{g} \cap J\right)$. From the symmetry between J and J^{g} we may assume

$$
|T| \geq\left|N_{T J}(T): T\right|_{2}
$$

By Lemma 5.1, P is not tightly embedded in $T J$ so there exists $x \in J-N_{J}(P)$ with $\left|T \cap T^{x}\right|$ even; note that $x \in M^{g}$. If $T=T^{x}$, since $T \nsubseteq Z\left(J^{g}\right)$, x would normalize J^{g}, hence also P, a contradiction. Thus $T^{x} \subseteq J^{g x}=J_{i}^{g}$, for some $i \geq 2$ and so $\left\langle T, T^{x}\right\rangle=T T^{x}$ is a 2-group properly containing T. By orders, $T_{0}=T T^{x} \cap J \neq 1$, a contradiction as before. This completes the proof of the lemma.

Lemma 5.5. There exists $h \in G-M$ such that $J^{h} \cap N_{G}(J)$ contains a fourgroup.

Proof. Let $A_{i} \in S y l_{2}\left(J_{i}\right), A_{1} A_{2} \subseteq S \in S y l_{2}(G)$ with $S \cap M \in S y l_{2}(M)$. Note that $A_{1} \cup A_{2}$ is strongly closed in $S \cap M$ with respect to $M, m\left(A_{i}\right)>1, A_{i}$ is neither dihedral nor quasidihedral, $M \neq G$ and $\left\langle A_{i}^{G}\right\rangle$ does not have a strongly embedded subgroup. By Lemma 3.4 of [3] therefore, there exists $a \in A_{i}, g \in G$ such that

$$
a^{g} \in N_{S}\left(A^{i}\right)-\left(A_{1} \cup A_{2}\right) .
$$

In fact, if b^{g} is the involution in $\left\langle a^{g}\right\rangle, b^{g} \notin A_{1} \cup A_{2}$ else $g \in M$, which is false. We may therefore assume $|a|=2$. Now a^{g} normalizes J and $C_{G}\left(a^{g}\right) \subseteq M^{g}$ so if $m\left(C_{J}\left(a^{g}\right)\right) \geq 2$, the lemma is true for $h=g^{-1}$ by virtue of Lemma 5.3. If, however, $T \in \operatorname{Syl}_{2}\left(C_{J}\left(a^{g}\right)\right.$) and $m(T)=1$, by Lemma $2.3(\mathrm{~b}),|T| \geq 8$, whence $\left|T \cap N_{G}\left(J^{g}\right)\right| \geq 4$. This same lemma now shows $m\left(\Gamma_{1, T \cap N(J g)}\left(J^{g}\right)\right) \geq 2$, so $m\left(J^{g} \cap M\right) \geq 2$. Again Lemma 5.3 establishes this lemma for $h=g$.

Lemma 5.6. $\quad U(J)$ is non-abelian.
Proof. Suppose to the contrary $U(J)$ is abelian and put $V=U(J)$ so V is elementary abelian. Note that by Lemma 5.3 if $J^{g} \cap M$ contains a fourgroup, then every involution in $J^{g} \cap M$ normalizes J. Over all $g \in G-M$ such that $J^{g} \cap M$ contains a fourgroup pick g to maximize $\left|J^{g} \cap M\right|_{2}$. Let

$$
T \in S y l_{2}\left(J^{g} \cap N_{G}(J)\right), \quad T \subseteq S \in S y l_{2}(T J)
$$

with $N_{S}(T) \in S y l_{2}\left(N_{T J}(T)\right)$, so $N_{S}(T)=T \times Q, Q=N_{S}(T) \cap J$. Now since $m(V) \geq 3$ by Lemma $2.3 \mathrm{~b}, m(Q) \geq 2$ so $\Omega_{1}(Q) \subseteq N\left(J^{g}\right)$. By Theorem A each involution in Q centralizes an involution in $J^{g}-Z\left(J^{g}\right)$, so $T \nsubseteq Z\left(J^{g}\right)$. Since
$Q \subseteq M^{g}$ centralizes T, Q normalizes J^{g}. Since we could replace g by g^{-1}, the maximality of $|T|$ forces $|Q| \leq|T|$. Let $P=T\left(J^{g} \cap J\right)$ so, by Lemma 5.1, P is not tightly embedded in $T J$. Let $x \in J$ be such that $P \neq P^{x}$ and $1 \neq T \cap T^{x}$. Since $x \in M^{g}$ and $T \nsubseteq Z\left(J^{g}\right), T T^{x}$ is a 2-group $\neq T$. Finally, since $x^{2} \in N\left(J^{g}\right)$ we may assume $x \in S$ and so x normalizes $T Q$.

Now suppose T centralizes V. Then $T \subseteq O_{2}(T J)$ and so $[T, J] \subseteq V$. If P is any odd order subgroup of $J,[T V, P] \subseteq V$; moreover, as $Z \neq 1$,

$$
|[T V, P]|=|[V, P]|<\left|V C_{Z \cap J}(T)\right| \leq|Q| \leq|T|
$$

and so $T \cap C_{T V}(P) \neq 1$. Thus $J=O^{2}(J) \subseteq M^{g}$, a contradiction.
Thus $T \not \geqq T V$ so there exists $v \in V$ with $T \neq T^{v} \subseteq N_{T V}(T)$. Since $v^{2}=1$ it follows from Lemma 5.3 that $T \cap T^{v}=1$; therefore $T T^{v}=T \times T^{v}$ and $T \cong[T, v] \subseteq V$ so T is elementary abelian. Since $|Q| \leq|T|, T Q=T \times T^{v}$. Let $W=T Q$.

Suppose W is weakly closed in S with respect to J. Set $\overline{T J}=T J / V$ so $\bar{W}=\bar{T}$ is weakly closed in \bar{S} with respect to \bar{J} and $\bar{T} \cap \bar{J}=\overline{1}$. By Lemma 4.2 of [3], $[\bar{T}, \bar{J}] \subseteq O(\bar{J})$ so $[\bar{T}, \bar{J}]=\overline{1}$. Since \bar{T} commutes with the irreducible action of \bar{J} on $V / V \cap Z,[T, V] \subseteq Z$. Since $V=[V, J]$ and $\operatorname{Hom}_{F_{2} J}(V / V \cap Z, Z)=0$, $[T, V]=1$, contrary to a previous argument. Thus there exists $y \in J$ such that $W^{y} \subseteq N_{S}(W), W^{y} \neq W$. Without loss of generality, $T^{y} \nsubseteq W$.

First suppose for all $u \in T^{y \#}, T T^{u}=T \times T^{u}$. In this situation, for each $t \in T^{\#}$, the map $u \mapsto[u, t]$ is a bijection of T^{y} with Q. Since $T \neq T^{x}$, there exists $t \in T$ with $t t^{x} \in Q^{\#}$; by the preceding remark there exists $u \in T^{y}$ with $t t^{u}=t t^{x}$. But $x u \in C_{G}(t) \subseteq M^{g}$ and since $x \in M^{g}, u \in M^{g}$, contrary to $T^{u} \notin\left\{T, T^{x}\right\}$.

Let $u \in T^{y \#}$ with $T^{u} \in\left\{T, T^{x}\right\}$. Note that $x^{2} \in N_{J}\left(J^{g}\right) \cap S=Q$ so for all $t \in T^{\#}, C_{S}(t) \subseteq T Q\langle x\rangle$. If $T^{u}=T$, then $u \in N_{S}(T)=T Q$. Write $u=t q, t \in T^{\#}$, $q \in Q$. Since u centralizes $Q, Q \subseteq M^{g y}$ whence Lemma 5.3 implies $Q \subseteq N_{G}\left(J^{g y}\right)$. It follows that $\left[Q, T^{y}\right]=1$ and so T^{y} centralizes t. Then $T^{y} \subseteq M^{g}$ and as $m\left(T^{y}\right)>1, T^{y}$ normalizes J^{g}, contrary to $T^{y} \nsubseteq W$. Thus $T^{u}=T^{x}$, that is, u is an involution in M^{g} interchanging J_{1}^{g} and J_{2}^{q} with $C_{G}(u) \subseteq M^{g y}$. Let $K=C_{J_{1}^{g} J_{2}^{g}}(u)^{\prime}$, so by Lemma 2.3(a),

$$
\left\{t t^{u} \mid t \in T\right\}=Q_{0} \subseteq K
$$

moreover, since $Q \subseteq V$, by symmetry $T \subseteq U\left(J^{g}\right)$ and hence this lemma shows $Q_{0} \subseteq U(K)$. Clearly $Q_{0} \subseteq Q$ as well. Now u centralizes some involution $z \in Z^{g}$, so $z \in M^{g y}$ and $[z, K]=1$. We show $K=\left(D^{g} \cap M^{g y}\right)^{(\infty)}$: for otherwise we must have $U\left(J^{g}\right) \subseteq M^{g y} ;$ by Lemma 5.3, $U\left(J^{g}\right)$ would normalize $U\left(J^{g y}\right)$ hence $\Gamma_{1, U(J g)}\left(U\left(J^{g y}\right)\right)$ would be a subgroup of $J^{g y} \cap M^{g}$ containing a fourgroup whereas $u \in\left(J^{g y} \cap M^{g}\right)-N\left(J^{g}\right)$, violating Lemma 5.3. This proves $K \unlhd C_{M g y}(z)$. Let

$$
X=U\left(J_{1}^{g y}\right) \cdot U\left(J_{2}^{g y}\right)
$$

and argue that $U(K)$ centralizes X : for if not, since X admits $\langle K, z\rangle$ and $K=O^{2}(K)$, by the $P \times Q$-lemma, K acts non-trivially on $C_{X}(z)$; but then
$U(K) \subseteq X$ and as $X^{\prime}=1,[U(K), X]=1$ contrary to assumption. Thus, in particular, Q_{0} centralizes X, so $X \subseteq M$. Since $M \neq M^{g y}($ as $y \in M, g \notin M)$ and $U\left(J^{g y}\right) \subseteq M$, Lemma 5.3 yields $U\left(J^{g y}\right) \subseteq N_{G}(J)$. By the maximality of $|T|$, $\left|U\left(J^{g y}\right)\right|=|V| \leq|T|$ so it follows that T centralizes V, contrary to a previous argument. This completes the proof of the lemma.

For the remainder of this section let $g \in G-M$ be such that $T \in S y l_{2}\left(J^{g} \cap N_{G}(J)\right) \quad$ with $\quad m(T) \geq 2$. Let $\quad T \subseteq S \in S y l_{2}(T J) \quad$ with $N_{S}(T) \in S y l_{2}\left(N_{T J}(T)\right), Q_{0}=N_{S}(T) \cap J$ and $V=U(J)$.

Lemma 5.7. T is abelian.
Proof. Since $[T, J] \neq 1$, by Lemma 4.2 of [3], there exists $x \in J$ such that

$$
T^{x} \subseteq S \quad \text { and } \quad\left[T, T^{x}\right] \subseteq T \cap T^{x}, T \neq T^{x}
$$

If $x \in M^{g}, x \notin N_{G}\left(J^{g}\right)$ so $T^{x} \subseteq J_{2}^{g}$ and $\left[T, T^{x}\right]=1$; if $x \notin M^{g}, T \cap T^{x}=1$ so again $\left[T, T^{x}\right]=1$. Now $T^{x} \subseteq T Q_{0}=T \times Q_{0}$ so as $T^{x} \cap Q_{0}=1, T Q_{0}=T^{x} Q_{0}$. Since both T^{x} and Q_{0} centralize $T, T \subseteq Z\left(T Q_{0}\right)$, as desired.

Note that Lemma 5.7 implies $V \nsubseteq M^{g}$, for otherwise as $m\left(V \cap N_{G}\left(J^{g}\right)\right) \geq 2$ and T was arbitrary, $V \cap N_{G}\left(J^{g}\right)$ would be an abelian subgroup of V of index ≤ 2, which is impossible.

Lemma 5.8. There exists $v \in V$ with $\Omega_{1}(T) \Omega_{1}\left(T^{v}\right)=\Omega_{1}(T) \times \Omega_{1}\left(T^{v}\right)=$ $\Omega_{1}\left(T Q_{0}\right)$.

Proof. Let $U=\Omega_{1}(T)$. Since as noted $V \nsubseteq M^{g},[U, V] \neq 1$. Thus there exists $x \in V$ with $U^{x} \neq U$ and $\left[U, U^{x}\right] \subseteq U \cap U^{x}$. If $U \cap U^{x}=1$, take $v=x$; otherwise $x \in M^{g}-N\left(J^{g}\right)$. In the latter case since J^{g} is not tightly embedded in $M^{g}, U \cap U^{x} \neq 1$, so $\left|U U^{x}\right|<|U|^{2}$. Thus if $U U^{x} \leq U V$, then $V \subseteq M^{g}$ which we have already seen to be impossible. Pick $v \in V$ with U^{v} normalizing $U U^{x}$, $U^{v} \nsubseteq U U^{x}$; hence $U^{v} \cap U=1$ and $U^{v} \subseteq M^{g}$. By Lemma 5.3, U^{v} normalizes J^{g}, hence normalizes $J^{g} \cap N_{s}(J)=T$. Since $T \subseteq Z\left(T Q_{0}\right), U^{v}$ centralizes U, as claimed.

To establish the remaining equality let $Q_{1}=[U, v] \cong U$ so $Q_{1} \subseteq Q_{0}$ and, by Lemma 5.3, $Q_{1} \subseteq N_{G}\left(J^{g}\right)$ whence $m\left(J \cap N_{G}\left(J^{g}\right)\right) \geq m\left(J^{g} \cap N_{G}(J)\right)$. However, g was arbitrary so we may apply these arguments to g^{-1} and $Q_{1}^{g^{-1}} \subseteq J^{g^{-1}} \cap$ $N_{G}(J)$ to get

$$
m\left(J^{g} \cap N_{G}(J)\right) \geq m\left(J \cap N_{G}\left(J^{g}\right)\right),
$$

whence (via Lemma 5.3) $Q_{1}=\Omega_{1}\left(Q_{0} \cap N_{G}\left(J^{g}\right)\right)=\Omega_{1}\left(Q_{0}\right)$, as desired.
Lemma 5.9. Let $U=\Omega_{1}(T), W=\Omega_{1}\left(T Q_{0}\right)$. If $y \in J$ with U^{y} normalizing W, then $U^{y} \subseteq W$ or for all $u \in U^{y \#}, U U^{u}=U \times U^{u}$.

Proof. Without loss of generality $U^{y} \subseteq S$. Assume $U^{y} \nsubseteq W$ and let $Q_{1}=\Omega_{1}\left(Q_{0}\right)$.

First, suppose there exists $u \in U^{y} \cap N_{S}(T)^{\#}$. Then $u \in \Omega_{1}\left(T Q_{0}\right)=W$ and so $W \subseteq C_{G}(u) \subseteq M^{g y}$. Since $g y \notin M$, by Lemma 5.3 (applied to $M^{h}, h^{-1}=g y$), $Q_{1} \subseteq N_{G}\left(J^{g y}\right)$. Since U^{y} normalizes $W \cap J=Q_{1}$, $\left[U^{y}, Q_{1}\right] \subseteq Q_{1} \cap J^{g y}=1$. Write $u=a q, a \in U^{\#}, q \in Q_{1}$, whence U^{y} centralizes a. Thus $U^{y} \subseteq M^{g}$ and Lemma 5.3 gives $U^{y} \subseteq N_{G}\left(J^{g}\right)$, so U^{y} normalizes $J^{g} \cap N_{S}(J)=T$, contrary to $U^{y} \nsubseteq \Omega_{1}\left(N_{S}(T)\right)$. This proves $U^{y} \cap N_{S}(T)=1$.

Assuming the lemma to be false, let $u \in U^{y}$ with $1 \neq U \cap U^{u}$ and with $u \in M^{g}-N_{G}\left(J^{g}\right)$. Let $K=C_{J_{1}^{g} J_{2}^{g}}(u)^{\prime}$, so $K / Z(K) \cong J / Z(J)$ and

$$
K \subseteq C_{G}(u) \subseteq M^{g y}
$$

Also, $M, M^{g}, M^{g y}$ are distinct conjugates of M. As in the proof of Lemma 5.6, if u centralizes a fourgroup, Z_{8}^{8}, in Z^{g}, then $Z 8$ acts on $Z^{g y}$ and $\Gamma_{1, Z_{0}^{g}}\left(Z^{g y}\right)=Z^{*}$ has rank ≥ 2; so $m\left(Z^{*}\langle u\rangle\right)>1, Z^{*}\langle u\rangle \subseteq M^{g}$ but $u \notin N_{G}\left(J^{g}\right)$, contrary to Lemma 5.3 (applied with suitable change of coordinates). Thus $C_{z 9}(u)=\langle z\rangle$. Similarly, $U\left(J^{g}\right) \nsubseteq M^{g y}$ (use the remark preceding Lemma 5.8) so

$$
K=\left(D^{g} \cap M^{g y}\right)^{(\infty)} \unlhd C_{M \theta\rangle}(z) .
$$

Let $X=U\left(J_{1}^{g y}\right) U\left(J_{2}^{g y}\right)$.
We next prove $U(K)^{\prime}$ centralizes X : this is clear if $[K, X]=1$; if $[K, X] \neq 1$, by the $P \times Q$ lemma, K acts non-trivially on $C_{X}(z)$, from which it follows that $U(K) \subseteq X$ and the claim is true by virtue of $X^{\prime} \subseteq Z(X)$. Now $U(K)^{\prime} \subseteq Z\left(D^{g}\right)$, however, as noted after Lemma 5.7, $U\left(J^{g y}\right) \nsubseteq M^{g}$, so we must have $U(K)^{\prime}=1$. But for $a \in U\left(J^{g}\right)^{\prime}$, by Lemma 2.3 , $a a^{u} \in U(K)^{\prime}$ whence $a a^{u}=1$, i.e. $\left[U\left(J^{g}\right)^{\prime}, u\right]=1$. Since $\langle z\rangle=C_{Z g}(u), V \cong E Y Z(V), E \cong \operatorname{Ex~sp~} 2^{m}$.

Now $m(U) \geq 2$ so there exists $a \in U$ such that $b=a a^{u} \neq 1$. Note that $Q_{1} \subseteq V$ and $m\left(Q_{1}\right)=m(U)$ so by Lemma 5.8 applied to g^{-1} we may assert $U \subseteq V^{g}$. Thus $b \in U(K)$ and also $b=[a, u] \in Q_{1}$. Again by the $P \times Q$ lemma either $U(K) \subseteq X$ or $[U(K), X]=1$, so in either case b induces inner automorphisms on $U\left(J^{g y}\right)$. Let $E_{0}=C_{E g y}(b)$, so $E_{0} \subseteq M$. By Lemma 5.7, $E_{1}=E_{0} \cap$ $N_{G}(J)$ is abelian, hence E has an abelian subgroup E_{1} of index ≤ 4. This forces $E \cong \operatorname{Ex~sp} 2^{5}$. Moreover, by Lemma $5.3, \Omega_{1}\left(C_{V} g y(b)\right)$ is abelian and so $E=V$, $E \cong Q_{8} Y D_{8}, E_{0} \cong Z_{2} \times Q_{8}, E_{1} \cong Z_{2} \times Z_{4}$ and b induces an automorphism of E corresponding to an involution in E. Furthermore, $J / O_{2}(J) \cong A_{5}, \tilde{U}(J)$ is the "permutation module" of dimension 4. But then for each involution $e \in E$, a Sylow 2-subgroup F of $C_{J}(e)$ has index 2 in a Sylow 2-subgroup of J containing it, F covers a Sylow 2-subgroup of $J / O_{2}(J)$ and so F has no abelian subgroup of index 2 (as V / V^{\prime} is a free $F_{2}\left(F / F \cap O_{2}(J)\right)$-module). Since $b \in X$, however, b induces such an inner automorphism on $J^{g y}$ and so Lemma 5.7 is violated for $J^{g y}$ in place of J^{g}. This contradiction establishes Lemma 5.9.

For the remainder of the proof of Theorem C assume g is chosen subject to the above conditions with $|T|$ as large as possible. Let $Q=Q_{0} \cap N_{G}\left(J^{g}\right)$ so

$$
Q \in \operatorname{Syl}_{2}\left(J \cap N_{G}\left(J^{g}\right)\right)
$$

and by maximality of $|T|,|Q| \leq|T|$. Let U, W be as in Lemma 5.9.
Lemma 5.10. (a) $|Q|=|T|$.
(b) There exists $x \in S \cap M^{g}$ with $x \notin Q$.
(c) There exists $d \in J$ with $U^{d} \subseteq N_{S}(W), U^{d} \nsubseteq W$.
(d) With x as in (b), $[U, x]=1$.

Proof. We first prove (c). Suppose to the contrary W is weakly closed in $T J$ and set $\overline{T J}=T J / O_{2}(J)$, so \bar{U} is weakly closed in $\overline{U J}$ and $\bar{U} \cap \bar{J}=\overline{1}$. By Lemma 4.2 of $[3],[\bar{U}, \bar{J}]=\overline{1}$, whence $[U, J] \subseteq V$. Since U commutes with the irreducible action of \bar{J} on $V / Z(V),[U, V] \subseteq Z(V)$. Since

$$
V=[V, J] \quad \text { and } \quad \operatorname{Hom}_{\mathrm{F}_{2} J}\left(V / Z(V), Z(V) / V^{\prime}\right)=0
$$

we have $[U, V] \subseteq V^{\prime}$. Finally, since $[U, V] \subseteq Z(V),\left[U, V^{\prime}\right]=1$. Now V^{\prime} is elementary abelian, so $V^{\prime} \subseteq \Omega_{1}\left(Q_{0}\right)$, whence $m(U) \geq m\left(V^{\prime}\right)$. If, however, $m(U)>m\left(V^{\prime}\right)$, since each $w \in V$ induces a homomorphism

$$
[\quad, w]: U \rightarrow V^{\prime}
$$

we would have $V \subseteq \Gamma_{1, U}(V) \subseteq M^{g}$, a contradiction as usual. Thus $m(U)=$ $m\left(V^{\prime}\right)$ and so $W=U \times V^{\prime}$. But then $U V^{\prime} / V^{\prime}$ is weakly closed in $U J / V^{\prime}$, so by Lemma 4.2 of $[3],[U, J] \subseteq V^{\prime} \subseteq Z(J)$, whence $[U, J]=1$, a contradiction. This proves (c).

To prove (a) suppose $|Q|<|T|$, let $Q^{*}=S \cap J \cap M^{g}$ and let U^{d} be as given by (c). For $u \in U^{d \#}$, by Lemma 5.9, $T \cap T^{u}=1$. However, T^{u} centralizes U^{u} and $W \cap J$ and so centralizes $U \subseteq U^{u} \times(W \cap J)=W$, that is, $T^{u} \subseteq T Q^{*}=$ $S \cap M^{g}$. Since $T \cap T^{u}=1,\left|Q^{*}\right| \leq|T|$ and $[T, u] \subseteq Q^{*}$, we must have $Q^{*}=\{[t, u] \mid t \in T\}$ and so Q^{*} is an abelian group inverted by u and $Q^{*} \cong T$. Since u was arbitrary and $m\left(U^{d}\right) \geq 2, Q^{*}$ is elementary. But then by Lemma 5.3 (and symmetry), $Q^{*} \subseteq Q$, a contradiction.

In part (b), if no such x exists it follows that $T\left(J^{g} \cap J\right)$ is tightly embedded in $T J$ and Lemma 5.1 is violated in view of $[T, J] \neq 1$.

Finally, to prove (d) let x be as in (b) and assume there exists $t \in U^{\#}$ with $[x, t] \neq 1$. Since $\Omega_{1}\left(Q_{0}\right) \cong U \cong U^{d}$, by Lemma 5.9 there exists $u \in U^{d \#}$ with $t t^{x}=t t^{u}$, where U^{d} is as given by part (c). Then $x u \in C_{G}(t) \subseteq M^{g}$ and so $u \in M^{g}$. Since J^{g} is not tightly embedded in $M^{g}, U \cap U^{u} \neq 1$, contrary to Lemma 5.9.

We are now in a position to complete the proof of Theorem C. Notice that by part (a) of Lemma 5.10 we are entitled to continue to apply results for T, J to Q, J^{g} (using g^{-1} in place of g). In particular, since the element x described in (b) normalizes $T Q, T Q$ contains a Sylow 2-subgroup of $D^{g} \cap N_{G}(J)$. By this symmetry $T Q$ also contains a Sylow 2-subgroup of $D \cap N_{G}\left(J^{g}\right)$, whence

$$
\begin{aligned}
& T Q \in S y l_{2}\left(\left(D \cap N_{G}\left(J^{g}\right)\right)\left(D^{g} \cap N_{G}(J)\right)\right), \\
& T Q\langle x\rangle \in S y l_{2}\left(\left(D \cap M^{g}\right)\left(D^{g} \cap N_{G}(J)\right) .\right.
\end{aligned}
$$

Let $T Q\langle x\rangle \subseteq A \in \operatorname{Syl}_{2}\left(\left(D \cap M^{g}\right)\left(D^{g} \cap M\right)\right.$, so $|A: T Q\langle x\rangle| \leq 2$. By Lemma
5.10(b) (applied to Q, J^{g}), $A \nsubseteq N_{G}(J)$ and there exists $s \in N_{D^{g}}(J)$ with s normalizing $T Q, s^{2} \in T Q$, so $A=T Q\langle s, x\rangle$. Moreover, s centralizes $Q_{1}=\Omega_{1}(Q)$ by Lemma 5.10(d), so $Q_{1} \subseteq Z(D)$ and hence $\left[Q_{1}, x\right]=1$. Similarly, $[U, s]=1$, and so $W \subseteq Z(A)$.

Note that $C_{G}(W) \subseteq M \cap M^{g}$. Let U^{d} be as described by Lemma $5.10(\mathrm{c})$, so $U^{d} \subseteq A D$. Since $A \in S y l_{2}\left(C_{A D}(W)\right)$ we may pick $d_{1} \in D$ such that

$$
U^{d_{1}} \subseteq N_{G}(W) \cap N_{G}(A) \quad \text { with } U^{d_{1}} \nsubseteq W
$$

and for all $u \in U^{d_{1}^{*}},[U, u]=Q_{1}$. By Lemma $5.10(\mathrm{c})$ applied to Q (since $\left.A \in S y l_{2}\left(C_{A D g}(W)\right)\right)$ there exists $d_{2} \in D^{g}$ such that $Q_{1}^{d_{2}} \subseteq N_{G}(A) \cap N_{G}(W)$ and for all $v \in Q_{1}^{d_{2}},\left[Q_{1}, v\right]=U=\Omega_{1}(T)$. Let

$$
N=\left\langle A, U^{d_{1}}, Q_{1}^{d_{2}}\right\rangle, \quad \tilde{N}=N / C_{N}(W)
$$

and note that N is transitive on $W^{\#}$ so $O_{2}(\widetilde{N})=$ I. It follows from Theorem 2 of [18] that $\tilde{N} \cong L_{2}(q), q=|U|$ and W is the natural module for \tilde{N}.

First note that A is non-abelian, for $T \neq T^{x}$ and $\langle T, x\rangle \subseteq A$.
Next recall that $U^{d} \subseteq T J$ so U^{d} normalizes $A \cap T J=T Q\langle x\rangle$. If for all $u \in U^{d^{*}}, T^{u} \subseteq T Q$, then $Q=[T, u]$ is abelian and inverted by each $u \in U^{d^{*}}$. Since $m(U) \geq 2, Q$ is elementary and hence so is $T \cong[T, u]$. Thus $T Q=W$ is a central subgroup of A of index 4 and so A^{\prime} is cyclic. Since \tilde{N} is transitive on W^{*}, $A^{\prime}=1$, a contradiction. This proves there exists $u \in U^{d *}$ such that $(T Q)^{u} \subseteq$ $T Q\langle x\rangle$ and $(T Q)^{u} \neq T Q$. Symmetrically (or because we could now choose g to be an involution) there exists $v \in N$ such that

$$
(T Q)^{v} \subseteq T Q\langle s\rangle \quad \text { and } \quad(T Q)^{v} \neq T Q
$$

Thus

$$
\left|T Q:(T Q)^{u} \cap(T Q)^{v}\right| \leq 4 \quad \text { and } \quad A=\left\langle T Q,(T Q)^{u},(T Q)^{v}\right\rangle
$$

whereupon as $T Q$ is abelian $|A: Z(A)| \leq 16$.
Next we decide $Z(A) \subseteq T Q$. Suppose this is not the case and let $z \in Z(A)-T Q$. Since $A^{\prime} \neq 1,|A: Z(A) T Q|=2$ so either $z \notin T Q\langle x\rangle$ or $z \notin T Q\langle s\rangle$. Without loss of generality $z \notin T Q\langle x\rangle$, so $A=\langle T Q, x, z\rangle$. Since $Q\langle x\rangle=T Q\langle x\rangle \cap J \unlhd T Q\langle x\rangle$, it follows that $(Q\langle x\rangle)^{s}=Q\langle x\rangle$, whereas $J \neq J^{s}$ and, by Theorem A, $Q\langle x\rangle \nsubseteq Z(J)$, a contradiction.

Now \tilde{N} acts on $A / Z(A)$ and if \tilde{N} centralizes $A / Z(A)$, then \tilde{N} normalizes $T Q$; but then $U^{d_{1}}$ normalizes $T Q$ and a previous argument leads to a contradiction. Since $\tilde{N} \cong L_{2}(q), q \geq 4$, the only possibility is $A / Z(A) \cong E_{16} \cong W$. But W is the natural $F_{2} L_{2}(4)$-module and the map $\left(a_{1}, a_{2}\right) \rightarrow\left[a_{1}, a_{2}\right]$ induces a non-trivial $F_{2} \tilde{N}$-module homomorphism from $(A / Z(A)) \otimes_{\mathbf{F}_{2}}(A / Z(A))$ to W, whereas for either of the two possible module structures for $A / Z(A)$ no such homomorphism exists (see, for example, Lemma 2.2 of [26]). This contradiction completes the proof of Theorem C.

VI. The proofs of Theorems D, E, F and G

We first study the following setup:
(6a) G is a finite group, S a 2 -subgroup of G, L a product of components of $C_{G}(S) ;$
(6b) V is a faithful $\mathrm{F}_{2} G$-module;
(6c) as an $\mathrm{F}_{2} L$-module V has a unique non-trivial irreducible composition factor.

Under these hypotheses, for every subgroup H of G let $\tilde{V}(H)=$ $[V, H] / C_{[V, H]}(H)$, so $\widehat{V}(L)$ is a non-trivial irreducible $\mathbf{F}_{2} L$-module.

Lemma 6.1. If $s \in S, L$ centralizes $[V, s]$ and $V / C_{V}(s)$.
Proof. By induction on $|s|, L$ centralizes $\left[V, s^{2}\right]$. Let $\bar{V}=V /\left[V, s^{2}\right]$ and so s induces an automorphism of order 1 or 2 on \bar{V}. The map $\bar{V} \rightarrow \bar{V}$ by

$$
\bar{v} \rightarrow[\bar{v}, s]
$$

is an $\mathbf{F}_{2} L$-module homomorphism and so $\bar{V} / C_{(}(s)$ and $[\bar{V}, s]$ are isomorphic $\mathbf{F}_{2} L$-modules. Since $[\bar{V}, s] \subseteq C_{D}(s)$, property (6 c) forces them to be trivial $\mathbf{F}_{2} L$-modules. Thus

$$
[[V, s], L] \subseteq\left[V, s^{2}\right]
$$

so since $[[V, s], L, L]=1$, the 3 subgroups lemma forces $[[V, s], L]=1$.
Similarly, by induction, $[V, L] \subseteq C_{V}\left(s^{2}\right)$ so the above argument applied to $C_{V}\left(s^{2}\right)$ in place of \bar{V} gives $[V, L] \subseteq C_{V}(s)$, as claimed.

Lemma 6.2. If SL normalizes an odd order subgroup K of G, then L centralizes K.

Proof. By induction a minimal counterexample G satisfies $G=S L K, K$ (being solvable) is either an elementary abelian or special p-group of exponent p, for some prime $p, S L$ acts irreducibly on $K / \phi(K)$ and $[L, \phi(K)]=1$.
Let $V_{0}=[V, K], \bar{G}=G / C_{G}\left(V_{0}\right)$. Note that if S centralizes V_{0}, since G is faithful on V and $[S, K]$ centralizes V_{0} and $C_{\downarrow}(K),[S, K]=1$; but then $[L, K]=1$ as $L \unlhd C_{G}(S)$, a contradiction. This proves $\bar{S} \neq \overline{1}$. Since K is faithful on V_{0}, if J is a component of $C_{L}\left(V_{0}\right)$, then, by (6 c), $\left[L, V_{0}\right]=1$, so $K=[K, L] \subseteq C_{G}\left(V_{0}\right)$, a contradiction. Thus $C_{G}\left(V_{0}\right) \subseteq S Z(L)$ so $\bar{L} \unlhd C_{G}(\overline{\bar{S}})$ and \bar{L} acts non-trivially on \bar{K}. By minimality of $G, C_{G}\left(V_{0}\right)=1$ and we may assume $V=V_{0}$.
Now let s be an involution in $Z(S)$. By the irreducible action of $S L$ on $K / \phi(K), s$ either inverts or centralizes $K / \phi(K)$. Assume the latter happens so that s centralizes K and so $s \in Z(G)$. But then $[V, s]$ is a non-trivial $F_{2} G$-submodule which, by Lemma 6.1, is centralized by L (hence also by K),
contrary to $V=[V, K]$. Thus s inverts $K / \phi(K)$, so $C_{G}(s) \subseteq S L \phi(K) \subseteq N_{G}(L)$. By minimality of $G, S=\langle s\rangle$.
If K is abelian, since s inverts K, s acts freely on V i.e. $[V, s]=C_{V}(s)$ and it follows from Lemma 6.1 and the 3 subgroups lemma that L centralizes V, a contradiction. Thus K is special and since s inverts $K / \phi(K), s$ centralizes $\phi(K)$.

Let $D=\phi(K)$ and argue that $|D|=p, V=[V, D]$. For let V_{0} be an irreducible $\mathrm{F}_{2} G$-submodule of $[V, D], D_{0}=C_{D}\left(V_{0}\right)$ and $V_{1}=C_{V}\left(D_{0}\right) \cap[V, D]$. Thus $\left|D: D_{0}\right|=p, \quad V_{1}=\left[V_{1}, D / D_{0}\right]$ and since $D_{0} \subseteq Z(G), V_{1}$ admits G. If $\bar{G}=G / C_{G}\left(V_{1}\right)$, then $\bar{S} \cong S, \bar{K} \cong K / D_{0}$ and \bar{L} is a central quotient of L, whence \bar{G}, V_{1} is also a counterexample. Thus $\bar{G}=G$ and we may assume $V=V_{1}$, as desired.

Now if e is an element of K of order p inverted by s, argue that s centralizes $C_{V}(e)$. For otherwise $C_{V}(e) \cap[V, s] \neq 0$ and so by Lemma 6.1,

$$
C_{V}(e) \cap C_{V}(L) \neq 0
$$

but since $e \in K-\phi(K)$ and L acts irreducibly on $K / \phi(K), K=\left\langle e^{L}\right\rangle$, contrary to $V=[V, K]$. In particular, if $|K|>p^{3}$, since K is extra-special of exponent p, there exists $E \cong Z_{p} \times Z_{p}$, with $E \subseteq K$ and E inverted by s; since E acts faithfully on V it follows easily by Schur's lemma that for some $e \in E^{\#}, s$ does not centralize $C_{V}(e)$, contrary to the previous argument. This reduces to the case $|K|=p^{3}$ and so $L=L_{0} L_{1}, L_{1}=C_{L}(K), L_{0} \cong S L_{2}(p), p>3$.

Let $E \subseteq K$ with $E \cong Z_{p} \times Z_{p}$, let $\mathscr{E}_{1}(E)=\left\{E_{1}, E_{2}, \ldots, E_{p}, D\right\}$ with E_{1} inverted by s, let $V_{i}=C_{V}\left(E_{i}\right), 1 \leq i \leq p$ and let $W=\left[V, E_{1}\right]$, so $V=V_{1} \oplus W$. Since K acts transitively by conjugation on $\left\{E_{1}, \ldots, E_{p}\right\}, \operatorname{dim}_{\mathbf{F}_{2}} V_{i}=\operatorname{dim}_{\mathbf{F}_{2}} V_{1}$, $2 \leq i \leq p$. Because D is fixed point free on $V, V_{i} \cap V_{j}=0, i \neq j$, and since each V_{i} admits $E_{1}, V_{i} \subseteq W, 2 \leq i \leq p$. Thus since $V_{2} \oplus V_{3} \subseteq W, \operatorname{dim} W>\operatorname{dim} V_{1}$, whence $\operatorname{dim} W>\frac{1}{2} \operatorname{dim} V$. Now let q be a prime divisor of $\left|L_{0}\right|$ with $q \neq 2, p$ and let x be an element of L_{0} of order q. As noted earlier s centralizes V_{1}, so

$$
[V, s]=[W, s] \quad \text { and } \quad V / C_{V}(s) \cong W / C_{W}(s)
$$

moreover, s inverts E_{1} so $C_{W}(s)=[W, s]$. By Lemma 6.1, x centralizes $[V, s]$ and $V / C_{V}(s)$ so it follows that $\operatorname{dim} C_{V}(x) \geq \operatorname{dim} W>\frac{1}{2} \operatorname{dim} V$. Since x is not a scalar transformation on $K / \phi(K)$, there exists $k \in K-\phi(K)$ with $\left\langle k, k^{x}\right\rangle$ covering $K / \phi(K)$, whence $K \subseteq\langle x, x k\rangle$. Because $\langle K, x\rangle / \phi(K)$ is a Frobenius group and $x k \phi(K)$ is not in the Frobenius kernel, $|x k \phi(K)|=q$. Thus if x_{1} is an element of order q in the coset $x k \phi(K), K \subseteq\left\langle x, x_{1}\right\rangle$. Moreover, $\langle x\rangle$ is conjugate in $K\langle x\rangle$ to $\left\langle x_{1}\right\rangle$ so by dimension counting $\left\langle x, x_{1}\right\rangle$ has a non-zero fixed point on V, contrary to $C_{V}(K)=0$. This completes the proof of the lemma.

We now list some additional hypotheses we will be working under:
(6d) V is an irreducible $\mathrm{F}_{2} G$-module;
(6e) $G=\left\langle L^{E(G)}\right\rangle S$.

Note that by the ordinary L-balance theorem for components, Theorem 3.1 of [23], and by Lemma 6.2, $G=E(G) \cdot S$.

Lemma 6.3. If H_{0} is a subgroup of G containing $L S, H=\left\langle L^{E\left(H_{0}\right)}\right\rangle S$, and W is a non-trivial irreducible $\mathrm{F}_{2} H$-constituent of V, let $\bar{H}=H / C_{H}(W)$; then $(\bar{H}, \bar{L}, \bar{S}, W)$ satisfy (6a)-(6e) in place of (G, L, S, V) and $E(\bar{H})$ is isomorphic to a central quotient of $E(H)$.

Proof. Clearly only (6a) needs verifying to confirm the first assertion. Again by the L-balance theorem $L \subseteq E(H)$ so if K_{1}, \ldots, K_{n} are the components of $E(H)$,

$$
K_{1} \cdots K_{n}=\left\langle L^{E(H)}\right\rangle=\left\langle L^{E(H) S}\right\rangle
$$

If $C_{H}(W) \cap E(H) \nsubseteq Z(E(H))$, there exists i such that $K_{i} \subseteq C_{H}(W)$; but then $\left\langle K_{i}^{H}\right\rangle$ contains some component J of L so as $J \subseteq C_{H}(W)$, by $(6 \mathrm{c}), L \subseteq C_{H}(W)$, whence

$$
E(H)=\left\langle L^{H}\right\rangle \subseteq C_{H}(W)
$$

contrary to W being a non-trivial $\mathbf{F}_{2} H$-constituent. This proves $E(\bar{H})$ is a central quotient of $E(H)$. It remains to show \bar{L} is subnormal in $C_{H}(S)$, for which it suffices to show $L \unlhd \unlhd N_{H}\left(S C_{H}(W)\right)$. But

$$
\left[C_{H}(W), L\right] \subseteq Z(E(H))
$$

so as $\left[C_{H}(W), L, L\right]=1, \quad\left[C_{H}(W), L\right]=1$, hence $L \unlhd \unlhd C_{H}\left(S \cdot C_{H}(W)\right) \subseteq$ $C_{H}(S)$, as needed.

Lemma 6.4. Let D be a semisimple subgroup of G. Assume $C_{G}(D)$ is tightly embedded in G with $N_{G}\left(C_{G}(D)\right)=N_{G}(D)$ and for all $g \in G-N_{G}(D),\left[D, D^{g}\right] \nsubseteq$ $D \cap D^{g}$. For any involution $x \in C_{G}(D)$ assume D centralizes $[V, x]$ and that $D \unlhd C_{G}(v)$, for $v \in[V, x]-\{0\}$. Let z_{1}, z_{2} be involutions in $C_{G}(D), h \in G$; then the following hold:
(1) if $\left\langle z_{1}, z_{2}^{h}\right\rangle$ is a 2-group, either $z_{2}^{h} \in N_{G}(D)$ or $z_{1} \in N_{G}\left(D^{h}\right)$;
(2) if $\left\langle z_{1}, z_{2}^{h}\right\rangle \cong D_{4 k}, k$ odd $>1, z_{2}^{h} \in C_{G}(D)$.

Proof. To prove (1) suppose $\left\langle z_{1}, z_{2}^{h}\right\rangle$ is a 2-group $z_{2}^{h} \notin N_{G}(D)$, and $\left|\left\langle z_{1}, z_{2}^{h}\right\rangle\right|$ is minimal subject to these conditions. Set $a=z_{1}, b=z_{2}^{h}, t=a b$, so $t \notin N_{G}(D)$ but $t^{2} \in N_{G}(D)$; moreover, as $C_{G}(a) \subseteq N_{G}(D),|t|>2$. Let $U=C_{V}\left(t^{2}\right)$; since $\langle t\rangle$ acts faithfully on V, by looking at this representation of t in Jordan canonical form one sees that t acts non-trivially on U, hence one of a, b does also. Since $\langle a, b\rangle^{h^{-1}}$ is also a minimal counterexample, we may replace a, b by $a^{h^{-1}}, b^{h^{-1}}$ if necessary to assume a acts non-trivially on U. Then $[U, a]=\left[U, a t^{2}\right]=\left[U, a^{t}\right]$, so for $v \in[U, a]-\{0\}, D, D^{t} \unlhd C_{G}(v)$. By hypothesis therefore $D=D^{t}$, a contradiction.

To prove (2) suppose

$$
\left\langle z_{1}, z_{2}^{h}\right\rangle \cong D_{4 k}, \quad k \text { odd }>1
$$

and let $a=z_{1}, b=z_{2}^{h},\langle x\rangle=O(\langle a, b\rangle)$, and let $\langle t\rangle=Z(\langle a, b\rangle)$. Let

$$
U=C_{V}(t) \cap[V, x]
$$

so $U \neq 0$ by the $P \times Q$ lemma and $\langle a, b\rangle$ acts on U. Since x acts Frobeniusly on U and a inverts $x,[U, a] \neq 0$. Thus $[U, a]=[U, a t] \neq 0$ and $a t=b^{x_{1}}=z_{2}^{h x_{1}}$, for some $x_{1} \in\langle x\rangle$. As before, $h x_{1} \in N_{G}(D)$, so $t \in C_{G}(D)$. Thus

$$
\langle a, b\rangle \subseteq C_{G}(t) \subseteq N_{G}(D)
$$

so $x_{1} \in N_{G}(D)$ and therefore $h \in N_{G}(D)$, as desired.
THEOREM 6.5. Assume (6a)-(6e) hold and also that $L / Z(L) \cong \Omega_{4}^{+}\left(2^{n}\right)$ and $\tilde{V}(L)$ is the natural 4-dimensional module for $L / Z(L)$ viewed as a module over \mathbf{F}_{2}; then $G=L$.

Proof. Note that by (6 b) and (6 d$), O_{2}(G)=1$ so (6e) implies

$$
L=G \Leftrightarrow L \unlhd \unlhd G \Leftrightarrow S=1
$$

Assume G is a minimal counterexample and let $V_{0}=[V, L], V_{1}=C_{V}(L)$. Since

$$
\Omega_{4}^{+}\left(2^{n}\right) \cong L_{2}\left(2^{n}\right) \times L_{2}\left(2^{n}\right)
$$

let L_{1}, L_{2} be the components of L, so $Z(L)$ is a 2-group. By Lemma 2.7, $V=V_{0} \oplus V_{1}$ where $V_{0} \cong \tilde{V}(L)$ as $\mathbf{F}_{2} L / Z(L)$-modules. Since $Z(L)$ centralizes V_{0} and V_{1}, by $(6 \mathrm{~b}), Z(L)=1$ and so $L=L_{1} \times L_{2}$. Also, since S centralizes V_{0}, $V_{0} \neq V$ so $N_{G}\left(V_{i}\right) \subset G, i=0,1$.

Let s be an involution in $Z(S), H_{0}=C_{G}(s), H=\left\langle L^{E\left(H_{0}\right)}\right\rangle S$. Since $H \subset G$, by minimality of G, Lemma 6.3 forces $L=H \unlhd \unlhd H_{0}$, so by the arbitrary nature of S we may assume $S=\langle s\rangle$. Let $S \subseteq S^{*} \in S y l_{2}\left(C_{G}(L)\right)$, s^{*} an involution in $Z\left(S^{*}\right)$. The same argument shows $L \unlhd \unlhd C_{G}\left(s^{*}\right)$, whence we may assume $s=s^{*}$. Now applying this argument to any involution t in S^{*} we obtain $L \unlhd \unlhd C_{G}(t)$, so $L \leq \leq C_{G}\left(t_{1}\right)$, for all involutions $t_{1} \in C_{G}(L)$. Finally, this argument shows that if H is any proper subgroup of G containing L with $\left|C_{H}(L)\right|$ even, then $L \leq \leq H$. In particular, $L \unlhd \unlhd N_{G}\left(V_{1}\right)$ and $L \unlhd N_{G}\left(V_{0}\right)$.

Next suppose L^{g} normalizes L, for some $g \in G$; we prove either $L=L^{g}$ or $\left[L, L^{g}\right]=1$. Notice that V_{0}^{g} is the unique non-trivial irreducible constituent of L^{g} on V^{g} and L^{g} acts on V_{0}, V_{1}, so either $V^{g} \subseteq V_{0}$ or $V^{g} \subseteq V_{1}$. In the latter case L^{g} must centralize V_{0} so since L, L^{g} commute in their action on V, by (6 b), $\left[L, L^{g}\right]=1$. If $V_{0}^{g} \subseteq V_{0}, V_{0}^{g}=V_{0}$ and so as $L \leq N_{G}\left(V_{0}\right), L=L^{g}$. This establishes the initial claim of the paragraph.

Thus L acts like a single component so if A_{1}, \ldots, A_{r} are a maximal set of pairwise commuting conjugates of L with $L=A_{1}$ and $D=A_{1} \cdots A_{r}$, the argument of Theorem 9.7 of [3] verifies the hypotheses of Theorem 5 of [3]. Since $m(L)>1$ and $O_{2}(G)=1$ Theorem 5 of [3] gives that one of the following holds:
(1) $D=G$;
(2) $C_{G}(L)$ is tightly embedded in G with $N_{G}\left(C_{G}(L)\right)=N_{G}(L)$ and for all $g \in G-N_{G}(L),\left[L, L^{g}\right] \nsubseteq L \cap L^{g}$.

If $D=G, L \unlhd \unlhd G$ which we have seen means G is not a counterexample; thus (2) holds and so Lemma 6.4 applies, via Lemma 6.1, to $D=L$.

If $C_{G}(L)$ has 2-rank 1, let z be an involution in $C_{G}(L)$. It follows from Lemma 6.4 that z^{G} is a class of odd transpositions in G, and, by (6 e), we may assume

$$
G=E(G)\langle z\rangle
$$

Since $C_{G}(z)$ has a "standard subgroup" of type $L_{2}\left(2^{n}\right) \times L_{2}\left(2^{n}\right)$ and $G / S(G)$ is described by the Main Theorem of [2], (and the components of the centralizers of the odd transpositions are described in this paper) the only candidate is

$$
G / S(G) \cong O_{5}(5), \quad L / Z(L) \cong L_{2}(4) \times L_{2}(4)
$$

However, since $O_{2}(G)=1$ we would have $G \cong O_{5}(5)$ and since one easily sees that $O_{5}(5)$ contains no subgroup isomorphic to $L_{2}(4) \times L_{2}(4)$ we must have

$$
L \cong S L_{2}(5) Y S L_{2}(5)
$$

contrary to $Z(L)=1$. This argument proves $C_{G}(L)$ has 2-rank >1.
It follows from Theorem 3 of [4] that Sylow 2-subgroups of $C_{G}(L)$ are not non-abelian dihedral groups nor are they weakly closed fourgroups. Thus by Theorems 2 and 3 of [3] there exists $g \in G-N_{G}(L)$ such that $C_{G}(L)^{g} \cap N_{G}(L)$ contains a fourgroup, W. Since

$$
L \nsubseteq N_{G}\left(L^{g}\right) \quad \text { but } \quad \Gamma_{1, W}(L) \subseteq N_{G}\left(L^{g}\right)
$$

by Lemma 2.8 of [3], W normalizes L_{1} and L_{2}; moreover, the argument of Lemma 3.5 of [3] is easily modified to show that if some $w \in W$ induces an outer automorphism on L_{i}, for some i, then

$$
L_{i} \subseteq \Gamma_{1, W}\left(L_{i}\right) \subseteq N_{G}\left(L^{g}\right)
$$

Suppose say $L_{1} \subseteq N_{G}\left(L^{g}\right)$. Since W centralizes an involution, a, in $C_{G}(L), L_{1}$ is a component of $C_{G}(a) \cap N_{G}\left(I^{g}\right)$ so by the L-balance theorem $L_{1} \subseteq L\left(N_{G}\left(L^{g}\right)\right)$; more precisely, by Lemma 2.7(2) of [3] either

$$
\left[L^{g}, L_{1}\right]=1, \quad L_{1} \in\left\{L_{1}^{g}, L_{2}^{g}\right\} \quad \text { or } \quad L_{1}^{g a}=L_{2}^{q} \text { with } L_{1}=C_{L_{1}^{g} L_{2}^{g}}(a)
$$

In the first two instances $L^{g} \subseteq N_{G}\left(L_{1}\right) \subseteq N_{G}\left(\left[V, L_{1}\right]\right)=N_{G}\left(V_{0}\right)=N_{G}(L)$, a contradiction. If L_{1} lies on the diagonal of L^{g}, note that in fact W centralizes a fourgroup U in $C_{G}(L)$ which we may assume contains a, so again by Lemma 2.8 of [3],

$$
L^{g}=\Gamma_{1, U}\left(L^{g}\right) \subseteq N_{G}(L)
$$

a contradiction. Similarly $L_{2} \nsubseteq N_{G}\left(L^{g}\right)$ and so each involution in W induces a non-trivial inner automorphism on each L_{i}.

Now L contains a diagonal subgroup, L_{0}, the centralizer of a transvection in $\mathrm{O}_{4}^{+}\left(2^{n}\right)$, satisfying:
(i) $L_{0} \cong L_{2}\left(2^{n}\right)$;
(ii) $C_{V_{0}}\left(L_{0}\right) \subseteq\left[V_{0}, L_{0}\right]$;
(iii) $\operatorname{dim}_{\mathbf{F}_{2}}\left[V_{0}, L_{0}\right]=3 n, \operatorname{dim} C_{V_{0}}\left(L_{0}\right)=n$;
(iv) V_{0} is an indecomposable $\mathbf{F}_{2} L_{0}$-module with $\left[V_{0}, L_{0}\right] / C_{V_{0}}\left(L_{0}\right)$ the standard $\mathbf{F}_{2} L_{2}\left(2^{n}\right)$-module for L_{0}.

Since the diagonal involutions in L are all conjugate and each $w \in W^{*}$ induces an inner automorphism on L corresponding to a diagonal involution we may replace $C_{G}(L)^{g}$ by an L-conjugate so that for some $w \in W^{\#}, w \in L_{0} C_{G}(L)$. Since all non-trivial odd order elements of L_{1} act Frobeniusly on V_{0} and w inverts one of these,

$$
\operatorname{dim}\left[V_{0}, w\right]=2 n,
$$

and, of course, $\left[V_{0}, w\right] \subseteq\left[V_{0}, L_{0}\right]$. Thus it follows from (iii) and (iv) that

$$
C_{V_{0}}\left(L_{0}\right) \subseteq\left[V_{0}, w\right] .
$$

Let $v \in C_{V_{0}}\left(L_{0}\right)-\{0\}$. By Lemma 6.2, $L^{g}\langle w\rangle \subseteq C_{G}(v)$ so as previously noted

$$
C_{G}(v) \subseteq N_{G}\left(L^{g}\right) .
$$

However, $C_{L}(w)$ contains a Sylow 2-subgroup T of L, whence $\left\langle L_{0}, T\right\rangle \subseteq$ $N_{G}\left(I^{g}\right)$. One easily checks that $L=\left\langle L_{0}, T\right\rangle$ (see, for example, Lemma 2.5 (3) of [3]) so a previous result (applied to g^{-1}) gives $L=L^{g}$ or $\left[L, L^{g}\right]=1$. Both equalities are impossible and this contradiction completes the proof.

Theorem 6.6. Assume that (6a)-(6e) hold and that L is quasisimple. One of the following holds:
(1) $G=L$;
(2) $E(G) \cong A_{n+2 k}, L \cong A_{n}, V$ is the non-trivial irreducible constituent of the natural $(n+2 k)$-dimensional permutation module for $E(G)$ over $\mathbf{F}_{2}, n \geq 5$;
(3) $E(G) \cong \Omega_{2 n+2}^{ \pm}\left(2^{m}\right), L \cong S p_{2 n}\left(2^{m}\right)^{\prime}, V$ is the natural $(2 n+2)$-dimensional $\mathbf{F}_{2 m} E(G)$-module viewed as a module over $\mathbf{F}_{2}, n \geq 1, m \geq 1$;
(4) $E(G) \cong Z_{3} \cdot U_{4}(3), L \cong U_{4}(2), \operatorname{dim}_{\mathbf{F}_{2}} V=12, \operatorname{dim}_{\mathbf{F}_{2}} \tilde{V}(L)=8$.

Proof. Let G be a minimal counterexample. Since $O_{2}(G)=1$ and $G \neq L$, $S \neq 1$. Also for all $v \in V-\{0\}, C_{G}(v) \subset G$ and for all involutions $t \in G$, $C_{G}(t) \subset G$. Notice that Lemmas 6.1-6.4 apply to arbitrary L, S which satisfy (6a)-(6e) for we will have occasion to change both L and S in the proof.
(6.6.1) We may assume $|S|=2$.

To prove this let s be an involution in $Z(S), H_{0}=C_{G}(s), H=\left\langle L^{E(H 0)}\right\rangle S$ and W a non-trivial irreducible $\mathbf{F}_{2} \mathrm{H}$-constituent of V. By Lemma 6.3 and the minimality of G,

$$
E(H) / Z(E(H)) \cong L / Z(L), A_{n+2 k}, \Omega_{2 n+2}^{ \pm}\left(2^{m}\right) \text { or } Z_{3} \cdot U_{4}(3)
$$

and in all but the first instance we may identify $L / Z(L)$ and W as well. In any case since $L \subseteq E(H), V$ has a unique non-trivial irreducible $\mathbf{F}_{2} E(H)$-constituent
so without loss of generality $W=\tilde{V}(E(H))$. One easily checks that $G_{0}=\left\langle E(H)^{G}\right\rangle\langle s\rangle, L_{0}=E(H), S_{0}=\langle s\rangle, V_{0}=V$ satisfy (6a)-(6e) in place of G, L, S, V resp. If L_{0} is not quasisimple, $L_{0} / Z\left(L_{0}\right) \cong \Omega_{4}^{+}\left(2^{m}\right)$ and $\widetilde{V}\left(L_{0}\right)$ is the natural module. By Theorem 6.5, $G_{0}=L_{0}$ whence $s \in O_{2}\left(G_{0}\right)$, contrary to $O_{2}\left(G_{0}\right)=1$. Thus L_{0} is quasisimple and the hypotheses of this theorem are satisfied by $G_{0}, L_{0}, S_{0}, V_{0}$ with $L_{0} \neq G_{0}$ and $E(G)=E\left(G_{0}\right)$. Suppose one of the conclusions of Theorem 6.6 holds for the new quadruple. In this situation, if $L_{0}=L, G$ is not a counterexample so we must have

$$
L_{0} / Z\left(L_{0}\right) \cong A_{n+2 k}, \Omega_{2 n+2}^{ \pm}\left(2^{m}\right) \text { or } Z_{3} \cdot U_{4}(3)
$$

Since L_{0} must be one of the groups described in conclusions (2)-(4), the only possibilities are $L_{0} \cong A_{n+2 k}$ or $U_{4}(2)\left(\cong \Omega_{6}^{-}(2)\right)$ (note that $\Omega_{6}^{+}(2)=A_{8}$ and the 6-dimensional F_{2}-modules are the same for these groups). If $L_{0} \cong \Omega_{6}^{-}(2)$, we previously identified $W=\tilde{V}\left(L_{0}\right)$ as the natural 6-dimensional module over \mathbf{F}_{2} whereas conclusion (4) of Theorem 6.5 asserts that if L_{0} has this isomorphism type, the constituent $\tilde{V}\left(L_{0}\right)$ must have dimension 8 , a contradiction. If $L_{0} \cong A_{n+2 k}, n+2 k \geq 7$ and $E\left(G_{0}\right) \cong A_{n+2 k^{\prime}}, V$ is the non-trivial irreducible constituent of the natural permutation module, whence it follows that L is an alternating group and G is not a counterexample. This argument proves that $G_{0}, L_{0}, S_{0}, V_{0}$ do not satisfy the conclusions of the theorem so without loss of generality $G=G_{0}, L=L_{0}, S=\langle s\rangle$ as claimed in (6.6.7).

By a similar argument we get the following two results:
(6.6.2) L is maximal in the component ordering of [3];
(6.6.3) L is a component of $C_{G}(t)$, for all involutions $t \in C_{G}(L)$.

By using (6.6.3) and the fact $G=E(G)\langle s\rangle$ we may replace s by another involution in $C_{G}(L)$ and decide via the L-balance theorem (Lemma 2.7 (3) of [3]) that
(6.6.4) if $\left|C_{G}(L)\right|_{2}>2, G$ is quasisimple.

Now let A_{1}, \ldots, A_{r} be a maximal set of pairwise commuting conjugates of L with $L=A_{1}$ and let $D=A_{1} \cdots A_{r}$. The proof of Theorem 9.7 of [3] shows that the hypotheses of Theorem 5 of [3] are satisfied so since $O_{2}(G)=1$, one of the following holds:
(1) $D \unlhd G$;
(2) $D=A_{1} A_{2}, m\left(A_{1}\right)=1,\left|A_{1} \cap A_{2}\right|$ is even, $\left[L, L^{g}\right]=1 \Leftrightarrow L^{g}=A_{2}$, for all $g \in G$, and $C_{G}(D)$ is tightly embedded in G with $N_{G}\left(C_{G}(D)\right)=N_{G}(D)$;
(3) $D=A_{1},\left[L, L^{g}\right] \neq 1$, for all $g \in G$, and $C_{G}(D)$ is tightly embedded in G with $N_{G}\left(C_{G}(D)\right)=N_{G}(D)$.

Let $N=N_{G}(D)$ and $C=O^{2 \prime}\left(C_{G}(D)\right)$.
If (1) holds, $L \unlhd \unlhd G$ which forces $L=G$, a contradiction; thus (2) or (3) holds. Note that if (2) holds, since A_{1} and A_{2} are conjugate in G and $x \in G$ with
$A_{1}^{x}=A_{2}$, then $x \in C_{G}\left(O_{2}(D)\right) \subseteq N_{G}(D)$; moreover, in this case, by Theorem 3.1 of $[15],|C|_{2}=2$. (The B-conjecture is not needed for the proof of Theorem 3.1 of [15]).

We first handle the situation when $m(C)=1$. Let z be an involution in C and for each element y of G, let $V_{y}=[V, y]$. By Lemma 6.1, L centralizes V_{z} and in case (2) if $A_{1}^{x}=A_{2}, x$ centralizes $\langle z\rangle=O_{2}\left(A_{1}\right)=O_{2}\left(A_{2}\right)$ so D centralizes V_{z} in this instance as well. Suppose for all $v \in V_{z}-\{0\}, D \unlhd C_{G}(v)$: it follows from Lemma 6.4 that z^{G} is a class of odd transpositions in G whence Lemma 2.10 and (6e) assert that G is not a counterexample. This proves there exists $v \in V_{z}-\{0\}$ such that $D \npreceq C_{G}(v)$, so by (2), (3), $L \unlhd \unlhd C_{G}(v)$. Let

$$
H_{0}=C_{G}(v), \quad H_{1}=\left\langle L^{E\left(H_{0}\right)}\right\rangle\langle z\rangle, \quad W=\tilde{V}\left(H_{1}\right),
$$

and note that as $L \unlhd \unlhd H_{1}, O_{2}\left(H_{1}\right)=1$ and as $L \subseteq H_{1}, W$ is a non-trivial irreducible $\mathrm{F}_{2} H_{1}$-module. Let $\bar{H}_{1}=H_{1} / C_{H_{1}}(W)$ so by Lemma 6.3 and the minimality of G we may identify \bar{H}_{1}, \bar{L} and W; furthermore, the odd order group $C_{H_{1}}(W)$ stabilizes the chain

$$
V \supseteq\left[V, H_{1}\right] \supseteq C_{\left[V, H_{1]}\right.}\left(H_{1}\right) \supseteq 0
$$

whence centralizes V, so $C_{H_{1}}(W)=1$. Let $H=E\left(H_{1}\right)$ so (we now know $m(L)>1$) since L is in standard form in H_{1}, one of the following holds:
(i) $L \cong A_{n}, H \cong A_{n+2}, H\langle z\rangle \cong \sum_{n+2}$;
(ii) $L \cong S p_{2 n}\left(2^{m}\right), H \cong \Omega_{2 n+2}^{ \pm}\left(2^{m}\right), H\langle z\rangle \cong O_{2 n+2}^{ \pm}\left(2^{m}\right)$;
(iii) $L \cong U_{4}(2), H \cong Z_{3} \cdot U_{4}(3)$;
and in all cases z^{H} is a class of odd transpositions in H_{1} and $\tilde{V}(H)$ is the natural module for H (described by conclusions (2)-(4) of this theorem). We may therefore always pick $g \in H_{1}-N_{G}(L)$ such that $\left[z, z^{g}\right]=1$ and $H=\left\langle L, L^{g}\right\rangle$. Note that

$$
v \in V_{z} \cap V_{z g} \neq 0 .
$$

We now include discussion which circumvents using the full weight of the solutions to the various standard form problems we are faced with-this seems desirable not only for reasons of independence but also to avoid invoking the Unbalance Theorem on which some of these solutions rest.

Case $L \cong A_{n}, H \cong A_{n+2}, n \geq 5$. Let

$$
\left\langle z, z^{g}\right\rangle \subseteq T \in S y l_{2}\left(N_{G}(H)\right)
$$

since L is in standard form, $C_{G}(H)$ has odd order so T is isomorphic to a Sylow 2-subgroup of \sum_{n+2}. Let $\mathscr{T}=z^{H} \cap T, U=V_{z} \cap V_{z g}$. Since $N_{H\langle z\rangle}(\mathscr{T})$ is doubly transitive on \mathscr{T} and $H\langle z\rangle$ centralizes U,

$$
U=\bigcap_{a \in \mathscr{T}} V_{a}, N_{G}(U) \subseteq N_{G}(H) \text { and } T \in S y l_{2}\left(N_{G}(\mathscr{T})\right)
$$

Let $\left\langle z, z^{g}\right\rangle \subseteq P \in S y l_{2}(N), S=P \cap C$; we prove $S=\langle z\rangle$. Choose a permutation representation of $H\langle z\rangle$ so that $z=(12)$; since H is doubly transitive on \mathscr{T}, without loss of generality $z^{g}=(34)$. Assume $|S|>2$ so as S centralizes $L \subseteq H$,

$$
S \nsubseteq N_{G}(H)=N_{G}(U)
$$

therefore z^{g} does not centralize S. Since $m(S)=1$, there exists $s \in S$ such that

$$
z^{g s}=z z^{g}=(12)(34)
$$

Now let $h \in G$ be chosen with $z^{h}=(34)(56) \in L \cap P$, so z^{h} centralizes S. If $n \geq 8$, let

$$
B=O^{2}\left(C_{L}\left(z^{h}\right)\right) \cong A_{n-4}
$$

so $B \subseteq N^{h}$; moreover, since $m(C)=1, S B \cap C^{h}=1$ so S acts faithfully on $L^{h} C^{h} / C^{h} \cong A_{n}$ and centralizes its subgroup $B C^{h} / C^{h} \cong A_{n-4}$. Thus if $n \geq 8$, $S=\langle s\rangle$ and s induces a 4 -cycle on $L^{h} C^{h} / C^{h}$, hence also on L^{h}. Note that if $n=5,6$, or 7 , since $m(S)=1$ and S acts faithfully on $L^{h}, S=\langle s\rangle \cong Z_{4}$ and s is either a 4-cycle or the product of a 4-cycle and a transposition on L^{h}. In any case, let S_{0} be a Sylow 2-subgroup of C^{h} normalized by S. Thus $S_{0} \subseteq C_{G}(z) \subseteq N$, so $\left[S, S_{0}\right]=1$. By the action of z^{g} on S, no 2-element of $C_{G}(S)$ induces an outer automorphism on L, whence in N^{h}, S cannot induce a 4-cycle on L^{h}. The only remaining possibilities are $n=6$ or 7 and s the product of a 4-cycle and a transposition on L^{h}. Let $P_{1}=S\left\langle z^{g}\right\rangle, P_{2}=P \cap L$ so

$$
P=P_{1} \times P_{2} \cong D_{8} \times D_{8}, \quad Z(P)^{\#}=\left\{z, z^{h}, z z^{h}\right\}
$$

so by orders $P \in \operatorname{Syl}_{2}\left(C_{G}\left(z^{h}\right)\right)$ as well. It follows therefore that if $P \subseteq P^{*}$ with $\left|P^{*}: P\right|=2$, then $P=J\left(P^{*}\right),\left\langle z, z^{h}\right\rangle$ char P^{*} and hence

$$
P^{*} \in S y l_{2}(G) .
$$

Since $H\left\langle z^{g}\right\rangle \cong \Sigma_{8}$ or Σ_{9} (i.e. $|T|=2^{7}$), such P^{*} exists so by orders $T \in S y l_{2}(G)$. Since $T \cap H \subseteq G^{\prime}$ and $z^{G} \cap H \neq \phi, G$ is perfect whence G is quasisimple with Sylow 2-subgroups of type A_{10}. By [21], however, no involution centralizer has a component of type A_{6} or A_{7} centralized by a Z_{4} subgroup. This contradiction proves $S=\langle z\rangle$. Note that as $L\left\langle z, z^{g}\right\rangle$ contains a Sylow 2-subgroup of N, z is not rooted in G.

Next we prove $T \in S y l_{2}(G)$; for otherwise let $T \subseteq T^{*}$ with $\left|T^{*}: T\right|=2$ and let $t \in T^{*}-T$. By the initial paragraph of this case there exists $y \in H$ such that $z^{y} \in \mathscr{T}$ but $z^{y t} \notin \mathscr{T}$. Since every involution in H is rooted in $H\left\langle z^{g}\right\rangle, z^{y t} \notin H$. Now Lemma 2.5 asserts $z \chi_{G} z^{y t}$, a contradiction.

Again, since z is not rooted in $G, z^{G} \cap H=\phi$. By Thompson's transfer lemma [5.38 of 27], $z \notin G^{\prime}$ and since $H \subseteq G^{\prime}, T_{0}=T \cap H \in S y l_{2}\left(G^{\prime}\right)$. If $n \leq 9$, [21] applied to G^{\prime} and the fact that L is standard in G gives $G=H\langle z\rangle$, again a contradiction. Thus we may assume $n>9$. Let $u=z z^{g}, K=C_{G}(u)$, so $(K \cap H)^{(\infty)}=B \cong A_{n-2}$ and $\widetilde{V}(B)$ is the natural module for B. Since B is a
component of $C_{K}(z)$ which has property (6c), as usual by Lemma 6.3 and induction there exists L^{*} a component of K with $L^{*} \cong A_{n-2+k}$ and $\widetilde{V}\left(L^{*}\right)$ the natural module. But now $\left\langle L^{*}, u\right\rangle \subseteq G^{\prime} \subset G$ and V is an irreducible $F_{2} G^{\prime}$-module so by minimality of $G, G^{\prime} \cong A_{n-2+k}$. By inspection, since L is standard in G with $m\left(C_{G}(L)\right)=1, G \cong \sum_{n+2}$, again contradicting $G \neq H\langle z\rangle$.

Case $L \cong L_{2}\left(2^{m}\right), H \cong \Omega_{4}^{-}\left(2^{m}\right), m \geq 2$. Note that $H \cong L_{2}\left(2^{2 m}\right)$ and z is a field automorphism of H, so all involutions of $H\langle z\rangle-H$ are conjugate under H to z. Also, $m(C)=1$ implies $m\left(C_{G}(z)\right)=m+1$ so as $m \geq 2, z^{G} \cap H=\phi$. Since

$$
C_{H\langle z\rangle}(z)=\langle z\rangle \times L
$$

it follows that if

$$
z \in T \in \operatorname{Syl}_{2}\left(N_{G}(H)\right),
$$

then $N_{H\langle z\rangle}(\mathscr{T})$ is doubly transitive on $\mathscr{T}=z^{H} \cap T$, and as in the previous case, $T \in \operatorname{Syl}_{2}(G)$. Let $T_{0}=T \cap H$ so T / T_{0} is cyclic. By Thompson's transfer Lemma, $z \notin G^{\prime}$ so since $\left|G: G^{\prime}\right| \leq 2$ and $H \subseteq G^{\prime}, T_{0} \in S y l_{2}\left(G^{\prime}\right)$. Since Sylow 2-subgroups of G^{\prime} are elementary abelian and L is standard in $G, H\langle z\rangle=G$, a contradiction.

Case $L \cong L_{2}\left(2^{m}\right), H \cong \Omega_{4}^{+}\left(2^{m}\right), m \geq 2$. Let $H=H_{1} \times H_{2}, H_{i} \cong L_{2}\left(2^{m}\right)$, $H_{1}^{z}=H_{2}$ and let $V_{0}=[V, H], V_{1}=C_{V}(H)$, so, by lemma $2.7, V=V_{0} \oplus V_{1}$ and for each i, V_{0} is the direct sum of two natural modules for H_{i}. For $L=C_{H}(z), V_{0}$ is an indecomposable module with $\operatorname{dim}_{\mathbf{F}_{2}}\left[V_{0}, L\right]=3 m$, and $C_{V_{0}}(L)=\left[V_{0}, z\right]$ of dimension m. Let

$$
\left\langle z, z^{g}\right\rangle \subseteq T \in \operatorname{Syl}_{2}\left(N_{G}(H)\right), \quad E=T \cap H .
$$

By Lemma 2.7, $T / E \cong Z_{2} \times Z_{2 k}$ where $2^{k} \mid m$ and there exists an automorphism f_{1} of H whose coset generates the second cyclic factor and with f_{1} a field automorphism on $H_{i}, i=1,2$. Frattini's argument, since z acts freely on E, shows that $C_{T}(z)$ covers T / E so we may pick $f_{2} \in C_{T}(z)$ with $f_{2} \equiv f_{1}(\bmod E)$; set $f=f_{2}^{k-1}$, if $k \geq 1$, and $f=1$ otherwise. Note that if $f \neq 1, f$ induces an outer involutory automorphism on each H_{i}, hence is a field automorphism on each H_{i}, so f acts freely on both E and V_{0}, and

$$
\left.C_{H\langle z\rangle}(f) \cong L_{2}\left(2^{a}\right)\right\} Z_{2}, \quad 2 a=m .
$$

Since $m(C)=1$, it follows easily that if $f \neq 1, z^{G} \cap f E=\phi$. Furthermore, since $m\left(C_{G}(z)\right)=m+1$ and $m(E)=2 m, \quad z^{G} \cap E=\phi$. Suppose $f \neq 1$ and $z^{G} \cap z f E \neq \phi$. Since $z f$ interchanges H_{1} and $H_{2}, z f$ is conjugate in $\langle z f, E\rangle$ to every involution in $z f E$, whence there exists $h \in G$ such that $z^{h}=z f$. Since f induces a field automorphism on L and $\left[V_{0}, L\right]$ is the full cover of the natural $\mathbf{F}_{2} L_{2}\left(2^{m}\right)$-module, f acts non-trivially on

$$
\left[V_{0}, L\right] \cap C_{V_{0}}(L)=\left[V_{0}, z\right]
$$

Thus there exists $w \in V_{0} \cap V_{z} \cap V_{z^{h}}$ with $w \neq 0$. As usual, by induction applied in $C_{G}(w)$, there exists H^{*} a component of $C_{G}(w)$ with

$$
H^{*} \cong \Omega_{4}^{ \pm}\left(2^{m}\right) \quad \text { and } \quad H^{*}=\left\langle L, L^{h}\right\rangle
$$

($H^{*} \not \approx A_{7}$ since $\tilde{V}(L)$ is not the permutation module for A_{5}). However,

$$
C_{H}\left(z^{h}\right) \cong L_{2}\left(2^{m}\right)
$$

so as $C_{G}\left(z^{h}\right)$ has a unique component of this type, $C_{H}\left(z^{h}\right)=L^{h}$. This means

$$
H^{*}=\left\langle L, L^{h}\right\rangle=H
$$

contrary to H not centralizing w. This argument proves $z^{G} \cap z f E=\phi$.
Again we argue $T \in S y l_{2}(G)$. Let $\mathscr{T}=z^{H} \cap T$ so by the preceding fusion arguments $z^{g} \in \mathscr{T}$. Since $N_{H}(\mathscr{T})$ is doubly transitive on $\mathscr{T}, V_{z} \cap V_{z g}=\bigcap_{t \in \mathscr{T}} V_{t}$ and since

$$
N_{G}(\mathscr{T}) \subseteq N_{G}(H) \quad \text { and } \quad z^{G} \cap T=\mathscr{T}
$$

we have $T \in \operatorname{Syl}_{2}(G)$. Moreover, by Thompson's transfer lemma applied to $\left\langle f_{1}, E\right\rangle$ the previous results on fusion also give $z \notin G^{\prime}$. Note that $E \subseteq H \subseteq G^{\prime}$.

If $f=1$, we must have $E \in \operatorname{Syl}_{2}\left(G^{\prime}\right)$ so G^{\prime} is a product of Goldschmidt groups. Since L is standard in G it follows that $G=H\langle z\rangle$, a contradiction. It remains to consider the case $f \neq 1$. Let $T_{0}=T \cap G^{\prime}$ and note that $E \subseteq T_{0}, T_{0} / E$ is cyclic and G^{\prime} is perfect. If $\left|T_{0}: E\right|=2, T_{0}=\langle E, f\rangle$ or $\langle E, z f\rangle$, whence in either case $T_{0} \cong E_{2 m} \backslash Z_{2}, m \geq 2$. By a result of Harada [the proof of Lemma 18 of 24$] G^{\prime}$ is not perfect, a contradiction. Thus $T_{0} / E \cong Z_{2 r}, r>1$. Since f acts freely on E and $\langle f E\rangle=\Omega_{1}\left(T_{0} / E\right), E=J\left(T_{0}\right)$ char T_{0} and so $E \leq N_{G}\left(T_{0}\right)$. Since T_{0} / E is cyclic,

$$
T_{0} \cap N_{G^{\prime}}\left(T_{0}\right)^{\prime} \subseteq E
$$

Also, for each Sylow 2-subgroup Q of G^{\prime}, Q^{\prime} is elementaryso $Q^{\prime} \cap T_{0} \subseteq\langle E, f\rangle$. By Grun's Theorem [7.4.2 of 20], $T_{0} \cap\left(G^{\prime}\right)^{\prime} \subseteq\langle f, E\rangle$ again contrary to G^{\prime} being perfect. This completes the proof of the case.

Case $L \cong A_{6} \cong S p_{4}(2)^{\prime}, L^{*} \cong \Omega_{6}^{ \pm}(2)$. We have already considered when $H\langle z\rangle \cong O_{6}^{+}(2) \cong \Sigma_{8}$ (note that the corresponding modules are the same for the two isomorphism types), and when $H\langle z\rangle \cong O_{6}^{-}(2) \cong$ Weyl $\left(E_{6}\right)$ the arguments are similar-we sketch the details.

Let $V_{0}=[V, H], V_{1}=C_{V}(H)$ so by Lemma $2.7 \mathrm{a}, V=V_{0} \oplus V_{1}$; and since

$$
\operatorname{Aut}\left(\Omega_{6}^{-}(2)\right)=O_{6}^{-}(2)
$$

if $\left\langle z, z^{g}\right\rangle \subseteq T \in S y l_{2}(H\langle z\rangle)$, then $T \in S y l_{2}\left(N_{G}(H)\right)$. Moreover, H is doubly transitive on $\mathscr{T}=z^{H} \cap T$ so $T \in \operatorname{Syl}_{2}\left(N_{G}(\mathscr{T})\right)$ as usual.

Let $\hat{V}_{0}=Q_{8} Y Q_{8} Y Q_{8}$ be extraspecial so that Out $\left(\hat{V}_{0}\right) \cong O_{6}^{-}(2)$ and $\hat{V}_{0} / Z\left(\hat{V}_{0}\right)$ is the natural module for $O_{6}^{-}(2)$. From this representation it is easily
deduced that $H\langle z\rangle$ has exactly 4 classes of involutions, and representatives z, t, t_{1}, t_{2} have the properties: $t \in H z, t_{1}, t_{2} \in H$,

$$
\begin{gathered}
\operatorname{dim}_{\mathbf{F}_{2}}\left[V_{0}, z\right]=1, \operatorname{dim}_{\mathbf{F}_{2}}\left[V_{0}, t\right]=3, \operatorname{dim}_{\mathbf{F}_{2}}\left[V_{0}, t_{i}\right]=2, i=1,2, \\
C_{H}\left(t_{1}\right) \cong\left(S L_{2}(3) \mid Z_{2}\right) / Z\left(S L_{2}(3) \mid Z_{2}\right), \\
C_{H}\left(t_{2}\right) \cong Z_{2} /\left(E_{4} \times A_{4}\right), \quad C_{H}(z) \cong \Sigma_{6}
\end{gathered}
$$

and every involution in $O^{2}\left(C_{H}\left(t_{2}\right)\right)$ is H-conjugate to t_{2}.
Suppose $z^{h} \in H$, for some $h \in G$. By the structure of $C_{H}\left(t_{1}\right) z \chi_{G} t_{1}$ so we may assume $z^{h}=t_{2}$. Let $\left\langle z, z^{g}\right\rangle \subseteq P \in \operatorname{Syl}_{2}(N), P_{1}=P \cap C\left\langle z^{g}\right\rangle, P_{2}=P \cap L$ and $\langle x\rangle=Z\left(P_{2}\right)$ so by the last remark of the preceding paragraph $x \in z^{G}$, whence

$$
P \in S y l_{2}\left(C_{G}(x)\right)
$$

as well. Since $N_{G}(H)=N_{G}\left(V_{z} \cap V_{z q}\right)$ and z is not rooted in $N_{G}(H),\langle z\rangle=$ $C_{P_{1}}\left(z^{g}\right)$, so $P=P_{1} \times P_{2}$ with P_{1} dihedral or quasidihedral. By Sylow's Theorem x is conjugate to z in $N_{\mathrm{G}}(P)$ so $P_{1} \cong P_{2} \cong D_{8}$ and, as in the $O_{6}^{+}(2)$ case, because

$$
|G|_{2} \geq|H\langle z\rangle|_{2}=2^{7},
$$

there exists $P^{*} \supseteq P$ with $\left|P^{*}: P\right|=2$. It follows that $\langle z, x\rangle=Z\left(J\left(P^{*}\right)\right)$ so $P^{*} \in S y l_{2}(G)$ and therefore $T \in \operatorname{Syl}_{2}(G)$. Again $H \leq G^{\prime}$ and $z^{G} \subseteq G^{\prime}$ so G is quasisimple with Sylow 2 -subgroups of type A_{10}. By [21], G cannot have an involution centralizer with a component of type A_{6} centralized by a Z_{4} subgroup. This contradiction proves $z^{G} \cap H=\phi$.

As noted earlier, $\operatorname{dim}_{\mathbf{F}_{2}}[V, z]=\operatorname{dim}_{\mathbf{F}_{2}}[V, t]-2$, whence $z \chi_{G} t$: thus $z^{G} \cap T=\mathscr{T}$ so because $T \in \operatorname{Syl}_{2}\left(N_{G}(\mathscr{T})\right), T \in \operatorname{Syl}_{2}(G)$. By Thompson's transfer lemma, $z \notin G^{\prime}$ so

$$
T \cap H \in \operatorname{Syl}_{2}\left(G^{\prime}\right),
$$

that is, G^{\prime} has Sylow 2-subgroups of type A_{8}. It follows from [21] that $G=H\langle z\rangle$, a contradiction.

Case $L \cong U_{4}(2), H \cong Z_{3} \cdot U_{4}(3)$. In this situation let $\langle x\rangle=Z(H)$, $V_{0}=[V, x]=[V, H], V_{1}=C_{V}(x)=C_{V}(H)$, so $V=V_{0} \oplus V_{1}$. By Lemma 6.1, z is not free on V_{0} so $[z, x]=1$. By Lemma $2.8, z H$ contains 2 classes of involutions with representatives z, u and

$$
\operatorname{dim}_{\mathbf{F}_{2}}\left[V_{0}, z\right]=2, \quad \operatorname{dim}_{\mathbf{F}_{2}}\left[V_{0}, u\right]=6 .
$$

Because $\left[V_{1}, z\right]=\left[V_{1}, u\right], z \chi_{G} u$. Let $z \in T \in \operatorname{Syl}_{2}\left(N_{G}(H)\right), T_{0}=T \cap H$ so by Lemma 2.8 and the fact that $\left|C_{G}(H)\right|$ is odd,

$$
T / T_{0} \cong Z_{2} \text { or } Z_{2} \times Z_{2} \quad \text { and } \quad T_{0}\langle z\rangle=C_{T}(x)
$$

Suppose there exists $h \in G$ such that $z^{h} \in T-T_{0}\langle z\rangle$, so z^{h} inverts $\langle x\rangle$. Let $Q=C_{H}\left(z^{h}\right)$ so by Lemma 2.8,

$$
\left.\frac{\langle x\rangle Q}{\langle x\rangle} \cong U_{3}(3), \Sigma_{6}, U_{4}(2) \text { or } S L_{2}(3)\right\} Z_{2} / Z\left(S L_{2}(3) \upharpoonleft Z_{2}\right)
$$

In any case, since $C_{G}\left(L^{h}\right)$ has 2-rank 1 and $\left|N: L C_{G}(L)\right| \leq 2$ it follows that

$$
Q_{0}=Q \cap L^{h} \neq 1
$$

Note that since z centralizes $\tilde{V}(L) z$ centralizes $[V, L]$ whence z^{h} centralizes [V, Q_{0}]; but then $z^{h x}$ centralizes $\left[V^{x}, Q_{0}^{x}\right]=\left[V, Q_{0}\right]$ and so

$$
\left[V, Q_{0}\right] \subseteq V_{0} \cap C_{V}\left(z^{h}\right) \cap C_{V}\left(z^{h x}\right)=0
$$

contrary to $Q_{0} \neq 1$. This argument proves $z^{G} \cap T \subseteq T_{0}\langle z\rangle$.
Finally, suppose $z^{h} \in T_{0}$, for some $h \in G$. Since H has one class of involutions we may assume $z^{h} \in Z\left(T_{0}\langle z\rangle\right)$. Since $T_{0}\langle z\rangle$ is isomorphic to a Sylow 2subgroup of $E_{2} 5 A_{6}$, where E_{2} s is the permutation module modulo the one dimensional submodule, $z^{h} \in\left(T_{0}\langle z\rangle\right)^{\prime \prime}$. However, in a Sylow 2-subgroup P of $C_{G}(z)$, since $m(C)=1, z \notin P^{\prime \prime}$, a contradiction.

For $\mathscr{T}=z^{H} \cap T H$ is doubly transitive on $\mathscr{T}\left(z^{H}\right.$ is the class of reflections in $\left.\mathrm{O}_{6}^{-}(3)\right)$ so as usual $T \in \mathrm{Syl}_{2}(G)$ and for any subgroup T_{1} of T with $T_{0} \subseteq T_{1}$, $z \notin T_{1}$ and $\left|T: T_{1}\right|=2$, by Thompson's transfer lemma applied to $T_{1}, z \notin G^{\prime}$. Now let $T_{1} \in \operatorname{Syl} l_{2}\left(G^{\prime}\right)$. Since $\operatorname{dim}_{\mathrm{F}_{2}}\left[V_{0}, z\right]=2$, for any involution $a \in H, a$ is a product of two H-conjugates of z so $\operatorname{dim}_{F_{2}}[V, a]=\operatorname{dim}_{F_{2}}\left[V_{0}, a\right] \leq 4$. On the other hand, if d is an involution in $T_{1}-T_{0}, d$ inverts x so $\operatorname{dim}_{F_{2}}[V, d] \geq$ $\frac{1}{2} \operatorname{dim}_{\mathrm{F}_{2}} V_{0}=6$. This proves $d^{G^{\prime}} \cap H=\phi$ so since by Lemma 2.8 each coset of T_{0} in T contains involutions, Thompson's transfer lemma applied to the perfect group G^{\prime} forces $T_{1}=T_{0}$. Because L is standard in G, [22] implies $G=H\langle z\rangle$, a contradiction.

Case $L \cong S p_{2 n}\left(2^{m}\right), H \cong \Omega_{2 n+2}^{ \pm}\left(2^{m}\right), n \geq 2$. By previous considerations we may also assume $L \not \equiv S p_{4}(2)^{\prime}$. Let $V_{0}=[V, H], V_{1}=C_{V}(H)$ so by Lemma 2.7, $V=V_{0} \oplus V_{1}$. Let w_{0} be any non-singular vector in V_{0} and let w be an H conjugate of w_{0} with $w \in\left[V_{0}, z\right], z$ being an $F_{2 m}$ orthogonal transvection on V_{0}. By Lemma 6.1,

$$
C_{G}(w) \supseteq\langle L, z\rangle
$$

whence as usual, by induction, there exists M a component of $C_{G}(w)$ with $L \subseteq M$ and either

$$
M \cong \Omega_{2 n+2}^{ \pm}\left(2^{m}\right) \quad \text { or } \quad M=L
$$

If $M \neq L$, however, by the decomposition of V under $\Omega_{2 n+2}^{ \pm}\left(2^{m}\right)$ it follows that

$$
w \notin[V, L] \subseteq[V, M]
$$

whereas one easily sees that V_{0} is an indecomposable $\mathbf{F}_{2} L$-module with

$$
C_{V_{0}}(L) \subseteq\left[V_{0}, L\right]
$$

Thus $L \unlhd \unlhd C_{G}(w)$ and as L is in standard form, $C_{G}(w) \subseteq N$. This proves that for each non-singular vector w_{0} in $V_{0}, C_{G}\left(w_{0}\right)$ has a unique component of type $S p_{2 n}\left(2^{m}\right)$, denoted by $L_{w_{0}}$, and $L_{w_{0}} \subseteq H$.

If u_{0} is a non-zero singular vector in $V_{0}, C_{H}\left(u_{0}\right)=E K$ where $E \cong E_{22 n m}$, $K \cong \Omega_{2 n}^{ \pm}\left(2^{m}\right)$ and E is the natural module for K. Since N does not contain a subgroup isomorphic to $E K, u_{0} \not_{G} w_{0}$.

Now let a be an element of H which is of type a_{2} (in the sense of [10] page 16) so $C_{V_{0}}(a)$ has \mathbf{F}_{2}-codimension $2 m$ in V_{0} and so $C_{V}(a)$ also has \mathbf{F}_{2}-codimension $2 m$ in V. Since $H \npreceq G^{\prime}=\left\langle a^{G}\right\rangle$ we may pick a G-conjugate b of a with $V_{0}^{b} \neq V_{0}$. Since $\operatorname{dim}_{\mathbf{F}_{2}} V_{0}=m(2 n+2), \operatorname{dim}_{\mathbf{F}_{2}} V_{0} \cap V_{0}^{b} \geq 2 n m$, from which it follows that $V_{0} \cap V_{0}^{b}$ contains a vector w_{0} which is nonsingular with respect to the form on V_{0} (consider the corresponding \mathbf{F}_{2}-quadratic form). Thus for some $h \in H$, $C_{G}\left(w_{0}\right) \subseteq N^{h}$. Considering w_{0} in the form on V_{0}^{b}, by the previous remarks w_{0} is also non-singular with respect to this form and $L^{h}=L_{w_{0}} \subseteq H^{b}$. Thus $V_{0} \cap V_{0}^{b} \supseteq\left[V, L^{h}\right]$. As argued before, $w \in\left[V, L^{h}\right]$ is non-singular in V_{0} if and only if w is non-singular in V_{0}^{b}. One easily checks, however, that

$$
\left.H=\left\langle L_{w}\right| w \text { is a non-singular vector in }\left[V, L^{h}\right]\right\rangle
$$

Thus $H^{b}=\left\langle L_{w}\right| w$ is non-singular in $\left.\left[V, L^{h}\right]\right\rangle$ by this argument, contrary to $H \neq H^{b}$.

This completes the treatment of the various standard form problems which have arisen when $m(C)=1$. This lengthy argument plus (6.6.4) gives:
(6.6.5) L is in standard form in $G, m(C)>1$ and G is quasisimple.

Next suppose for some proper subgroup H of G with $L \subseteq H$ and $|C \cap H|$ even, $L \notin H$, whence also $L \unlhd / \unlhd H$. By Lemma 6.3, and induction $L \cong A_{n}$, $S p_{2 n}(q)$, or $U_{4}(2)$, for some $q=2^{m}$ and $L \subseteq L^{*} \subseteq H$ with

$$
L^{*} \cong A_{n+k}, \Omega_{2 n+2}^{ \pm}(q) \text { or } Z_{3} \cdot U_{4}(3) \text { resp. }
$$

$\tilde{V}\left(L^{*}\right)$ the natural module. By the Main Theorem of [11] we must have $L \cong A_{n}$, $G \cong A_{n+4}$ or $L \cong A_{5}, G \cong J_{2}$. In the former case, by Lemma $2.4, V$ is the natural module for G, contrary to G being a counter-example. In the latter case, since by the 2 local structure J_{2} does not contain subgroups of type $A_{9}, \boldsymbol{\Omega}_{4}^{+}(4)$ or $\Omega_{4}^{-}(4)$ we must have $L^{*} \cong A_{7}$ and for z an involution in $C \cap H,\langle z\rangle L^{*}=\Sigma_{7}$; then

$$
C_{L *\langle z\rangle}(z)=Z_{2} \times \Sigma_{5}
$$

which is incompatible with the structure of $C_{J_{2}}(z)$. This contradiction proves:

$$
\begin{equation*}
L \unlhd H \text { whenever } L \subseteq H \subset G \text { and }|C \cap H| \text { is even. } \tag{6.6.6}
\end{equation*}
$$

By lemma 6.4 we obtain:
(6.6.7) If z_{1}, z_{2} are involutions in C and $\left\langle z_{1}, z_{2}^{h}\right\rangle$ is a 2 -group, for some $h \in G$, then either $z_{2}^{h} \in N$ or $z_{1} \in N^{h}$; and if z_{1}, z_{2} are involutions in C and $\left\langle z_{1}, z_{2}^{h}\right\rangle \cong D_{4 k}, k$ odd >1, for some $h \in G$, then $z_{2}^{h} \in C$.

We next prove:
(6.6.8) $\quad O_{2}(C)=1$.

For suppose $O_{2}(C) \neq 1$ and let $Z=\Omega_{1}\left(Z\left(O_{2}(C)\right)\right), \mathscr{Z}=\left\{z^{g} \mid z \in Z^{\#}, g \in G\right\}$. It follows from (6.67) that \mathscr{Z} is a set of root involutions in G, hence G may be identified by [28]. However, in none of the groups in Timmesfeld's list does the centralizer of a root involution contain a standard component centralized by a fourgroup. This contradiction establishes (6.6.8).
(6.6.9) If $\left|C^{g} \cap N\right|$ is even, for some $g \in G-N,\left[C, C^{g}\right]=1$.

Suppose $\left|C^{g} \cap N\right|$ is even, for some $g \in G-N$ and let $T \in S y l_{2}\left(C^{g} \cap N\right)$, t be an involution in T. If $t \notin O_{2}(C T)$, by the Baer-Suzuki Theorem t inverts an element of $C^{\#}$ of odd order. Note that since $C=O^{2 \prime}(C)$, by Lemma 6.7, for every $x \in C$,

$$
[V, x] \subseteq C_{V}(L)
$$

It follows therefore that $[V, t] \cap C_{V}(L) \neq 0$. But then for some involution $z \in C_{C}(t)$ and some non-zero $v \in[V, t] \cap C_{V}(L) \cap C_{V}(z), C_{G}(v) \supseteq\left\langle L, L^{g}, z, t\right\rangle$ and (6.6.6) conflicts with (6.6.5). Thus $t \in O_{2}(C T)$ so (6.6.8) forces $[t, C]=1$. In particular,

$$
C \subseteq C_{G}(t) \subseteq N^{g}
$$

and since g was arbitrary in $G-N$, this argument applied to g^{-1} gives $C^{g} \subseteq N$. Since for each $x \in C,[V, x] \subseteq C_{V}(L)$ and $O(G) \subseteq Z(G)$,

$$
O(C) \cap O(G)=1
$$

If $O(C) \cap O\left(C^{g}\right) \neq 1$, by (6.6.6) and (6.6.5), $L=L^{g}$, a contradiction. This proves

$$
\left[C, C^{g}\right] \subseteq O(C) \cap O\left(C^{g}\right)=1
$$

as claimed.
By Theorem 1 of [4] the Sylow 2-subgroups of C are elementary abelian and by Theorem 4 of [3] C is solvable. This establishes:
(6.6.10) $C / O(C)$ is an elementary abelian 2-group;
(6.6.11) If $\left|C^{g} \cap N\right|$ is even, for some $g \in G-N,\left\langle C, C^{g}\right\rangle=C \times C^{g}$.

Now let $E \in S \operatorname{Sl}_{2}(C), E \subseteq S \in \operatorname{Syl}_{2}(G)$ and let $\left\{E_{1}, \ldots, E_{n}\right\}=E^{G} \cap S, g_{i} \in G$
such that $E_{i} \subseteq C^{g_{i}}$. By (6.6.7), (6.6.10) and (6.6.11) $\left\langle E_{1}, \ldots, E_{n}\right\rangle$ is elementary abelian and since E_{i} centralizes $O\left(C^{g_{j}}\right)$, for all $i \neq j$ it follows that

$$
\begin{equation*}
E^{G} \cap S=E_{1} \times E_{2} \times \cdots \times E_{n} \tag{6.6.12}
\end{equation*}
$$

For each set \mathscr{S} of commuting conjugates of C define $M(\mathscr{S})=\bigcap_{c \boldsymbol{\theta} \in \mathscr{S}} N^{g}$, where $M(\phi)=G$. Over all such sets let \mathscr{S}^{*} be one of largest cardinality such that there exists $g \in G$ with C^{g} commuting with all members of \mathscr{S}^{*} and $C^{g} \unlhd \mid \unlhd \mathscr{M}\left(\mathscr{S}^{*}\right)$; since $C \unlhd / \unlhd G$, such \mathscr{S}^{*} is always available. Replacing \mathscr{S}^{*} by a G-conjugate if necessary we may assume C commutes with all elements of \mathscr{S}^{*} and $C \unlhd / \unlhd M\left(\mathscr{S}^{*}\right)$. Set $M=M\left(\mathscr{S}^{*}\right)$.

If z is an involution in $C^{m}, m \in M$ define

$$
\left.\theta(z)=\left\langle C^{h}\right| h \in M \text { and }\left|C^{h} \cap N_{M}\left(C^{m}\right)\right| \text { is even }\right\rangle .
$$

By the maximality of \mathscr{S}^{*} and (6.6.9), whenever $\left|C^{h} \cap N_{M}\left(C^{m}\right)\right|$ is even, for some $h \in M-N_{M}\left(C^{m}\right)$,

$$
\left[C^{h}, C^{m}\right]=1 \quad \text { and } \quad C^{h} \leq \unlhd N_{M}\left(C^{m}\right)
$$

Thus $\theta(z) \unlhd N_{M}\left(C^{m}\right)$. Since $C / O(C)$ is an elementary abelian 2-group, by (6.6.12) so is $\theta(z) / O(\theta(z))$. Finally, since $C^{m} \unlhd \theta(z)$, by construction of M, $\theta(z) \nsucceq M$.
(6.6.13) If $z_{1} \in C, z_{2} \in C^{h}, h \in M$ and z_{1}, z_{2} are commuting involutions, $\theta\left(z_{1}\right)=\theta\left(z_{2}\right)$.

By symmetry it suffices to show $\theta\left(z_{2}\right) \subseteq \theta\left(z_{1}\right)$: this is clear if $C=C^{h}$ so we may assume $h \notin N$. By (6.6.9), [C, $\left.C^{h}\right]=1$, so $C \subseteq \theta\left(z_{2}\right)$. Since Sylow 2-subgroups of $\theta\left(z_{2}\right)$ are abelian and $C_{M}\left(z_{1}\right) \subseteq N_{M}(C)$, the latter group contains a Sylow 2subgroup of $\theta\left(z_{2}\right)$. Finally, since $m(E) \geq 2, O\left(\theta\left(z_{2}\right)\right)=\Gamma_{1, E}\left(O\left(\theta\left(z_{2}\right)\right)\right) \subseteq N_{M}(C)$, whence $\theta\left(z_{2}\right) \subseteq N_{M}(C)$ which yields the inclusion $\theta\left(z_{2}\right) \subseteq \theta\left(z_{1}\right)$.

Let D be the involutions in M-conjugates of C. Note that by (6.6.7), D satisfies property $(+)$: for $d, e \in D$, either $Z(\langle d, e\rangle)=1$ or $Z(\langle d, e\rangle) \cap D \neq \phi$. Let \mathscr{D} be the graph whose vertices are the elements of D and (d, e) an edge if and only if $d e=e d \neq 1$.
(6.6.14) \mathscr{D} is disconnected.

For if \mathscr{D} is connected, by (6.6.13), for all $z_{1}, z_{2} \in D, \theta\left(z_{1}\right)=\theta\left(z_{2}\right)$, and so $\theta\left(z_{1}\right) \unlhd M$, a contradiction.

Let $H=\langle D\rangle, \bar{H}=H / S(H)$. By (6.6.14) and Theorem 4.1 of [28] of the following holds:
(i) $\bar{H}=\overline{1}$;
(ii) \bar{H} is a Bender group;
(iii) $\left.\bar{H} \cong L_{2}(q)\right\} \Sigma_{k}, q=2^{m}>2, k=3$ or 4 ;
(iv) $\bar{H}^{\prime} \neq \bar{H}^{\prime \prime}$ and \bar{D} is a class of odd transpositions in \bar{H}.

Let $E \subseteq T \in S y l_{2}(H)$ and note that if $C^{h} \cap T \neq 1, C^{h} \subseteq \theta(z)$, for all $z \in E^{\#}$.
Suppose H is non-solvable but $E \cap S(H) \neq 1$. In this situation, by Frattini's argument,

$$
N_{H}(T \cap S(H))=H_{1}
$$

covers \bar{H} and for $z \in E^{\#} \cap S(H), \theta(z)=\theta\left(z_{1}\right)$, for all $z_{1} \in D \cap H_{1}$. Thus H_{1} normalizes $\theta(z)$, so $\theta(z) \subseteq S(H)$ contrary to $E \nsubseteq S(H)$. If H is non-solvable, therefore, $E \cap S(H)=1$. This means cases (iii) and (iv) cannot hold for in each of these \bar{H} contains no fourgroup all of whose involutions are in \bar{D}, whereas $\bar{E}^{\#} \subseteq \bar{D}$ and $m(E)=m(\bar{E}) \geq 2$.

Since the centralizer of each involution in a simple Bender group is a 2-group and $m(E) \geq 2$, in either case (i) or (ii), $O(C) \subseteq S(H)$. As above, T normalizes $\theta(z)$, for each $z \in E^{\#}$ so by properties of solvable groups

$$
O(C) \subseteq O(\theta(z)) \subseteq O(T S(H)) \subseteq O(H)
$$

Let $\tilde{H}=H / O(H)$ so by (6.6.7) we obtain:
(6.6.15) \tilde{D} is a set of odd transpositions in \tilde{H}.

Suppose \tilde{D} is not a single class in \tilde{H} so by properties of odd transpositions $\tilde{D}=\tilde{D}_{1} \cup \tilde{D}_{2}$ where $\left[\tilde{D}_{1}, \tilde{D}_{2}\right]=1$ for some non-empty subsets \tilde{D}_{i} of \tilde{D}. If $\tilde{E}^{\#} \subseteq \tilde{D}_{1}$, let D_{1} denote the preimage set of involutions in H i.e. $D_{1}=E^{\#\left\langle D_{1}\right\rangle}$. Also, since $D=E^{\# M}$, there exists $h \in M$ such that $D_{2}=E^{h \#\left\langle D_{2}\right\rangle}$. It follows from (6.6.9) that $\left[D_{1}, D_{2}\right]=1$ which contradicts \mathscr{D} being disconnected. Thus $\tilde{E}^{\#} \nsubseteq \tilde{D}_{1}$ and similarly $\widetilde{E}^{\#} \nsubseteq \tilde{D}_{2}$. Now $H=\Gamma_{1, E}(H) \subseteq N(C)$, contrary to \mathscr{D} being disconnected. This argument proves \tilde{D} is a single class in \tilde{F}. In particular, $\tilde{H}=\tilde{H}^{\prime}$ so H is not solvable. Since $E \cap S(H)=1$, it follows that

$$
\begin{equation*}
\bar{H} \cong L_{2}(q), S z(q), U_{3}(q), q=|E| \tag{6.6.16}
\end{equation*}
$$

Now replace H by a suitable subgroup H_{0} containing $O(H) E$ with $\bar{H}_{0} \cong L_{2}(q)$, $S z(q)$ and $\tilde{D} \cap \tilde{H}_{0}$ is a single class in \tilde{D} with $\tilde{H}_{0}=\left\langle\tilde{D} \cap \tilde{H}_{0}\right\rangle$. We lose no generality in assuming $H=H_{0}$, i.e. $\bar{H} \cong L_{2}(q)$ or $S z(q)$. By Lemma 2.6 and (6.6.12) applied to \tilde{H},
(6.6.17) $\quad \tilde{H} \cong L_{2}(q)$ or $S z(q)$.

Let \tilde{h} be an element of \tilde{H} of order $q-1$ normalizing E. As noted, $O(H) \subseteq N$ so every element of the coset $\bar{\hbar}$ is in N. Since $\tilde{\hbar}$ is inverted by e^{x}, for some $e \in E$, $x \in H$ we may pick $h \in H$ in the coset \hbar with h inverted by $f=e^{x}$. Clearly $f \notin N$ else $H=\langle O(H), E, h, f\rangle \subseteq N$, contrary to C being solvable.

First note that if $a \in E^{\#}$ and $V_{a}=[V, a], V_{a} \cap V_{a}^{f}=0$: for otherwise there exists $v \in C_{V_{a}}(f)$ with $v \neq 0$ and $C_{G}(v) \supseteq\langle a, f, L\rangle$; by (6.4.6) $C_{G}(v) \subseteq N$, a
contradiction. For any $a \in E^{\#}, a \sim_{G} f$ so $\operatorname{dim} V_{a}=\operatorname{dim}[V, f]$; thus if U is any subspace of V with $U \cap U^{f}=0, \operatorname{dim} U \leq \operatorname{dim} V_{a}$. Since $V_{a} \subseteq C_{V}(L)$ but by (6.6.8), a does not centralize $C_{V}(L), V_{a} \subset C_{V}(L)$ and so $C_{V}(L) \cap C_{V}(L)^{f} \neq 0$. Let

$$
A=N_{G}\left(C_{V}(L) \cap C_{V}(L)^{f}\right) \supseteq\langle L, f, h\rangle
$$

If $|C \cap A|$ is even, by (6.6.6), $A \subseteq N$, again a contradiction. Next suppose $C^{x} \cap A$ contains a fourgroup F which we may assume contains f. Since $F \subseteq C^{x} \subseteq H$, by properties of $L_{2}(q), S z(q),\langle F, h\rangle$ covers \tilde{H}. Thus $\langle F, h\rangle$ contains E_{0} with $E_{0} O(H)=E O(H)$. But since $O(H) \subseteq N, E_{0} \subseteq O^{2^{\prime}}(E O(H))=C$, contrary to $|C \cap A|$ being odd. This proves $\langle f\rangle \in S y l_{2}\left(C^{x} \cap A\right)$. It follows from (6.6.7) that f^{A} is a class of odd transpositions in A. By [2], $f^{A}=F_{1} \cup$ $F_{2} \cup \cdots \cup F_{r}$ where F_{i} is a non-empty class of odd transpositions in $\left\langle F_{i}\right\rangle$ and [$\left.F_{i}, F_{j}\right]=1$, for all $i \neq j$. Without loss of generality we assume $f \in F_{1}$ and set $A_{1}=\left\langle F_{1}\right\rangle$; note that as f inverts $h \in A, h \in A_{1}$.
(6.6.18) $L \subseteq A_{1}$.

If $L=[L, h]$, then $L \subseteq\left\langle f^{A}\right\rangle$; since $A_{1} \unlhd\left\langle f^{A}\right\rangle, L \subseteq A_{1}$ as claimed. If $[L, h]=1$, since L permutes $\left\{F_{1}, \ldots, F_{r}\right\}, L$ normalizes A_{1}. Suppose $L \nsubseteq A_{1}$. Because

$$
O(H) \subseteq A \quad \text { and } \quad A_{1} \unlhd \unlhd A
$$

we have $[O(H), f]=X \subseteq A_{1}$. Since $O(H) \subseteq N$ either $[X, L]=L$ or $[X, L]=1$. Because $L \nsubseteq A_{1}, X$ centralizes L. Since $O(H) \subseteq N^{x}, X \subseteq O\left(C^{x}\right)$ and since $X \cap O(G)=1$,

$$
\left\langle L, L^{x}, f\right\rangle \subseteq N_{G}(X) \subset G .
$$

By (6.6.6), $N_{G}(X) \subseteq N^{x}$. Thus L acts on $C_{V}\left(L^{x}\right)$ and $V / C_{V}\left(L^{x}\right)$. If L centralizes $C_{V}\left(L^{x}\right)$, by orders $C_{V}\left(L^{x}\right)=C_{V}(L)$ so by (6.6.6) applied to

$$
N_{G}\left(C_{V}(L)\right) \supseteq\left\langle L, L^{x}, C, C^{x}\right\rangle
$$

we obtain $L=L^{x}$ or $\left[L, L^{x}\right]=1$, a contradiction. If, however, L does not centralize $C_{V}\left(L^{x}\right)$, $\left[L, L^{x}\right]$ centralizes $C_{V}\left(L^{x}\right)$ and $V / C_{V}\left(L^{x}\right)$ and so is a 2-group. This forces $\left[L, L^{x}\right]=1$ again contrary to L being in standard form. Thus $L \subseteq A_{1}$.

Let $A_{2}=A_{1}^{(\infty)}\langle f\rangle, B=A_{2}^{\prime}$. By [2], $A_{2} / S\left(A_{2}\right)$ is isomorphic to one of:
(1) Σ_{n};
(2) $S p_{2 n}(r), U_{n}(r), O_{n}^{ \pm}(r), S z(r), r$ even;
(3) $O_{n}^{ \pm}(r), r=3$ or 5 ;
(4) F_{22}, F_{23}, F_{24};
(5) $\left.L_{2}(r)\right\} \Sigma_{n}, r$ even.

Now because G is not a Bender group, by Theorem 2 of [3], there exists $g \in G-N$ such that $\left|C^{g} \cap N\right|$ is even, whence, by (6.6.9), C^{g} normalizes L. If
L normalizes L^{g}, since $C \subseteq C_{G}\left(C^{g}\right) \subseteq N^{g}$, by (6.6.6), L^{g} normalizes L, a contradiction. Since $L \nsubseteq N^{g}$ and $C^{g}=O^{2^{\prime}}\left(C^{g}\right)$ it follows from (6.6.6) that C^{g} centralizes $C_{V}(L)$, whence $C^{g} \subseteq A$. Since C^{g} normalizes L and permutes $\left\{F_{1}, \ldots, F_{r}\right\}$, C^{g} normalizes B.

Suppose $X \subseteq O\left(C^{g}\right)$ with $X \neq 1,\left|N_{C \theta}(X)\right|$ even and $[X, L]=1$. As $X \cap O(G)=1, N_{G}(X) \subset G$ so by (6.6.6), L normalizes L^{g} which we have seen to be impossible. By Lemma 5.34 of [27] there exists $K_{1} \times K_{2} \subseteq C^{g}$ with $K_{i} \cong D_{2 p_{i}}$, for some odd primes p_{i}.

If $L S(B) / S(B) \subseteq E(B / S(B))$ and $\left.B / S(B) \cong L_{2}(r)\right\} A_{n}$, then $L \cong L_{2}\left(r_{1}\right)$, for some $r_{1} \mid r$; in this situation C^{g} has a normal subgroup X with $\left|O\left(C^{g}\right): X\right| \leq 3$ and $[X, L]=1$. By the preceding paragraph, $X=1$ and so the statements $|O(C)| \leq 3, m(E) \geq 2$ and $O_{2}(C)=1$ are incompatible. Thus in case (5),

$$
L S(B) / S(B) \nsubseteq E(B / S(B)) .
$$

From this it follows that $B=[B, d], d \in K_{i}^{\#}, i=1,2$.
Note that $O(B)=\Gamma_{1, E g}(O(B)) \subseteq N^{g}$, so

$$
\left[O(B), C^{g}\right] \subseteq O(B) \cap C^{g}=X
$$

Since $[X, L] \subseteq L \cap O(B) \subseteq Z(L),[X, L]=1$ by the 3 subgroups lemma, whence $X=1$ by previous results. Thus $B=\left[B, C^{g}\right]$ centralizes $O(B)$. Let d be an involution in K_{1}, so $C_{O_{2(B)}}(d) \subseteq N^{g}$. Therefore

$$
\left[C_{O_{2(B)}}(d), O\left(K_{2}\right)\right] \subseteq O_{2}(B) \cap O\left(C^{g}\right)=1
$$

so, by the $P \times Q$ lemma, $O\left(K_{2}\right)$ centralizes $O_{2}(B)$, whence so does $\left[B, O\left(K_{2}\right)\right]=B$. This argument proves $S(B) \subseteq Z(B)$. Indeed, if $O_{2}(B) \neq 1$, as L centralizes $O_{2}(B)$, by (6.6.6), $L \unlhd A$, contrary to $f \notin N$. Thus $S(B)=O(B)$ as well. By Lemma 2.9 applied to $B / O(B), C^{g}$ has a normal subgroup X with

$$
\left|O\left(C^{g}\right): X\right| \leq 3 \quad \text { and } \quad[X, B] \subseteq O(B)
$$

Again $[X, L]=1$ so $X=1$ and the properties $m(C) \geq 2,|O(C)| \leq 3$ and $O_{2}(C)=1$ are incompatible. This contradiction completes the proof of Theorem 6.6.

Proof of Theorem G. Let J_{1}, J_{2} be distinct blocks with $J_{1} \rightarrow J_{2}$ and let

$$
V=\tilde{U}\left(J_{2}\right), \quad \bar{J}_{2}=J_{2} / O_{2}\left(J_{2}\right)
$$

By definition of " \rightarrow " there is a 2 -group S normalizing J_{2} such that \bar{J}_{1} is a component of $C_{\bar{J}_{2}}(S)$; moreover, as $\widehat{U}\left(J_{1}\right)=\left[O_{2}\left(J_{2}\right), J_{1}\right], \bar{J}_{1}$ has a unique nontrivial irreducible constituent in V. Let $\widetilde{J_{2} S}=J_{2} S / C_{J_{2} S}(V)$ so J_{2} is a central (odd order) quotient of \bar{J}_{2}. If $j \in J_{2}$ and $[\tilde{S}, \tilde{j}]=\mathcal{1}$, then $[S, j] \subseteq C_{J_{2}}(V) \subseteq$ $O_{2,2},\left(J_{2}\right)$ so it follows that $C_{\bar{J}_{2}}(S)$ covers $C_{J_{2}}(\tilde{S})$. Theorem G is now immediate from Theorem 6.4.

Proof of Theorem E and F . Let $J \in \mathscr{B}^{*}(G)$, for some finite group G of characteristic 2 type, $S \in \operatorname{Syl}_{2}\left(C_{G}\left(J / O_{2}(J)\right)\right.$), so by assumption $J \unlhd \unlhd N_{G}(S)$. Let

$$
\mathscr{B}_{1}(G)=\left\{K \mid K \text { is an } \Omega_{4}^{+}\left(2^{m}\right) \text {-block, } K \unlhd \unlhd N_{G}(T), T \in S y l_{2}\left(C_{G}\left(K / O_{2}(K)\right)\right)\right\}
$$ so the relation " \rightarrow " extends mutatis mutantis to $\mathscr{B}(G) \cup \mathscr{B}_{1}(G)$.

(EF.1) If $K \in \mathscr{B}^{*}(G) \cup \mathscr{B}_{1}(G)$, either $K \unlhd \unlhd N$, for every maximal 2-local $N \subseteq K$ or K is a block of $L_{2}\left(2^{n}\right)$-type and $K \rightarrow L \in \mathscr{B}_{1}(G)$.
To prove this let $K \subseteq Y \subseteq K T, T \in S y l_{2}\left(C_{G}\left(K / O_{2}(K)\right)\right)$, with Y maximal subject to $Y \unlhd \mid \leq N$, for some maximal 2-local N containing Y. Let $Q=O_{2}(Y)$; we first show $K \unlhd \unlhd N_{G}(Q)$. This is true by assumption if $Q=T$ so consider when $Q \subset T$. Then $Q^{*}=N_{T}(Q) \supset Q$ so as $Y=Q K$, by maximality of Y, $K \leq \leq N_{G}(Q)$ as claimed. Let $H=O_{2}(N)$. If $Q H \supset Q$, then $Q \subset N_{Q H}(Q)$ and $N_{Q H}(Q) \subseteq C_{G}\left(K / O_{2}(K)\right.$), so by maximality of $Y, K \unlhd \unlhd N$, contrary to assumption. Thus $Q H=Q$ and since $H \neq Q, H \subset Q$. Since G is of characteristic 2 type $U(K) \subseteq H$. Since $K H / H$ is a component of $C_{N / H}(Q / H)$, by the L-balance Theorem [3.1 of 23], $K H / H \subseteq L(N / H)$. Let

$$
H \subseteq X \subseteq N \quad \text { with } X / H=\left\langle(K H / H)^{L(N / H)}\right\rangle
$$

so X / H is a product of 2-components of N / H and Q normalizes X. Since $H \subseteq Q, K H$ has a unique non-central 2-chief factor, whence $X Q$ has a unique non-central 2-chief factor, V. Let an overbar denote passage to $X Q / C_{X Q}(V)$. Since G is of characteristic 2 type every non-trivial odd order element of N acts faithfully on H, so $\bar{X}=X / H$. Thus \bar{K} is a component of $C_{\bar{X}}(\bar{Q})$. By Lemma 6.2, \bar{K} centralizes $O(\bar{X})$ so $\bar{X}=\left\langle\bar{K}^{E(\overline{X Q})}\right\rangle$ is semisimple. If \bar{K} is an $\Omega_{4}^{+}\left(2^{m}\right)$-block, by Theorem 6.5, $\bar{X}=\bar{K}$, whence $K=X^{(\infty)} \unlhd \unlhd N$, a contradiction. Assume therefore \bar{K} is quasisimple. By Theorem 6.6, $X^{(\infty)}$ is either a block or an $\Omega_{4}^{+}\left(2^{m}\right)$-block and $K \rightarrow X^{(\infty)}$. Next, over all such $N \supseteq Y$ with $Y \unlhd \unlhd N$ pick N to maximize first $\left|X^{(\infty)}\right|$ and, subject to this, to maximize

$$
\left|C_{N}\left(X^{(\infty)} / O_{2}\left(X^{(\infty)}\right)\right)\right|_{2}
$$

Let $L=X^{(\infty)}$ and $P \in S y l_{2}\left(C_{N}\left(L / O_{2}(L)\right)\right)$ with P normalized by Q. Let M be a maximal 2-local subgroup of G containing $N_{G}(P)$, so $Y \subseteq M$. Since initially N was arbitrary, there exists L_{1}, a block or $\Omega_{4}^{+}\left(2^{m}\right)$-block of M, with $K \subseteq L_{1}$. Since $L \subseteq M$ we must have $L \subseteq L_{1}$ so by maximality of $|L|, L=L_{1}$. Since

$$
P \subseteq O_{2}\left(N_{G}(P)\right) \subseteq C_{M}\left(L / O_{2}(L)\right)
$$

by maximality of $|P|, P \in S y l_{2}\left(C_{G}\left(L / O_{2}(L)\right)\right)$. Thus $L \unlhd \unlhd N_{G}(P)$ implies

$$
L \in \mathscr{B}(G) \cup \mathscr{B}_{1}(G) .
$$

Since \bar{K} is quasisimple, by hypothesis $K \in \mathscr{B}^{*}(G)$ and since $K \rightarrow L$ and $K \neq L$, $L \notin \mathscr{B}(G)$. It follows therefore by Theorem 6.6 that the second conclusions of (EF.1) holds in this situation.

By (EF.1) to prove both Theorems E and F it suffices to show:
(EF.2) If $K \in \mathscr{B}^{*}(G) \cup \mathscr{B}_{1}(G)$ and $K \unlhd \unlhd N$, for every maximal 2-local $N \supseteq K$, then K is contained in a unique maximal 2-local subgroup.

To prove this let K_{1}, \ldots, K_{r} be a maximal set of commuting conjugates of K with $K=K_{1}$ and set

$$
D=\left\langle K_{1}, \ldots, K_{r}\right\rangle, \quad M=N_{G}\left(O_{2}(D)\right) .
$$

By the hypothesis of (EF.2), M is a maximal 2-local subgroup and $M=N_{G}(D)$. Suppose N is any maximal 2-local containing K. Let

$$
D_{0}=\left\langle K^{g} \mid K^{g} \subseteq N, g \in G\right\rangle
$$

By hypothesis $D_{0} \unlhd N$. Let L be a block of D_{0}; we show $L \in\left\{K_{1}, \ldots, K_{r}\right\}$: this is clear if $L=K$ so assume $[L, K]=1$. Then $N_{G}\left(O_{2}(K)\right) \supseteq D_{0}, D$ and by hypothesis $D_{0}, D \unlhd \unlhd N_{G}\left(O_{2}(K)\right)$ so by Lemma 2.1 distinct blocks in $\left\langle D, D_{0}\right\rangle$ commute; by maximality of $D, L \in\left\{K_{2}, \ldots, K_{r}\right\}$ as claimed. Thus $D_{0} \leq D$ so $D \subseteq N_{G}\left(D_{0}\right)=N$, whence $D \subseteq D_{0}$ by definition. Thus $N=N_{G}(D)=M$, as needed to complete the proof.

Proof of Theorem D. Let J be a block in some maximal 2-local subgroup M of G with G of characteristic 2 type, let $Q=O_{2}(M), Q \subseteq F$ with $F / Q=$ $F^{*}(M / Q)$ and note that as $Q=F^{*}(M), U(J) \subseteq Q$ so $J \unlhd F$.
(D.1) There is a maximal 2-local M_{1} of G with $N_{G}(J) \subseteq M_{1}$ and $J \unlhd \unlhd M_{1}$.

Assume this is not the case so, in particular, $N_{G}(J) \nsubseteq M$. Let N be a maximal 2-local containing $N_{G}(J), P=O_{2}(N)$ and $J^{M}=\left\{J_{1}, J_{2}, \ldots, J_{r}\right\}, r \geq 2, J=J_{1}$. For $P_{0}=N_{P}(Q), P_{0} \subseteq M$ so $\left[P_{0}, F\right] \subseteq F \cap P \subseteq Q$; thus $P_{0} Q / Q$ centralizes F / Q so by properties of $F^{*}, P_{0} \subseteq Q$. This proves $P \subseteq Q$ so $P \subset Q$. Since J_{i} acts non-trivially on $P, U\left(J_{i}\right) \subseteq P$ so $J_{i} P / P$ is a component of $C_{N / P}(Q / P)$. As in the preceding proof by Theorem 6.6 , there exist K_{i}, blocks or $\Omega_{4}^{+}\left(2^{m}\right)$-blocks of N with $J_{i} \rightarrow K_{i}, 1 \leq i \leq r$. Moreover, either $J_{i}=K_{i}$ or $K_{i} / O_{2}\left(K_{i}\right) \cong A_{n}, \Omega_{2 n}^{ \pm}\left(2^{m}\right)$ or $Z_{3} \cdot U_{4}(3)$. From this it follows that $\left[K_{i}, K_{j}\right]=1$, for all $i \neq j$. Now let $m_{i} \in M$ such that $J_{i}=J^{m_{i}}, 1=2,3, \ldots, r$. Since $J^{m_{i}-1} \neq J,\left[J^{m_{i}-1}, K_{1}\right]=1$ whence $\left[J, K_{1}^{m_{i}}\right]=1, i=2, \ldots, r$. Thus $K_{1}^{m_{i}} \subseteq N_{\mathrm{G}}(J) \subseteq N$. Since $J_{i} \subseteq K_{i} \cap K^{m_{i}}$ and $K_{i} \unlhd \unlhd N, K_{i}=K_{1}^{m_{i}}, i=2, \ldots, r$. Suppose $\left\langle K_{1}, \ldots, K_{r}\right\rangle \npreceq N$ so there exists $n \in N, j \in\{1, \ldots, r\}$ such that $\left[K_{j}^{n}, K_{i}\right]=1,1 \leq i \leq r$. In this situation

$$
K=K_{j}^{n} \subseteq C_{G}\left(\left\langle J_{1}, \ldots, J_{r}\right\rangle\right) \leq M .
$$

Furthermore, since $K \unlhd \unlhd N \supseteq F$, by properties of F^{*}, K is a block of M. Let

$$
K^{*}=\left\langle K^{M}\right\rangle \subseteq C_{G}\left(\left\langle J_{1}, \ldots, J_{n}\right\rangle\right)
$$

so $K^{*} \subseteq F \subseteq N$. Since for each K_{i} either $K_{i}=J_{i}$ or K_{i} is of known type and since $\left[K^{*}, J_{1}\right]=1$ by inspection $\left[K^{*}, K_{1}\right]=1$. Thus
$K_{1} \subseteq N_{G}\left(K^{*}\right) \subseteq M$ and since $J_{1} \unlhd \unlhd M, K_{1}=J_{1}$. But now we may take $M_{1}=N$, contrary to assumption. This argument proves

$$
\left\langle K_{1}, \ldots, K_{r}\right\rangle \unlhd N
$$

Since $N_{G}\left(J_{1}\right) \subseteq N$ and $N_{G}\left(J_{1}\right)$ normalizes $K_{1},\left\langle K_{1}, \ldots, K_{r}\right\rangle=\left\langle K_{1}^{M}\right\rangle$ is normalized by M, contrary to $M \neq N$. This establishes (D.1).

Without loss of generality $N_{G}(J) \subseteq M$ so as an immediate consequence of (D.1) for $R \in \operatorname{Syl}_{2}\left(C_{M}\left(J / O_{2}(J)\right)\right)$ we obtain
(D.2) $R \in \operatorname{Syl}_{2}\left(C_{G}\left(J / O_{2}(J)\right)\right)$.

It remains to prove $J \unlhd \unlhd N_{G}(R)$. Let $g \in N_{G}(R)$; we prove $J \subseteq M^{g} . \quad$ If $U(J)$ is abelian,

$$
U(J) \subseteq Z(R) \subseteq Z(Q) \quad \text { and } \quad\left[J, Z(Q)^{g}\right] \subseteq U(J) \subseteq Z(R)=Z(R)^{g} \subseteq Z(Q)^{g}
$$

whence

$$
J \subseteq N_{G}\left(Z(Q)^{g}\right)=M^{g}
$$

If $U(J)$ is non-abelian, since R centralizes $U(J)^{\prime}$ and $[U(J), R] \subseteq U(J)^{\prime}, R^{\prime}$ centralizes $U(J)$. Thus $\left[J, R^{\prime}\right] \subseteq U(J) \cap C(U(J)) \subseteq Z(J)$ and so $\left[J, R^{\prime}\right]=1$ by the 3 -subgroups lemma. Since $U(J) \subseteq Q, Q^{\prime} \neq 1$ and $\left[J, Q^{\prime g}\right] \subseteq\left[J, R^{\prime}\right]=1$, whence

$$
J \subseteq N_{G}\left(Q^{\prime g}\right)=M^{g}
$$

In both cases $J \subseteq M^{g}$ and, since $J \leq \leq M$,

$$
J \unlhd \unlhd \bigcap_{g \in N_{G}(R)} M^{g} \cap N_{G}(R) \unlhd N_{G}(R) .
$$

This completes the proof of Theorem D.

References

1. J. Alperin and R. Lyons, On conjugacy classes of p-elements, J. Algebra, vol. 19 (1971), pp. 536-37.
2. M. Aschbacher, Finite groups generated by odd transpositions, IV, J. Algebra, vol. 26 (1973), pp. 479-491.
3. ———On finite groups of component type, Illinois J. Math., vol. 19 (1975), pp. 87-115.
4. ——— Tightly embedded subgroups of finite groups, J. Algebra, vol. 42 (1976), pp. 85-101.
5. ——, A characterization of Chevalley groups over fields of odd order, I and II, Ann. of Math., vol. 106 (1977), pp. 353-98, 399-468.
6. -, Thin finite simple groups, J. Algebra, vol. 54 (1978), pp. 50-152.
7. ——, A factorization theorem for 2-constrained groups, to appear.
8. ——, Weak closure in finite groups of even characteristic, to appear.
9. - Some results on pushing up in finite groups, to appear.
10. M. Aschbacher and G. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Math. J., vol. 63 (1976), pp. 1-91.
11. - On groups with a standard component of known type, Osaka J. Math., vol. 13 (1976), pp. 439-482.
12. B. Baumann, Endliche Gruppen mit einer 2-zentralen involution deren Zentralisator 2abgeschlossen ist, Illinois J. Math., vol. 22 (1978), pp. 240-261.
13. U. Dempwolff, Some subgroups of GL(n, 2) generated by involutions, J. Algebra, vol. 54 (1978), pp. 332-52.
14. B. Fischer, Finite groups generated by 3-transpositions, University of Warwick, preprint.
15. R. Foote, Finite groups with components of 2-rank 1, I, J. Algebra, vol. 41 (1976), pp. 16-46.
16. -, Finite groups with components of 2-rank 1, II, J. Algebra, vol. 41 (1976), pp. 47-57.
17. ——, Aschbacher blocks, Proceedings of Symposia in Pure Mathematics, Amer. Math. Soc. publication, vol. 37, (1980), pp. 37-42.
18. G. Glauberman, Weakly closed elements of Sylow subgroups, Math. Zeitschr. vol. 107 (1968), pp. 1-20.
19. -Isomorphic subgroups of finite p-groups, II, Canadian J. Math., vol. 23 (1971), pp. 1023-39.
20. D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
21. D. Gorenstein and K. Harada, On finite groups with Sylow 2-subgroups of type $A_{n}, n=8,9$, 10, 11, Math. Zeitschr., vol. 117 (1970), pp. 207-238.
22. ——On finite groups with Sylow 2-subgroups of type $\hat{A}_{n}, n=8,9,10,11$, J. Algebra, vol. 19 (1971), pp. 185-227.
23. D. Gorenstein and J. Walter, Balance and generation in finite groups, J. Algebra, vol. 33 (1975), pp. 224-87.
24. K. Harada, Finite simple groups with short chains of subgroups, J. Math. Soc. Japan, vol. 20 (1968), pp. 655-72.
25. K.-W. Phan, A characterization of the unitary groups $\operatorname{PSU}\left(4, q^{2}\right), q$ odd, J. Algebra, vol. 17 (1971), pp. 132-48.
26. A. R. Prince, On 2-groups admitting A_{5} or A_{6} with an element of order 5 acting fixed point freely, J. Algebra, vol. 49 (1977), pp. 374-86.
27. J. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, I, Bull. Amer. Math. Soc., vol. 74 (1968), pp. 383-437.
28. F. Timmesfeld, Groups generated by root involutions, I, J. Algebra, vol. 33 (1975), pp. 75-134.
29. - Finite simple groups in which the generalized Fitting group of the centralizer of some involution is extraspecial, Ann. of Math., vol. 107 (1978), pp. 297-369.
30. -, On finite groups in which a maximal abelian normal subgroup of some maximal 2-local subgroup is a TI-set, to appear.

University of Minnesota
Minneapolis, Minnesota

[^0]: Received March 24, 1980.

[^1]: ${ }^{1}$ See the remarks at the end of this proof.

