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COMPONENT TYPE THEOREMS FOR FINITE GROUPS
IN CHARACTERISTIC 2

BY
RicHARD FOOTE

1. Introduction

In recent years Aschbacher blocks or constrained components have entered
the limelight in the theory of finite simple groups, not only in their connection
with pushing up theorems but also as a possible direction for revising some of
the classification program. In this paper the basic foundations are laid for a
theory of blocks closely analogous to that for ordinary components in M.
Aschbacher’s fundamental work [3]. Since the development and present status
of the theory of blocks is described in detail in the survey article [17] which
serves as an introduction to this paper, only the technical essentials are
repeated here together with some comments about the proofs.

DEFINITIONS. A subgroup J of a finite group H is called a block of H if and
only if (i) J 29 H, (ii) J = J', (iii) J/O,(J) is quasisimple and (iv) J has a
unique non-central 2-chief factor; if H = J, we simply say J is a block. For a
block J let

U(J)=[0,(J), J] and O(J)= UJ)UJ)  Z({J).
For any finite group G let
A(G) = {J|J is a block of N(S) where S e Syl,(C4(J/0,(J)))}.

If J,, J, are blocks which are subgroups of a group G, write J; — J , if and only
if J, = J, with U(J,) = [0,(J,), J,] and for some 2-subgroup T of N4(J,), J,
is a component of Cj,(T), where an overbar denotes the natural projection of
J,ontoJ,/0,(J,). Extend — via chains to a partial order on #(G) and let #*(G)
be the maximal elements under this order.

Say a block J is of L,(2™)-type if and only if J/O ,(J) = L,(2")and U(J)is the
natural 2-dimensional F,.L 5(2™)-module for J/O ,(J) viewed as a module over
F,. Finally, say a subgroup J of a finite group H is an Q; (2™)-block if and only
if () J2=H, (i) J =J, (iii) J/0,(J) = QF (2™) = L,(2™) x L,(2™), and (iv)
J has a unique non-central 2-chief factor which is the natural 4-dimensional
F,»Q7 (2")-module for J/0,(J) viewed as a module over F,.
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The main theorems can now be stated:

THEOREM A. Let J be a block and let x be an involution in Aut (J); then x
centralizes a 2-element in J — Z(J) and, moreover, if U(J ) is abelian, x centralizes
an involution in J — Z(J).

THEOREM B.  Let x be an involution in the finite group G, J a block of C 4(x), K
a block of G and assume the outer automorphism group of K/0,(K) is solvable;
then one of the following holds :

(1) J< K with U(J) < U(K);

(2) K # K*and J = Cggs(x);

3) [J,K]=1

THEOREM C. Let G be a finite group with a maximal 2-local subgroup M and
block J of M such that M is the unique maximal 2-local subgroup of G containing
J; then either M =G or J < M.

THEOREM D. If G is a finite group of characteristic 2 type and J is a block in
some maximal 2-local subgroup M of G, then J € %(G).

THeorREM E. If G is a finite group of characteristic 2 type and J € *(G) with
J not of L (2™)-type for any m, then J is a block of some maximal 2-local subgroup
M of G and M is the unique maximal 2-local subgroup of G containing J.

THEOREM F. If G is a finite group of characteristic 2 type and J € #*(G) with
J of L,(2™)-type, then either

(1) J is a block of a maximal 2-local subgroup M of G and M is the unique
maximal 2-local subgroup of G containing J,
or

(2) J <= K where K is an Q7 (2™)-block of some maximal 2-local subgroup M
of G and M is the unique maximal 2-local subgroup of G containing K.

THeoreM G. If J,, J, are distinct blocks with J, — J,, then one of the
following holds:

(1) Jy=A,, J, = Apy i and U(J)) is the irreducible constituent of the nat-
ural permutation module for J, over F,,i=1, 2;

(2) T, = Spon(a)s Jo = Qvesla), d a power of 2, n> 1, and O(J) is the
natural qu,--module viewed as a module over F,, i=1, 2;

() Ji=Uu(2), T, Zy - Uy(3), and dimg, U(J,) = 12, dimg, U(J,) = 8.

In the literature the blocks J with U(J) abelian seem to be of primary interest
so in Theorems A and C where the arguments handle the cases U(J) abelian,
U(J) non-abelian, the former is treated first for those who wish to skip the
latter case; indeed, Theorem A is trivial when U(J) = 1 but since it tidies up
the proofs of Theorems B and C, it may be worth the inordinately large effort
required to complete the non-abelian case.
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Theorem B was proven by M. Aschbacher, K. Harada and the author in 1977
at the ongoing conference at Caltech that spring. Using an approach of R.
Gilman, Harada has proved this theorem without recourse to Theorem A.

The proof of Theorem C follows the argument of Aschbacher’s Standard
Form Theorem (specifically, Theorem 5 of [3]) although the endgame is differ-
ent. The presence of Theorem A makes matters smoother than the original,
especially when U(J) is abelian.

The remaining arguments generalize results of Aschbacher in [7] and [9] and
in some cases in our more general setting the arguments are easier. The main
technical difficulty is in the discussions related to the proof of Theorem G
where cores and standard form problems cause the grief. This could be swept
under the carpet by invoking the Unbalanced Theorem and complete solutions
to certain standard form problems but it seems clearer to maintain independence
from these Gargantuan tools.

I am especially indebted to Michael Aschbacher for some helpful conversa-
tions and correspondence and, in particular, for the crucial observation,
Lemma 6.1.

II. Preliminary lemmas

Throughout the paper we make constant use of the immediate consequence
of the 3-subgroups lemma: if X is perfect and [X, A, A] = 1, then [X, 4] = 1.
Using this one verifies that for a block or Q% (2")-block J and normal subgroup
A of J either A < Z(J) or U(J) < A.

LemMa 2.1.  If J, K are distinct blocks or Q3 (2™)-blocks of G then[J, K] = 1.

Proof. Let H = 0,(G), G = G/H. By subnormality of blocks, J, K are semi-
simple subnormal subgroups of G and J = (JH)®, K = (KH)*, so J # K.
Since J normalizes KH, J normalizes K and so acts on U(K). Since K acts
irreducibly on U(K), H centralizes U(K).

Suppose [J, K] = 1. Then J commutes with the irreducible action of K on
U(K) so J centralizes U(K). Since [J, K] = 0 ,(K) and K/U(K) is semisimple,
[K, J] = U(K). Thus [K, J, J] = Z(K) so by the 3-subgroups lemma applied to
K/Z(K), [K, J] = Z(K). Thus [J, K, K] =1, so [J, K] =1 as claimed.

If [J, K] # 1, then at least one of J, K is isomorphic to

Qf (2™ = L,(2") x L,(2™)

and, interchanging J, K if necessary, we may assume there exists J ;, a compon-
ent of J of type L,(2™), with [J;, K] =Tand J = J; x J, with J, = K. Pick the
preimage J, with J, = (J, H)®). By the argument of the preceding paragraph
applied to J; in place of J, [J,, K] = 1. Because U(J) is the direct sum of 2
natural F,m L,(2™)-modules for J,, U(J) = [0,(J), J;] < J;. But then J, centra-
lizes U(J), a contradiction.
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LemMMA 22. Let J be a block, V = [0,(J), J].
(@) IfV is abelian, V = Q((Z(0(J))),
(b) IfV is non-abelian, V' = ¢(V) is elementary abelian, C (V) = Z(J).

Proof. (a) Note that because J acts irreducibly on V/V n Z(J),
[0,(J), V] < Z(J). Let J=J/V so J is quasisimple and acts on V. For
je0,(J), veV, v, jl=ze Z(J); thus for all xe J, [v*, j] =z so [w", j]=1.
Since V = (uv*|ve V, x e J)y, V = Z(0,(J)), as desired.

(b) If V' # 1, since J = O*(J) acts non-trivially on V/V", J acts non-trivially
on Q,(V/V’) so the non-central 2-chief factor of J lies in Q,(V/V’), whence
VIV = Q,(V/V'). Since V' < Z(J), V' is elementary abelian.

Finally, [J, C(V)] = C,(V) and as V' # 1, V & C (V). Since O(J) = Z(J) it
follows that J centralizes C,(V) as claimed.

LEMMA 2.3.  Let K be a block of G, x an involution in G, J a block of C 4(x), W
a subgroup of N4(K) of order 4.

(@) IfK # K*, then K, = Cyy.(x) is a block of C g(x) isomorphic to a central
quotient of K and the map k — kk*, for all k € K, is a homomorphism of K onto
K,; either J = Ky or [J, K] = 1.

(b) Ty w(K) contains a fourgroup and if w is an involution in N &K),
|CxW) = 8 or m(Cw)) > 2.

Proof. (a) Suppose K # K* so, by Lemma 2.1 [K, K*] = 1. Let
KK* = KK*/K n K7,

so KK*=K x K* and L= Cggx)= K. Let L be the complete preimage
of L in KK* so, because L is perfect and K n K* < Z(KK*), L' = L, is also
perfect; moreover, clearly K,< L,. However, [x, Lo]< Z(KK*) so
[x, Lo, Lo} = 1, whence Ly = Cygx) = K. It is also clear that k — kk* is a
homomorphism of K into K, whose image covers L. Since this image and K,
are both perfect and agree modulo a central subgroup, equality holds as
claimed. Finally, suppose J # K, so, by Lemma 2.1, [J, K,] = 1. Let y be an
odd order element of J. As y permutes the blocks of G but centralizes K, y
normalizes KK* and, since | y| is odd, y normalizes both K and K*. For k € K,

1= [kkx, Y] = [ka y][kx’ y]

so [k, y]e K n K*< Z(K). Thus [y, K, K] =1 so [y, K] = 1 which proves
J = 0%*(J) centralizes K as claimed.

(b) Let V= U(K)so Ng(K)acts on V and m(V/V’) > 3. If V is abelian, for
every involution w € Ng(K), m(Cy(w)) > 2 so all parts of (b) follow in this case.
Thus we may assume V' # 1 and since V' is elementary abelian, by similar
reasoning m(V’) < 2.

Let T € Syl,(K) with T normalized by W. If I'y ,(T) has 2-rank 1 it follows
that every characteristic abelian subgroup of T is cyclic. Since T’ is cyclic by
Theorem 5.4.9 of [20], [/(J), T] has order 2, so some subgroup T, of T of index
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<2 in T centralizes U(J), contrary to T/0,(J) acting faithfully on U(J). This
proves the first assertion of (b).

Now suppose w is an involution in N4(K) with m(Cg(w)) = 1. If
V=<, 02) 2 Zy X Z,,

then we may assume v} = v, v,, V3 = v,, Whence | Cg;c,,5(W)| = |Ci(w)]. Tt
therefore suffices to assume V' = (v} = Z, and prove for any w, | Cx(w)|, > 8.
Let

C={aeV|[a w]e (v)}

s0 C/{v) = Cyplw). If |C/<v)| =8, it follows that |C(w)| > 8, as desired.
Assume |C/{v)| <8, so |V/V’'| <16 whence V/V' = E ¢ K/OH(K)=x 45,
V =~ Qg YDg and |C/{v)|=4. Since Aut (V)= E;s°05(2) and w is not a
transvection on V, there exists k € K-0,(K) with k™ 'w centralizing K. Thus
|Cy(w)| = |Cy(k)| = 4 and k e Cx(w) — V, s0 |Cy(w)|, = 8, as needed.

LemMA 24. If L= A, is a standard component in G = A,., and V is an
irreducible ¥ , G-module in which [V, L)/C\y, (L) is the natural module for L (i.e.
the non-trivial irreducible constituent of the n-dimensional permutation module
over F,), then V is the natural module for G.

Proof. See [13].

LemMa 2.5. Suppose H=X,, n>17, V is a faithful F, H-module such that
[V, H)/Cpy uy(H')

is the natural module for H' (as in Lemma 2.4) and suppose t 1, t , are involutions in
H-H' with t, a transposition; then either t, is a transposition or

dimg, [V, t;] < dimg, [V, t,].

Proof. Let Vy=[V,H), V; = CyH'), V="V,/Vo n V;. By 113 of [5],
|H(V, H')| =11if nis odd, 2 if n is even. Note that t, = t,(mod H’) implies
[Vi, t.] = [V1, t,] If nis odd, since V is self-dual, V = V, @ V,, and in this case
if ¢, is not a transposition, dimg, [V5, t;] > 1 = dimg, [V, t,] as desired. If n is
even, |V:V, + V| <2and |V, n Vy| < 2.In this case if ¢, is not a transposi-
tion, since n > 7 dimg, [V, t,] > 3, whence as dimg, [Vo, t,] =1,

dimg, [V, + V3, t,] > dimg, [Vo + Vi, t4] + 1,

which suffices to establish the lemma.

LEMMA 2.6. Let G be a group generated by a conjugacy class D of odd
transpositions with O(G) =1 and G/S(G) = L,(q) or Sz(q), g =2">2; let
E = G with E~ E,. Assume E* < D, E is tightly embedded in G and ifE, ..., E,
are distinct commuting conjugates of E, <E,, ..., E.>=E{ x - x E,. Then
S(G)=1.
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Proof. Note that since D is a class and E* = D with m(E)>2, G =G".
Proceed by induction on |G| and let M be a minimal normal subgroup of G.

First consider M ={z)x~Z,. Let Ec T e Syl,(G), E,, ..., E, the G-
conjugates of E in T, so, by the odd transposition property and our
assumptions,

<El’ ceey E”>=E1 X o X E”.

Note that E covers a Sylow 2-subgroup of G/S(G) and Sylow 2-subgroups of
G/S(G) are T.L-sets, so

Ng(T)= Ng(E, x -+ x E,).

Since E* =D and the fusion of elements of E* takes place in
NgG(E; x -+ x E,), by the T.L property of E we may pick h € N(T) n NE)
with <h)>S(G)/S(G) a Cartan subgroup of G/S(G). Since D is a class of odd
transpotions it follows that for all e € E, e ~ez. Thus for G = G/{z), E is
tightly embedded in G. Suppose z € (E,, ..., E,>: write z=¢, ... e,, ¢; € E;
and without loss of generality e, € E, = E, e, # 1; h normalizes E and so
normalizes E, X --- x E,, whence '

z=z"=¢"el ... e" whereel + e,

contrary to z having a unique expression in this direct product. Thus
<E1, ey En> =E1 X X En,
. =1 by . . /\
so by in%tlon, S(G) = 1. Clearly G % SL,(5) and since in Sz(8), e ~ ez,
e € E*, 5z(8) is not generated by odd transpositions. These are the only pos-
sible perfect extensions of G by Z,, so |M| # 2.
Now M is an irreducible F , G/O 5(G) module and by the proof of 4.1.8 of [28],
E acts quadratically on M. By Lemmas 2.1 and 2.5 of [30], k = dimg, C (E) =
1dimg, M. By hypothesis therefore (EM) = E; x -+ x E , which is absurd in

view of (EM) < EM, k > 2. This contradiction completes the proof of the
lemma.

LEMMA 2.7. Let H= 03,(2"), n>2, m> 1, V the natural 2n-dimensional
Fym-module for H viewed as a module over F,, and let
G = Aut (V) = GL,,,(F,).

(@) IfH#O0¢(2), H(H, V)=0= H'H, V*), V* the dual module to V.

(b) Let H=01(2"), T € Syl,(Ng(H)), Ty =T ~ H’; then

T/To = 22 X Z2k

where 2*|m and there is an element f of T of order 2* which induces a field
automorphism on H.

Proof. (a) The case n =2 is 4.27 of [6] and 2.7 of [7]. Now the same argu-
ment as Lemma 2.2 of [29] yields the general result.
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(b) By the irreducible action of H' on V, | C{H')| is odd. It is clear that
since we are considering F »-automorphisms such an element fexists, and since f
acts on H and |H:H'| =2, T/T, is at least as big as claimed. Since

H =L, x L,, L; = L,(2™), a Sylow 2-subgroup of Out (H') is of type Z .[Zz.

If T/T, is not as described it follows that there exists f; € T with f; inducing an
outer automorphism on L, an inner automorphism on L, and with f% e T,
Replacing f; by f; g, for suitable a € L, we may assume f; centralizes L,. Since
the coset f; L, contains an involution which is a field automorphism of order 2
on L,, we may assume f; is such an involution. Now [V, f;] admits L, so since
V is the direct sum of two natural irreducible modules for L,, [V, f] is an
irreducible F, L,-module. Since C; (f;) = L,(2™?) commutes with the action
of L, on [V, fi], C.(fy) centralizes [V, f] contrary to all odd order elements of
L} acting Frobeniusly on V. This contradiction completes the proof of (b).

LemMA 28. Let H=Z,- U,(3) - Z, where H has a faithful irreducible 12-
dimensional module V over F, such that for some involutiont € H — H', Cy(t) has a

component L = U 4(2) and V has a unique non-trivial irreducible F , L-constituent.
Let

G = Aut (V) = Gle(Fz), Te Sylz(NG(H/)), To =Tn HI, Z= Z(H’).

(@) T/Toy=Z,o0r Z, x Z,, tT, contains exactly two H-classes of involutions
and if a, b are representatives of these,

Cula)= Zy x Uy(2), Culb) = Zs x (SLa(3) | Z2/Z(SL(3) | Z2));
if T/Ty = Z, x Z,, there is a coset uT, of order 2 in T/T, with
uTy #tT, but <{u, HY/Z =<t, H/Z,

tuT, contains exactly two H-classes of involutions and if c, d are representatives of
these, Cy,(c) = Zg, Cyld) = U,(3).

(b) If e is an involution in tH', dimg, [V, e] =2 or 6.

(c) dimg, [V, L)/Cy (L) = 8.

Proof. Note that SU4(2) contains a subgroup H with the requisite proper-
ties so the situation is not vacuous, by Theorem 16.1.12 of [14]. Since Z acts
Frobeniusly on V, C = C({(Z) = GL¢4)and N o(Z) = C{ f) where finduces an
involutory field automorphism on C.

The claims in part (a) are simply assertions about Aut (U 4(3)). Since
Out (U4(3)) = Dg and only a fourgroup in Out (U,(3)) normalizes a 3-fold
cover (and since |Cg(H')| is odd), T/T, = Z, or Z, x Z,. Note by the struc-
ture of Cplt) > L, t is a reflection in H/{x) < O¢(3); moreover, by 15.1 of
[14), if T/Ty =~ Z, x Z, there is a coset uT, # tT, with {u, H'>/Z ~ H/Z. The
classes of involutions in the coset t(H'/Z) are represented by a reflection and a
product a, a, a; of three distinct commuting reflections so the structure of the
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centralizers is easily computed. Finally, we may pick d in the coset tuT, with

matrix representation
-1 00
010
0 01

acting on H'/Z in its usual matrix representation as U,(3), (e.g. [25]) so
Chyz(d) = U;(3). Also, <d, H')/Z = 04 (3) so it acts on the natural projective
module V. Thus there is one other class of involutions in the coset dH' and if ¢
represents this class, [V, ¢] has F;-dimension 4 and Witt index 1, whence
Culc)= Zs.

To prove (b) and (c) we make use of Lemma 6.1 which asserts that L centra-
lizes [V, t] and V/Cy(t), so, in particular, ¢t does not act freely on V. Thus ¢
centralizes Z and so H = GL¢(4), dimg, [V, t] = 1 or 2. Since dim V/C(t) =
dim [V, t] and L acts on Cy(t)/[V, t] we must have dimg, [V, t] = 1 and since
L ¢ GL4(F,),

dimE‘ [V, L]/C[V,L](L) = 4.

We may pick commuting H-conjugates a,, a,, a; of t with span {[V, a,]|i =
1, 2, 3,} of dimension 3 over F,, whence dimg, [V, a,a,a,] =3 and a,a,a; is
an involution in tH'. This completes the proof of both (b) and (c).

LemMA 2.9. Suppose H < G with H isomorphic to one of A,, Sp,(q), U.(q),
Q7 (q), Sz(q), q even, Q7 (q), g =3 or 5, F 5, F 53, F4 0r Lo(q) 1A,., q even > 4,

and assume H=H'. If K< G with E e Syl,(K), E elementary abelian of
rank > 2, K = O(K)E, K tightly embedded in G and K acting faithfully on H,
then |O(K)| < 3.

Proof. Assume O(K)# 1. Since m(E)>2, there exists ee E* with
1 # O(Ck(e)) = O(Cg4l(e)). Since K acts faithfully on H, by inspection
H 5’-‘ Spn(q)9 U,,(Q), Sz(‘l), F22 ’F23 s F’24, H # Qf(‘l), (n’ ‘1) # (29 4)9 (4’ 2)’ (4’ 4): q
even, H % L,(q) 1 Ay, (n, g) # (1, 4), (2, 4). By Theorem 4.9 of [11] H 2 QZ(q),
q = 3 or 5. Thus the only possibilities for H are A, or A5 ." Z, and the result is

easily checked in these instances.

LemMMA 2.10. Let G be a group generated by a conjugacy class D of odd
transpositions with G' semisimple, let V be a faithful irreducible F , G-module and
assume, for e € D, Cg(e) has a component L such that V has a unique non-trivial
irreducible F , L-constituent. One of the following holds:

(1) L= A,, G=ZX,,,, V is the non-trivial irreducible constituent of the nat-
ural (n + 2)-dimensional permutation F,G-module, n > 5;

(2) L= Sp2™), G=0,,+,(2™), V is the natural (2n + 2)-dimensional
F,.G-module viewed as a module over Fo,n > 1, m>1;
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(3) L2 U,Q2), G=Z,- Uy(3)- Zy, dimg, V = 12,
dim'.-z [V, L]/C[V,L](L) = 8.

Proof. By the Main Theorem of [2] we may identify (G, D); the only in-
stances in which the centralizer of an odd tranposition contains a component
are when G/S(G) is one of the following: X, 0%,,,(2"), 0£(q),g =3 or 5, F 5,
F,3 or F,,; moreover, in each of these cases for e e D, {e) < N¢L),
<e) € Syl,(C4(L)) and any proper subgroup of G containing {e)L is contained
in Ng(L). It is convenient to use Lemma 6.1 to see that L centralizes [V, e]. Let
G be the semidirect product VG, so from these remarks it follows that [V, e]<e)>
is a T.I-set in G. By 7.11 of [8], L, G are one of the pairs described by conclu-
sions (1)-(3) so it remains to identify the module structure of V.

If G~ X, by 7.10 of [8], V is the F, G-module described in conclusion (1).

Next assume G = Z3 - U,(3) Z, 50 Cgle) =<e) x Z x L, L = U,(2), and,
for each 3-subgroup T of C{e), T has a subgroup A(T) = T ~ L of index <3
in T with A(T)n Z=1 and A(T) centralizing [V, e]. Let X =[V, L],
Y = Cy(L) W= X/Y so W is an irreducible F , L-module. Let z be a 2-central
involution in L and since z* the unique class of root involutions in L we may
choose g € G such that e? = ez.

We show that [W, z] is a T.L-set under the action of L. For suppose x € L
and

[W, z] n [W, 2¥] # 0.

Letw e [W, z] n [W, z"], w # 0 so there exists w € [X, z] — {0} and y € Y with
wy € [X, z¥]. By Lemma 6.1 (or because X = [V, L]), e centralizes X so
w e [X, %], wy € [X, e*]. Let

Ay = (A(T)|T € Syl3(Cxz(€"))),
Az = (A(T)|T € Syl3(Crxz(e™))),
so, since 0%(C,(z)) = SL,(3)YSL,(3), it follows that
A= SL,(3)YSL,(3) or Zy x (SLy(3)YSL,(3)).

Moreover, because A, centralizes Y and is generated by 3-elements, A, centra-
lizes wY = wyY = w, i = 1, 2. Because

(z) =Z(0,(A))) and <(z*) = Z(0,(A,)),

if z# 2%, H = {Ay, A;)> & C.(z), so since Cy(z) has an intrinsic component of
2-rank 1, by inspection in U 4(2) (or by Theorem 1 of [16]), necessarily H = L.
Since w # 0 and L acts irreducibly on W, z = z* as needed to prove [W, z] is a
T.I-set.

By Proposition 1.3 of [30] and the irreducible action of L on W,

dimg, W=28 and dimg, [W,z]=2.
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Ifve Y n[X, ef], v # 0, then by Lemma 6.1, C(v) 2 (L, ¢, I ¢’) which, as
noted earlier, forces L = I%, a contradiction. Thus [X, e/] n Y = 0 and so

dimg, [X, €] = 2 = dimg, [X, z].

By Lemma 12.1.11 of [14] there are 5 L-conjugates of z which generate L,
whence dimg, X < 10. Since z inverts an element ¢ of order 3 in L, [V, t] =
[X, t] has F ,-dimension < 4. Pick h € G such that ¢* ¢ N (L) so by a previous
remark G = (L, e, t"); since X = C,(e), G normalizes C,{e) + [V, "], so C,fe)
has codimension < 4 in V. Note also that since Z acts Frobeniusly on V, by
Clifford’s Theorem applied to Z{e), dimg, [V, €] is even.

Since D is a class of 3-transpositions and L = {D,> has 3 orbits on D it
follows that we may pick fe A, such that G = (L, f). Since G normalizes
X +[V,f], dimg, V<14 If dimg, [V,e]=4, then as X = Cyle) and
Yc [V,e], dimg, X/Y <6 which is not true. Thus dimg, [V, e] =2,
dimg, ¥ < 12 and, as above, since dimg, X/Y = 8, dimg, V = 12, as needed.

Finally, suppose G = 03,,,(2™), n > 1, so Cgle) = Z, x Sp,,(2™), and first
consider the case n=1. Since L= L,(2"), by 7.7 of [8] applied in Cg(e)
to the T.I.-set [V, e?[Ke?), where e?€ ({e) x L)— {e}, for suitably ge G,
W = [V, L)/Cyy, (L) is the natural F,,L,(2")-module for L viewed over F,.
Since |HY(L, W)| = 2™, dimg, [V, L] < 3m. Moreover, if ¢ is an element of L*
of odd order, dimg, [V, t] = 2m. Let h € G with t* ¢ Ng(L); by inspection L is
maximal in G’ so <L, t*y = G'. Thus G’ normalizes [V, L] + [V, t], and since V
has a unique non-trivial irreducible F , L-constituent, G normalizes this space
as well. This proves dimg, V < 5m. If G = 0;(2") = L,(2*"){e) where e
induces a field automorphism, by Lemma 2.6 of [30] dimg, V = 4m and V is
either the natural F,,,L,(2*")-module or the natural F,,Q; (2™)-module for
G'; in the first instance, however, V would be a free F ,{e¢>-module and L would
have two non-trivial irreducible constituents, a contradiction. If

G=0;("=L,2" | 2,

let G,, G, be the components of G interchanged by e. For each i, V' is the sum of
(more than one) isomorphic irreducible F , G -modules, whence by Lemma 2.6
of [30] each of these is either the natural F,.L,(2™)-module or the natural
F,.Q; (2¥)-module, 2k = m, so dimg, V =4m. For E e Syl,(G,), [V, E] and
Cy(E) admit G,, whence the only possibility is dimg,[V, E]=2m=
dimg, C,(E). Since E acts quadratically, V is the sum of natural F ,, L,(2")
modules for G, and for G§ = G,. Thus if W is such a natural module over F ,,
V=~ W® y, W as an F, G-module, which is the natural module for 07 (2), as
desired.

We have already treated the case G =~ 0§(2)=~ Zs. Consider the case
G =~ 04 (2); so C4le) = <e) x I* where [* =~ X sand we may choose g € G such
that I* = L{e?). By 7.10 of [8] applied to L*, dimg, [V, L}/Cyy (L) = 4 so by
11.3 of [5], dimy, [V, L] < 5. For a 3-cycle t in L, dimg, [V, t]=2. Let h € G
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with " ¢ Ng(L), whence G’ = (L, t*) so G, and hence also G, normalizes
[V, L] + [V, t]. This proves dimg, V <7 and since L centralizes [V, e] and
V/Cy(e) it follows that e induces an F,-transvection on V. Thus dimg, V = 6
and V is the natural F, Og (2)-module for G.

Let G = 03,+,(2™) % 0%(2), n > 2, and proceed by induction. Let H be the
centralizer in G of some hyperbolic plane chosen so thate € H and H % 0¢(2).
Since H'=Qf,(2™), by Lemma 27, V=V,@®V, where V,=[V, H],
V; = C(H’), and by induction ¥, is the natural module. If e does not centralize
Vi, let ve [V, e] — {0}; then C4(v) 2 (e, L, HY = G, a contradiction. Thus

dimg, [V, e] = dimg, [V,, e] = m.

Let hy, h, € G with G = (H, ", e"2), whence V = V, + [V, e"] + [V, €*?] has
F,-dimension < (2n + 2)m. Now V ®pg, F2 is isomorphic as an F, G-module
to a direct sum of m copies of V; also V, ®p, F2m is the direct sum of m natural
F;»03,(2")-modules for H. Thus if V ®¢,Fm=U, @& - @ U, is a Krull-
Schmidt F,, G-module decomposition, since H acts non-trivially on each U,
U;|y = W;® T, where W, is the natural F,,,0%,(2")-module for H and T;is a
trivial module. Because e centralizes V), e centralizes T; and so e induces a
F,.-transvection on U,;, 1 <i < m. As an F,-module, therefore, each U s the
natural module for 0%, ,(2™), as desired.

III. The Proof of Theorem A

Throughout this section let J, x be as given by the hypothesis of Theorem A,
let V=U(J), Z=V n Z(J) and let J{x) = J{(x)/0 (J{x)). We may clearly
assume O(J) = 1.

We first dispose of the case when V is abelian, that is, (by Lemma 2.2) when

V < Q,(Z(0,(7)).

Let P be a subgroup of J of odd prime order with P normalized by %, where the
Baer-Suzuki Theorem [1] is used if X # 1. Thus x normalizes [V, P]and so has
a non-trivial fixed point therein. Since [V, P] n Z(J) = 1 and V is elementary
abelian, the result holds in this case. Henceforth it is assumed that V' # 1.

The following lemma due to J. G. Thompson facilitates the proof of Theorem
A.

LemMA 3.1. If't is an involution acting on a solvable group S with
Cs(t) = 02(Z(5)),
then t inverts a 2'-Hall subgroup of S.

Proof. First note that if u is an involution acting on a solvable group H with
H = 0, ,(H) and u inverting H/O ,(H), then an easy induction on | H | shows u
normalizes (hence inverts) a 2’-Hall subgroup of H.
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Now let G = S{t) be a counterexample to Lemma 3.1 of minimal order and
let G = G/O,(G). If C(?) is a 2-group, ¢ inverts O(G) and since G/O(G) acts
faithfully on O(G), G has a normal 2-complement (which is inverted by t); in
this situation, by the initial paragraph G is not a counterexample. Thus there is
a subgroup P of G of odd prime order with P = Cg(t), whence

G = 0,(G)P{t> = 0,(G)P.

Moreover, {t, P) is also a counterexample so G = (t, P). In particular, if
H = 0,(G), H=(t") so H' = ¢(H) and H/H' is a cyclic F, P-module. Let
K = [H, P] so K/¢(K)is a direct sum of non-isomorphic F , P-modules. Thus if
fe Cy(P) with f=t (mod K), H=K{f) and [K, f] = ¢#(K). Since ¢t and P
commute in their action on Z(K) and [Z(K), P] n Z(G) =1, P centralizes
Z(K).

We now prove K has class 2. For suppose A is a characteristic abelian
subgroup of K and let W = [Q,(A), P]. Since W n Z(G) =1, WW'=W x W*
and since t centralizes D = {ww'|w € W}, D < Z(G). Thus WW' = WD admits
{t, P) and so is normal in G. However t is conjugate in (W, t) to every
involution in (WW')t, so G/WW" is also a counterexample to the lemma. By
minimality of G, W = 1, i.e. P centralizes every characteristic abelian subgroup
of K. By Lemma 5.17 of [27], K is special. Let ¢ ;: K/K' — K’ by ¢ k) = [k, f].
Itfollows that ¢ is an F, P-module homomorphism. Since K/K' is a Frobenius
F, P-module and K’ is a trivial module, Homg,; (K/K’, K')=0, whence
[K, f]1= 1. However, t = kf, for some k € K and since ¢ centralizes k, k € Z(G);
but then ¢ centralizes K, the desired contradiction.

Continuing the proof of Theorem A, we proceed by induction and assume
J{x) is a counterexample of minimal order. It will be necessary to establish a
number of properties of J{x) before utilizing Thompson’s lemma in a setup
where a contradiction can be reached.

First observe that x centralizes Z(J). For otherwise there exist zy, z, € Z(J)*
such that z7 'xz, = xz, with [, z,] = 1. Putting J = J/{z,), the minimality of
J forces the existence of a 2-element ¢ € J with ¢ ¢ Z(J) and [t, x] € {z,). Since
either ¢t or tz, centralizes x and neither lies in Z(J), we have the desired
contradiction.

Next suppose for some subgroup P of odd prime order in J, X centralizes P.
Then V, = [V{(x), P] admits P and x. Let x, € ¥, x with [x,, P]=1 and let
Zy =V, n Z, so x and P commute in their action on V,/Z,. Let Q =2 Z, with
Q/Zy = Cyyzo(x), so Q admits P with Q/Z,=[Q/Z,, P]# Z,/Z,. Since
x = x, (mod V), [Q, x,] € Z,. As in the proof of Lemma 3.1 the map

¢x1: Q/ZO i ZO’ ¢x1(q) = [q’ xl]’

is an F,P-module homomorphism and since Homg,,(Q/Z,, Z,)=0,
[Q, x,] = 1. Now let v € ¥, with x = vx,. Note that v?, x? € Z,, whence

= x? = v’x¥[v, x,],
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and so [v, x,] € Z,, that is, v € Q. Since x, centralizes Q, [x, v]=1,s0 v € Z,,
But then x centralizes Q, contrary to Q & Z,. This proves Cj(X) is a 2-group.

Let P be any subgroup of J of odd prime order p inverted by x (such
subgroups exist by the Baer-Suzuki Theorem), V, = [V, P], V, = C\(P). By

arguing as in the previous paragraph with x; € V; and g€ V,, we obtain
[Vo, Vi] = L. Let

VO/V,O = E22n, V6 = E2m

and let Q be the complete preimage in ¥, of Cy,;,(x), so as x is free on V5/V,
Q/Vo = Ey,and Q/Vy = [V, /V), x]. We show Q is abelian. Ifa € Q, v € V, and
z = [a, v], then

z = 7" =[a*, v*] = [az,, v*] where z; =[x, a '] e Z;

so [a, v] = [a, v], whence [a, v*] = 1. Since Q = (Z N V,, vv*|v € V), a cen-
tralizes Q, for all a € Q, as desired. Now for ae Q-V"y, <Q, V'o, Vi) = Cy(a)
and so

| V:Cya)| <2~

This means A = [V, a] has order at most 2". Let J = J/A4, so J is a block and
since P acts non-trivially on @ € Z(0,(J)), the non-central 2-chief factor for J,
namely V/Z, lies in Z(0,(J)), whence V' = A by Lemma 2.2(a). In particular,
= V' = A so m < n. However, [Q, x] = V502" > |[Q, x]| = |Q:Cy(x)],
and as Cy(x) = V5, |Q:Cy(x)| = 2", whence n < m. This proves m =n and
since
| Vo: Cyofx)| = 27",

x is conjugate in Vp{x> to every involution in ¥, - x. Thus every element of Qx
is an involution, x inverts Q and Q = Z, x ‘- x Z4 (n copies).

By considering J = J/V',, as above we obtain V' < V'; and so V'p=V' =
().

We next show x centralizes V;/Z. If v, € V; and v} # v, (mod Z), it follows
that u = v, v} has order 4 and is inverted by x. However, u? e V' so there exists
v € ¥, such that v™*xv = xu?, and therefore uv € C (x), contrary touv ¢ Z(J).!

Now let N = N,,,(P) and note that N acts on both ¥, and V;. Let

x€SeSyly(N) and R=Sn C,,,(P)

We first show R centralizes V, . If not, pick r € R — C(V,) with 72, [r, x] € C(V,).
For g e Q,

[q’ r]x = [qx’ rx] = [qz’ r[r’ X]],
where z = g% € Z; so [g, r] = [g, r]*, proving [g, r] € Z. Thus [Q, r] < Z and so

Vo, r]=[0QF, r] < Z.
! See the remarks at the end of this proof.
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As usual, r induces an F, P-module homomorphism from V,/V'; to Z, whence
[Vo, r] = 1, as claimed. Note that if y is an odd order element of N centralizing
Vo Z/Z, then [x, y] centralizes V/Z so [x, y] € O,(J), whence y = 1 in view of
C;(x) being a 2-group. Now if Sylow p-subgroups of J are not cyclic, there
exists X € N with P< X and X = Z, x Z,. Since X is faithful on ¥, /V, by
Schur’s lemma there exists y € X such that 2n > dimg, [V/VY, y] > n. Let
ve Cy (y) — Z, so as usual v centralizes [V,, y]. But

CVo(v) =2 <U’ [VO’ Y]’ V,>

and the latter group has order exceeding 22", contrary to |[V,,v]| =
| V'| = 22" This proves that Sylow p-subgroups of J are cyclic, and, in particu-
lar, N contains a Sylow p-subgroup of J. Next we show S = R{x). If this is not
true, since S/R is cyclic, there exists s € S with s> = x (mod R) and, of course,
[s, x] centralizing V,. Then for all g€ Q, [q, s]* =g, s], so [Q,s]< Vo, n
Z=V',. Also, for ge Q —Z and veV, if z=[q, v], then z=[g, ] so
[g, vv*] = 1 which gives

[Vo, s < Crola) = Q.

But then s acts as an involution on ¥, /V, contrary to s? acting identically to x
on V,/V,. Now let M = Cy(V; /Z). Since R centralizes V,, R acts faithfully on
Vi/Z,s0 R n M = 1. Thus (%) is a Sylow 2-subgroup of M. Note that Cx(X)
therefore covers N/M so 0*(N) = M and M has a Hall 2'-subgroup which is
inverted by X. Since P was arbitrary subject to being inverted by x (and by
properties of involutions x inverts an element of order p, for each odd prime
divisor p; of |M|), applying these results to each odd prime divisor of |M |
gives that M has a cyclic 2'-Hall subgroup P* inverted by x and P* is a Hall
subgroup of J. Let 1 # P, < P*so[V, P,] < V,. Byarguing with P, in place of
P, x acts trivially on Cy,,(P,) so [V, P,] = V,. Note that [R, x] centralizes V/Z
so [R, x] € 0,(J). Also, [R, P,] centralizes V/Z so [R, P;]< 0,(J)n N =
V1Z(J), hence

[R,P1]=[R,P1,P1]=1.

Since P, was arbitrary, R € Syl5(C;(.y(P;)), for all 1+ P, < P* Finally, if
x? € S, for some g € J, then as C;(X) is a 2-group, x? inverts P, so x? = xr, for
some r € R; but then x? is free on V;/V, and since dimg, [V/Z, x] = n, x*
centralizes V, /Z,so 7 =1, i.e. X = x°.

In summary, J, x satisfy the following:

(1) x is an involution acting on J with C,(x) = 0,(Z(J));

(2) if P is a subgroup of J of odd prime order p inverted by x, then

(a) Sylow p-subgroups of J are cyclic,

(b) Nyy(P) = (R x P*)x), where P* is a cyclic Hall subgroup of J in-
verted by x and R € Syl,(C,,,(P,)), for all 1 + P, < P¥,

() [R, x]< 0,0),
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(d) if x? € R{x), for some g € J, xx? € 0,(J).

Although one would expect an easy contradiction at this point it seems that a
considerable amount of elementary argument is yet required and that the best
course is to consider all groups J satisfying (1) and (2) (not just for J a block).
The final contradiction will be immediate once we have established:

(¥) If J, x are any pair satisfying (1) and (2), then J{x) = O,(J)H{x),
where H is a cyclic 2’-Hall subgroup of J inverted by x.

To prove (x) we proceed by induction and let J be a counterexample of
minimal order. Note that every proper subgroup of J{x) containing x satisfies
(1) and (2) so these are described by the conclusion of (). By Lemma 3.1, J is
not solvable so by minimality of J, J = J’ and J/S(J) is simple. Moreover,

S(IKx) = 02(J)HLx),

where H is cyclic and inverted by x. Let Jx>=1J {x)/0,(J{x)) so J is quasi-
simple. Since N,,,(H) covers J and contains x, by minimality of J(x),
H < J{x). By Frobenius’ normal p-complement theorem together with
property (2a), H = 1, so J is simple. Note that C fx) is necessarily a 2-group so
we may pick T € Sylz(J<x>) with Cjrz5(%) < T.

Let 7 be any involution in Z(T) and let M be a maximal subgroup of Ty
containing Cjrz5(f) = M. If My = T, by a result of Baumann [12], J = L,(q),
US(q)’ SZ(q), L3(q)a S4(q)’ q= 2"or L2(q)9 q= 2" + 1. As CZ(')—C) isa Z'groupa by
Lemma 2.10 of [12], x induces inner automorphisms on J; but then in every
case x lies in a proper subgroup of J{x)» which does not satisfy the conclusion
of (x). Thus M, # T so we may write M = O,(M)H{x) where H is a cyclic
2'-Hall subgroup of M inverted by x and H,= H n M, is a 2'-Hall subgroup
of M, .. Since C;,,(Ho) covers Cyzzs(Ho) we may assume [t, Ho] = 1, whence by
(2b), [t, H] =1, H is a Hall subgroup of J, H= H, and M = M,. For any
1 # P < H, N, (P) covers N j=(P) so by (2b), (2c) and the fact that

Cies(X)< T and Cy(t) =M,

Njz(P) = M. Finally, if x* € M, for some g € J, X inverts H so by properties
of involutions there exists m € 0,(J(x)) such that x#" inverts H; then there
exists he H such that x eT. By property (2d) x™ =X so
gmh € Cyrz5(X) = M, whence § € M. Thus x? € M<>g € M and, by the struc-
ture of M, x* € T<>g e T.

Now if N is any proper subgroup of J(x> containing T, then N is 2-
constrained: for otherwise some odd pnme order subgroup P of N inverted by
x would have [0,(N), P] =T; but then since C,,,,(P) covers Cjzs(P), (2¢)
forces x to centralize 0,(N) and since T = O (_S N){X), a previous argument
applied to t = X gives a contradiction. n. Secondly, if N is any 2-local subgroup of
J{x) containing X, then either N = M or (|N | |M |) = 24 for some a. For as
x lies in a unique Sylow 2-subgroup of J(x>, N n T € Syl z(ﬁ ); suppose some
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odd prime p divides |N| and |M| and let P be a Sylow p-subgroup of N
inverted by x. Since Sylow p-subgroups of J are cyclic, there exists g € J such
that P/cM; and finally, as x’e N, (PP)s M, geM so
N = (N n T)Ny(P) = M, as claimed.

Now suppose there is an involution 7, in Z(T) with Cjzs(t,) ¢ M. Let

M, = Cys(ty), M, = Crrss(tty).

The arguments using ¢ also apply to show that M ,, M , are maximal subgroups
of J{x>and, by the previous paragraphs, M, M, M, are 2-constrained 2-locals
with |M|,, |M,|,, | M|, pairwise coprime. Thus for two of these subgroups,
say M,M,3} |[M|, |M,|. Since Z(T) # M or M,, by the Thompson factori-
zation Lemma 5.54 of [27] one sees that J(T) < M and M, contrary to M, M,
being distinct maximal subgroups. This shows M = Cr(Q4(Z(T))).

As before, if X inverts some subgroup P of odd prime power order p* and
p||M]|, then P = M. If Cu) is a subgroup of 2-power order inverted by x, then
u € M: for let u be of minimal order with respect to u ¢ M; then u?> € M and
xu? = x* € M so u € M, a contradiction. Now for all g € J, x inverts [g, x] so
since J = [J, x] & M, there exists Q of odd prime order g inverted by x and
g4 |M|. Let No = N, ,(Q), S € Syl,(Cyx5(Q)). If S =1, then <X} is a Sylow
2-subgroup of N K—x>(_Q—) Since Sylow g-subgroups of J are cyclic but J does not
have a normal g complement, {x) € Syl,(N7(Q)), that is, x € J. However, J{x)
cannot be simple, otherwise by Thompson’s transfer lemma [5.38 of 27] there
exists g € J such that x? € 0 (M), whereas no such g € M exists. This argument
proves S # 1 so let N be a maximal (2-local) subgroup of J{x) containing
Niz=(S).

\§Vé first show N contains T. In any case since T is the unique Sylow 2-
subgroup of J{x) containing x, Ty= T n N € Syl,(N). Let Q* be a 2'-Hall
subgroup of N inverted by x. Assume T, # T and let a € Ny(T,) — T, with
a’e T,. If N is not 2-constrained, by (2b), N = (0* x 0,(N))(x), and by
maximality of N and the fact that % centralizes 0,(N) by (2¢c),

05(N) n Oy(N¥ =1.

This forces S = 0,(N) = Z,. Since N#5) =S x (X has order 4, Z(T) = <t)
has order 2 and t e {X, X5} where S = ¢5). As noted before, X is not centralin T
so T = %5 and % = Xt. This, however, contradicts property (2d) applied in N(H)
and so proves that N is 2-constrained. Since Z(T) = Z(0,(N)) but N ¢ M, Q*
acts faithfully on Z(0,(N)). If |Q*|>3 it follows that J(To)=N
and so N(J(Tp)) 2 N, a contradiction. It remains to treat the case when
| @*| = 3 and no non-trivial characteristic subgroup of Tyis normalin N.Bya
result of Glauberman [9], N has exactly one non-central 2-chief factor which
lies in Q,(Z(0 »(N))), hence equals W = [Q,(Z(0 »(N))), @*]. Since Q* acts non-
trivially on the Frattini quotient of 0,(N), W ¢ ¢(0,(N)) whence

0,(N) =W x5, S=Cr(Q*), Wx2Z,xZ,
Wix>=~Dg and [S,x]=1
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Since § N §°=1, |S| <8, and since @ normalizes Z(Tp), if § is abelian,
| S| = 2. Recall that  is an involution in Z(T) n Z(Ty)andt ¢ S; moreover by
property (2d) applied in N(H), X ~ xt, so t ¢ W. Let Z(8) = <5), W = (w, 0>
where w € Z(Tp), so X?= xw and t = 5w. If |S| = 2, T, = Dg x Z, and neces-
sarily §* = §w, contrary to N (S) not containing a Sylow 2—subgroup of J{x5.
Thus |S| = 8 and 5 = w. Now X7 inverts Q* and so X* = x*w. Thus ™' = x§
so with g = aua™ 'k for suitable k chosen in 0,(J{x}) so that x? normalizes Q*
one sees that property (2d) is violated in N ,,,(Q*). This contradiction proves
T< N.
As decided earlier since T = N, N is 2-constrained so
c

18
Q(2(T)) € Z* = Q,(Z(0:(N))).

Moreover, Z = Cz*(x) and since for every involution t in Z, Cj5(t) =M,
Z* = [Z*, Q*]. Thus X acts freely on Z* and so x ~ Xt, for each t € Z*. It
follows that (2d) is again violated in N(H). This contradiction completes the
proof of (x) and hence also of Theorem A.

Remarks. The referee has observed that at the indicated point the following
alternate argument shortens the proof of Theorem A.

By the same argument that showed m <n, QZ =Z(C,/y)), for all
yeQZ —Z,50QZ/Z = Q*isaTl-setin VZ/Z = V* Now let X = C{Q*) n
Cz(V*/Q*) and form the semidirect product, H, of G with V*; let
W = XQ* < H. From the TI property of Q* it follows that W is an elementary
abelian TI-set in H and since Q* = [V*, x], X € X *. By [8] the members of X *
are root involutions in G and G is described in [8] or [28], whereas by [8] or [28]
% € 0,(Y), for some Y < G with Y not a 2-group, contrary to Lemma 3.1.

The author has listed his longer but more elementary proof in order to avoid
using the deep results of [8] and [28]. Since the principal application for
Theorem A is in the proof of Theorem C it seems desirable to maintain such
independence, for, as noted in [17], if one uses the classification of characteristic
2 type groups in which a maximal normal elementary abelian 2-subgroup of
some maximal 2-local is a TI-set (which relies ultimately on [28]), the proof of

Theorem C in characteristic 2 reduces immediately to the “easy” case when
U(J) is abelian.

IV. The proof of Theorem B

Throughout this section, G is a minimal counterexample to the assertion of
Theorem B, so G=<(K,J,x). Let L=(K% =K, YK,Y " - YK, with
K = K. The proof proceeds in a series of steps.

41) 0@G)=1.
For it is easily seen that G/O(G) is also a counterexample.

(42) Z(G)=1.
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For if z is an involution in Z(G), let G = G/<z); then |C%): C(x)| <2s0J
is a block of Cg(x). It follows that G is also a counterexample so by minimality
we must have Z(G) = 1.

43) n>1.

Suppose to the contrary n = 1 and let V = U(K), G = G/V. If J centralizes V,
[J, K] K n Cg(V) € 05(K)

so [J, K, K] =1 whence by the 3 subgroups lemma, [J, K] < V. But then
[K, J, J]<= [V, J]=1 so the 3 subgroups lemma shows [K, J] = 1, a contra-
diction. Since J does not centralize V and J = 0*(J), by the P x Q lemma J
does not centralizes Cy(x), from which it follows that U(J) < V.

By assumption J induces inner automorphisms on K and since J ¢ K there
is a perfect normal subgroup E of KJ with KJ = KYE. Because E commutes
with the irreducible action of K on U(K), E centralizes U(K). Thus [K, E,
E] = Z(K) so by the 3 subgroups lemma, [K, E] = Z(K); another application
of this lemma gives [E, K] = [E, K, K] = 1. Thus E n K = Z(K) and since
Z(G)=0(G)=1 and G = EK{x), Z(K)=1, EK=E x K and E is quasi-
simple. Now [KJ, x] < K so [E, x] = C4(K) n K =1. Since E < G and E is
quasisimple, [E, J] = 1. But then E is centralized by (K, J, x) = G, which is
absurd. This contradiction establishes (4.3).

(44) x normalizes each K;.

Forif Ki = K;,i # jlet Ko = Cg (x) so by Lemma 2.3, K, is a block of Cg(x).
Since G is a counterexample Ko #J so [Kg, J]=1. But by Lemma 2.3
[Ki, J1=1and so K = (K{*) = C4(J), a contradiction.

45) Z(L)=1.

Notice that Z(L) = Z(K,)Z(K,) -*- Z(K,) and Z(L) is a 2-group. Suppose
Z(L)# landletG = G/Z(L),soL =K, x -- x K,.Since Z(G) = 1,J ¢ L and
J acts non-trivially on Z(L). Because J = 0%(J), by the P x Q lemma, J acts
non-trivially on C(x), hence U(J) = Z(L). By Theorem A there exists ¢ a
2-element in Ci(x) with ¢ # 1. Since J permutes the K ; transitively and n > 1, J
does not centralize {t’); so since J is quasisimple, J < [J, {] < L, a contradic-
tion. This also proves:

(4.6) U(K;)is abelian and L= K,; x K, x -* x K,,.
Now let I/; = U(Kl), V= Vl X e X I/n, Ai = CVi(x), Bi = [I/;, x],
A=A x+x A, B=B; x-xB,

so A2 B and A/B = (A,/B;) x -** x (A,/B,). Since J acts non-trivially on
A, UJ)= A. If B#1, J acts non-trivially on B and if 4# B, J acts
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non-trivially on 4/B. Since A = Cg(x), AJ has a unique non-central 2-chief
factor so either B =1 or A = B. We argue that the former equality holds, so
assume to the contrary A = B. This means x acts freely on each V, and so is
conjugate in (¥}, x) to each involution in V;x; by a Frattini argument there is
(a 2 element) t € Cy(x) with t ¢ V;. As before, however, J < [J, t] = L contrary
to n > 1. Indeed, a similar argument shows Cy (x) < V; so in summary we have

47) UJ)SV and Cyfx)=V,1<i<n.
The latter equality means [K;, x] = K; n Cg(V) = 0,(K;) and so:
(4.8) x centralizes K;/V,, 1 <i<n.

Now let H = N (K), so |J: H| = n. By the argument of (4.6) applied with B,
any non-zero F, H-submodule of ¥, and 4, = V, and 4,, B; J-conjugates of
these for i > 1, one easily sees we must again have 4, = B,, that is,

(49) H acts irreducibly on V; (and non-trivially since | V;| > 2).
Let M = KH, M = M/Cy(V;), U = W;, U* = V;<{x) and E = Cg(K).
(410) E=1.

For since E commutes with the irreducible action of K on U, E is cyclic of odd
order. Suppose E = (j) # 1, whence U = [U, y]. But then U* = [U*, j] x
Cy+(y) and since y centralizes U*/U, |Cya(7)| = 2. Since (j><a M, H fixes
Cus(p). However, H has a unique non-trivial fixed point on U*, namely x,
hence {x) = Cy.(7). But then [x, K] = 1, contrary to (4.7).

Now let P be a minimal normal subgroup of H chosen, if possible, within K.
By (4.9), [U, P]= U and so Cy.(P) = <x). Since Cg(x) < U and P fixes x,
P ¢ K and so we must have H n K = 1. Since therefore H induces outer
automorphlsms on K, by assumption H is solvable so P is a p-group for some
odd prime p. If p||K|, let 0 = C¢(P) # 1, whereas 1fp,|'|K| let Q be a Sylow
g-subgroup of K normalized by P, for some odd prime g dividing |K|. In any
case,

= [U* Q] x Cus(Q),

both factors admit P, and [U*, @] < U. Since P has a unique non-trivial fixed
point, x, on U* and x ¢ U, we must have x e C,(Q). This again contradicts
(4.7) and so completes the proof of Theorem B.

V. The proof of Theorem C
Throughout this section G, J, M satisfy the hypotheses of Theorem C and set
D=My=J,YJ,Y - YJ, withJ=J,.
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Proceeding by way of contradiction assume M # G and J 4 M; thus
0,(G)=1, n> 1, and for any 2-element t of M* centralizing J;, for some i,
C(t) = M. Also, since m(J) > 1, 0(G) < M and so [O(G), D] = 1.

The proof proceeds in a sequence of lemmas, the first of which explores the
action of tightly embedded subgroups on blocks.

LemMA 5.1. Let K be a block, 1 # T a 2-group acting on K with T 1 K = 1,
T € Syl,(P) where P = TK and P is tightly embedded in TK. Let

T < S e Syl,(TK) with Ng(T) € Syly(Nx(T)),
and assume |T| > |Ng(T): T|. Then [T, K] = 1.

Proof. Note that if [T, K] = O(K), then since O(K) = Z(K), [T, K, K] =1
whence [T, K] =1; thus we may assume O(K)= 1. The hypotheses of the
lemma are set up so that Theorem 3 of [3] applies directly. Let W be the weak
closure of T in S with respect to K so we conclude W < TK and one of the
following holds: (a) W=T; (b) W= T x T* = N(T), for some x € K and
W' =1 (note that since |S/W| > 2, conclusion 5 of Theorem 3 is impossible).
Since (a) is the assertion of the lemma, assume by way of contradiction that (b)
holds and let V = U(K). Since W = 0,(TK), 1 # [W, K] < 05(K), so V< W
and hence V is elementary abelian. Let

TK = TK/W = TK/C (W)

For any involution X in K, W=T x T* so W n K =W, x] < V, whence
V =[W, x] = Cy(X). Since % centralizes V, x € 0,(K) < Z(K). Let Q be a
subgroup of K of odd prime order, so [Q, x] = V. Thus W = [W, Q] x Cy(Q),
both factors admit X and 1 # [W, Q] = V. But X centralizes [W, Q] and

dimg, Cy(Q) N Cy(x) <4 dimg, Cp(Q)

so x cannot act freely on W. This contradicts a previous remark and so estab-
lishes the lemma.

Lemma 5.2, J is not tightly embedded in M and, in particular, O (Z(J)) # 1.

Proof. Sincen>1land M = .#(J;)), 1 <i < n,Jistightly embedded in M if
and only if J is tightly embedded in G. Assuming this to be so, suppose
g€G — Ng(J) and J? n Ng(J) has even order. Let T e Syly(J* n Ng(J)),
P=T(J? n J) so T e Syl,(P) and P is tightly embedded in TJ. From the
symmetry between J and J? it follows that | T| = |N1,(T): T|, so the hypoth-
eses of Lemma 5.1 are satisfied. The conclusion gives [J, J?] = 1. Since g was
arbitraryin G — Ng(J), Theorem 1 of [4] asserts that either J < <1 G, (J) hasa
strongly embedded subgroup, or J has abelian Sylow 2-subgroups, all of which
are impossible. This proves J is not tightly embedded in G or M and since for
i>1,JnJ,cZ(J), |Z(J)| is even, as claimed.



82 RICHARD FOOTE
For the remainder of this section let Z = Q,(0,(Z(D))).

LemMMA 5.3. If Wis a fourgroup in M such that for some ge G — M,
Cu(w) = M?, for all we W*, then W normalizes each J;.

Proof. Suppose the lemma is false so that with suitable renumbering
Ji=J,, for some xe W. By the proof of Lemma 28 of [3], since
Jy=0%J,) & M% Ny(J,) # 1. Let

y)=NylJ), K= C.h.lz(x)l'

By Theorem A, C,(y) & Z(J) so 1 # [C,(y), K] =€ M?. Again J & M? whence
U(J) = [C,(y), K]. Since U(J) acts on Z? we may pick z € Z?* with z centraliz-
ing <U(J), x>, s0 ze Ci(U(J)) s M,and J5=J,i=1,2 Let U=z, K], so
U < Z° Notice also that [z, J]< C,(U(J)) so if U(J) is non-abelian
C,(U(J)) = Z(J) and it follows that [z, J] = 1; since C4(z) = M?, this is impos-
sible, ie. U(J) = 1.

Firstassume U # 1sosince Kisablockin Cp(x), U = U(K).Letje J — 0,(J)
with j> € 0,(J) and let J = J/C,(U(J)). Since j inverts an element of odd prime
order in J, Cy.(i) ¢ Z(J). By definition of K, U(J)< U- U(J,) and
[, U(J;)]=1, so j must have a non-trivial fixed point a on U. Then
j e Cgla) = M? so J = [j, K] = M?, again a contradiction.

Thus [K, z] = 1, so for every j € J, 1 = [, z] = [j, z}[j*, 2], so

U, z]ed n J* < Z(J).
It follows that J = C4(z) = MY, the final contradiction.

LEmMMA 54. n=2.
Proof. Assume to the contrary n > 3.

Suppose first that for all ge G — M, |J? n M| is odd. Then for x an involu-
tioninJ,x? € M<>g € M;alsoif x™ € x¢ n Cg(x)and y = xx™ # 1, then since
n>3 and x"eJ, for some i, y centralizes J;, je {2, 3,...,n} —{i}, so
Cs(y).= M. Suppose y? € M<>g e M, for any such product y; then by
Theorem 3.3 of [3] (since <(J¢) is perfect), (x> has a strongly embedded
subgroup, which is easily seen to be false. Thus for suitable y = xx™ and
ge G — M, ye M?. Since n > 3, y centralizes a fourgroup W of D? such that
Cs(w) = M?, for all we W*. (This follows from Lemma 2.3 and Theorem A
although it is easy to verify directly.) By Lemma 5.3, W normalizes J and so
clearly |J n M?|, # 1, contrary to assumption.

Pick g € G — M such that J° n M has even order, let T be a 2-group in
J? n M of maximal order subject to (JT) # Dand let T = T* € Syl,(J* n M).
Note that n > 3 implies T # 1. Let Q be a T-invariant Sylow 2-subgroup of
{JTy n M?. Since n > 3, m(Q) > 2 (again, use Lemma 2.3 and Theorem A or
direct argument), so by Lemma 5.3 applied to g~ ', Q,(Q) normalizes J¢. Thus
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m(T*) > 2by Lemma 2.3(c)and so Q,(T*) normalizes J. Finally, by Theorem A,
T* ¢ Z(J9), Q ~ J ¢ Z(J).

Let R = Ny(T); we show R = Q. Note thatas Q n T=1, TR=T x R. If
x € No(RT) — R, then T < TT*< RT, so T, = TT* n R # 1. Since x € M?
and n > 3, Ty centralizes J4, for some j, which is incompatible with T, < Q
centralizing J;, for some i. Thus R = Q and since Q n J & Z(J), (JT)> = J. By
maximality, T* = T. Let P = T(J? ~n J). From the symmetry between J and J¢
we may assume

|T| > [Nzy(T): T|.

By Lemma 5.1, P is not tightly embedded in TJ so there exists x € J — N,(P)
with |T n T*| even; note that x e M?. If T = T*, since T & Z(J?), x would
normalize J9, hence also P, a contradiction. Thus T* < J%* = J4, for some i > 2
and so (T, T*y=TT* is a 2-group properly containing T. By orders,
To = TT* n J # 1, a contradiction as before. This completes the proof of the
lemma.

LEMMA 5.5. There exists he G — M such that J* ~n Ng(J) contains a
fourgroup.

PrOOf: Let Ai € Sylz(J,), A1A2 cSe Sylz(G) with SN Me Sylz(M). Note
that A; U A, is strongly closed in S N M with respect to M, m(4;) > 1, A4;is
neither dihedral nor quasidihedral, M # G and {A¢) does not have a strongly

embedded subgroup. By Lemma 3.4 of [3] therefore, there existsae 4, g€ G
such that

ag € Ns(A‘) - (Al | Az).

In fact, if b? is the involution in {a?), b? ¢ A; U A, else g € M, which is false.
We may therefore assume |a| = 2. Now a? normalizes J and C i(a?) = M? so if
m(C,(a®)) > 2, the lemma is true for h=g~! by virtue of Lemma 5.3. If,
however, T e Syl,(C,(a?)) and m(T) = 1, by Lemma 2.3(b), | T| > 8, whence
|T A Ng(J?)| = 4. This same lemma now shows m('y 1 ~ nye(J?)) = 2, sO
m(J* N M) > 2. Again Lemma 5.3 establishes this lemma for h = g.

LEMMA 5.6. U(J) is non-abelian.

Proof. Suppose to the contrary U(J) is abelian and put V = U(J) so V is
elementary abelian. Note that by Lemma 5.3 if J n M contains a fourgroup,
then every involution in J9 n M normalizes J. Over all g e G — M such that
J? A M contains a fourgroup pick g to maximize |J? N M |,. Let

T e Syl,(J* n Ng(J)), T < S e Syl(TJ)

with Ng(T) € Syl,(N7(T)), so N(T)=T x Q, Q = N(T) n J. Now since
m(V) > 3 by Lemma 2.3b, m(Q) > 2 so Q,(Q) = N(J?). By Theorem A each
involution in Q centralizes an involution in J? — Z(J?), so T & Z(J?). Since
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Q <= M centralizes T, Q normalizes J. Since we could replace g by g™ !, the
maximality of | T'| forces |Q| < |T|.Let P = T(J® n J) so, by Lemma 5.1, P
is not tightly embedded in TJ. Let x € J be such that P = P*and 1 # T n T™
Since x € M? and T & Z(J¢), TT* is a 2-group # T. Finally, since x* € N(J?)
we may assume x € S and so x normalizes TQ.

Now suppose T centralizes V. Then T < O,(TJ) and so [T, J]< V. If P is
any odd order subgroup of J, [TV, P] < V; moreover, as Z # 1,

[TV, P)| = [V, P)| < [VCz /T)| <|Q| <|T],

and so T n Cpy(P) # 1. Thus J = 0*(J) < M?, a contradiction.

Thus T 4 TV so there exists v € V with T # T" = Np(T). Since v* = 1 it
follows from Lemma 5.3 that T ~n T° = 1; therefore TT" =T x T’ and
T = [T, v] = Vso Tis elementary abelian. Since |Q| < |T|, TQ =T x T". Let
W=TQ.

Suppose W is weakly closed in S with respect to J. Set TJ = TJ/VsoW =T
is weakly closed in S with respect to J and T n J = 1. By Lemma 4.2 of [3],
[T, J1< 0(J) so [T, J] = 1. Since T commutes with the irreducible action of J
on V/VnZ [T, V] Z. Since V =[V, J] and Homg, (V/V n Z, Z) =0,
[T, V] =1, contrary to a previous argument. Thus there exists y € J such that
W? < Ny(W), W” #+ W. Without loss of generality, T> ¢ W.

First suppose for all ue T°%, TT*= T x T*. In this situation, for each
t € T*, the map u+s [u, t]is a bijection of T with Q. Since T # T, there exists
t e T with tt* € Q*; by the preceding remark there exists u € T” with tt* = ¢t*.
But xu € C4(t) = M? and since x € M?, u € M?, contrary to T* ¢ {T, T*}.

Let u e T°* with T e {T, T*}. Note that x> € N (J?) n S = Q so for all
te T* Cg(t) < TQ(x). If T =T, thenu € Ny(T) = TQ. Writeu = tq,t € T*,
q € Q. Since u centralizes Q, Q < M? whence Lemma 5.3 implies Q = N 4(J%*).
It follows that [Q, T"] =1 and so T” centralizes t. Then T < M? and as
m(T”) > 1, T” normalizes J%, contrary to T* ¢ W. Thus T = T*, that is, u is an
involution in M? interchanging J4 and J4 with Cg(u) € M®”. Let K = C 0081,
so by Lemma 2.3(a),

{tY|te T} = Qo < K;

moreover, since Q < V, by symmetry T < U(J?) and hence this lemma shows
Qo < U(K). Clearly Q, = Q as well. Now u centralizes some involution z € Z¢,
so z € M? and [z, K] = 1. We show K = (D¢ n M?)™: for otherwise we must
have U(J?) < M#; by Lemma 5.3, U(J?) would normalize U(J®) hence
I's.000(U(J??)) would be a subgroup of J% n M? containing a fourgroup
whereas u e (J¥ n M?)— N(J?), violating Lemma 5.3. This proves
K« CM"(Z). Let

X =U{?) UU?)

and argue that U(K) centralizes X: for if not, since X admits <K, z) and
K = 0*(K), by the P x Q-lemma, K acts non-trivially on C,(z); but then



COMPONENT TYPE THEOREMS 85

U(K)= X and as X' =1, [U(K), X] =1 contrary to assumption. Thus, in
particular, Q, centralizes X, so X = M. Since M + M (asy e M, g ¢ M) and
U(J?)= M, Lemma 5.3 yields U(J?) < N4(J). By the maximality of |T|,
|U(J#)| = |V| <|T| so it follows that T centralizes V, contrary to a previous
argument. This completes the proof of the lemma.

For the remainder of this section let ge G— M be such that
T e Syl,(J? n Ng(J)) with m(T)>2. Let T<SeSyl,(TJ) with
Ny(T) € Syl,(N7AT)), Qo = Ny(T) n J and V = U(J).

LeMMA 5.7. T is abelian.

Proof. Since [T, J] # 1, by Lemma 4.2 of [3], there exists x € J such that
T*cS and [T, T]s T T, T+T"

If xe M% x ¢ No(J?) so T* < J and [T, T] =1;if x¢ M, T~ T* =150
again [T, T*]= 1. Now T* < TQ,=T x Qgs0as T* n Qo= 1,TQ, = T*Q,.
Since both T* and Q, centralize T, T < Z(TQ,), as desired.

Note that Lemma 5.7 implies V ¢ M?, for otherwise as m(V n N (J?)) > 2
and T was arbitrary, V n Ng(J?) would be an abelian subgroup of V of index
<2, which is impossible.

LEMMA 58. There exists ve V with Q(T)Q,(T%) = Qy(T) x Qy(T*) =
Q,(TQo)-

Proof. Let U =Q(T). Since as noted V ¢& M?, [U, V] + 1. Thus there
exists x € V with U*# U and [U, U*]< U n U*. IfU n U* = 1, take v = x;
otherwise x € M? — N(J9). In the latter case since J? is not tightly embedded in
M9 U ~ U*# 1,50 |UU¥| < |UJ* Thus if UU* < UV, then V < M* which
we have already seen to be impossible. Pick v € V with U® normalizing UU?,
U’ ¢ UU*; hence U’ n U =1 and U’ = MY By Lemma 5.3, U’ normalizes J¥,
hence normalizes J? n Ng(J) = T. Since T = Z(TQ,), U* centralizes U, as
claimed.

To establish the remaining equality let @, = [U, v] =~ U so Q, < Q, and, by
Lemma 5.3, Q; = Ng(J?) whence m(J n N ((J?)) > m(J* n Ng(J)). However, g
was arbitrary so we may apply these arguments to g~ and Q4 'S J? ' n
Ng(J) to get

m(J® A No(J)) = m(J o No(Je)),

whence (via Lemma 5.3) Q, = Q,(Qo N Ng(J%)) = Q,(Q,), as desired.

LeMMA 59. Let U =Q,(T), W = Q,(TQ,). If y € J with U? normalizing W,
then U’ < W or for allu e U**, UU* = U x U“

Proof. Without loss of generality U< S. Assume U’¢ W and let
0, = Ql(Qo)-
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First, suppose there exists u € U’ n Ng(T)*. Thenu € Q(TQ,) = W and so
W < Cg(u) = M?. Since gy ¢ M, by Lemma 5.3 (applied to M", h™! = gy),
Q, = Ng(J?). Since U” normalizes W nJ=Q,, [U, Q] Q,nJ¥=1.
Write u =aq, ae U*, q € Q,, whence U’ centralizes a. Thus U’ = M? and
Lemma 5.3 gives U” = N4(J?), so U” normalizes J¢ N Ng(J) = T, contrary to
U’ ¢ Q,(Ns(T)). This proves U’ n Ng(T) = 1.

Assuming the lemma to be false, let u e U” with 1+ U ~ U* and with
u€ M? — Ng(J?). Let K = Cjg5(u), so K/Z(K) = J/Z(J) and

K < Cg(u) = M?.

Also, M, M? M? are distinct conjugates of M. As in the proof of Lemma 5.6, if
u oentrahzes a fourgroup, Z§, in Z¢, then Z§ acts on Z% and I'y z(Z) = Z*
has rank > 2; so m(Z*{u)) > 1, Z*(u) = M? but u ¢ N 4(J?), contrary to
Lemma 5.3 (applled with suitable change of coordinates). Thus C,(u) = <z).
Similarly, U(J?) ¢ M? (use the remark preceding Lemma 5.8) so

K = (D° A M®)®) < Cyolz).

Let X = U(J?)U(J9).

We next prove U(K) centralizes X : this is clear if [K, X] = 1;if[K, X] # 1,
by the P x Q lemma, K acts non-trivially on C,(z), from which it follows that
U(K) = X and the claim is true by virtue of X’ < Z(X). Now U(K) < Z(D?),
however, as noted after Lemma 5.7, U(J#’) ¢ M?, so we must have U(K) = 1.
But for ae U(J?, by Lemma 23, ada“e U(K) whence aa"=1, ie.
[U(J9), u] = 1. Since {z) = C,4(u), V =~ EYZ(V), E ~ Ex sp 2™.

Now m(U) > 2 so there exists a € U such that b = aa"+ 1. Note that
Q. <V and m(Q,) = m(U) so by Lemma 5.8 applied to g~ ' we may assert
U< V9 Thus b € U(K) and also b = [a, u] € Q. Again by the P x Q lemma
either U(K) = X or [U(K), X] = 1, so in either case b induces inner automor-
phisms on U(J#). Let E, = Cpg,(b), so E, =< M. By Lemma 5.7, E; = E; N
Ng(J)is abelian, hence E has an abelian subgroup E; of index < 4. This forces
E = Ex sp 2°.Moreover, by Lemma 5.3, Q,(Cy gy(b)) is abelian and so E=V,
Ex~QgYDg,Ey=Z, x Qg, E, =~ Z, x Z, and b induces an automorphism of
E corresponding to an involution in E. Furthermore, J/0 ,(J) = A, U(J)is the
“permutation module” of dimension 4. But then for each involution e € E, a
Sylow 2-subgroup F of C fe) has index 2 in a Sylow 2-subgroup of J containing
it, F covers a Sylow 2-subgroup of J/0 ,(J) and so F has no abelian subgroup of
index 2 (as V/V' is a free F(F/F n 0 J))-module). Since b € X, however, b
induces such an inner automorphism on J¢ and so Lemma 5.7 is violated for
J# in place of J¢ This contradiction establishes Lemma 5.9.

For the remainder of the proof of Theorem C assume g is chosen subject to
the above conditions with |T| as large as possible. Let Q = Q, N N4(J?) so

Q € Sylo(J n Ng(J*))
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and by maximality of |T|, |Q| < |T|. Let U, W be as in Lemma 5.9.

LemMa 5.10. (a) Q| =|T]|.

(b) There exists x e S n M® with x ¢ Q.

(c) There exists d € J with U = Ny(W), U ¢ W.
(d) With x as in (b), [U, x] = 1.

Proof. We first prove (c). Suppose to the contrary W is weakly closed in T.J
and set TJ = TJ/0,(J), so U is weakly closed in UJ and U n J =T1. By
Lemma 4.2 of [3], [U, J] =1, whence [U, J] < V. Since U commutes with the
irreducible action of J on V/Z(V), [U, V] < Z(V). Since

V=[V,J] and Homg,(V/Z(V), Z(V)/V')=0,

we have [U, V] < V'. Finally, since [U, V]< Z(V), [U, V']=1. Now V' is
elementary abelian, so V' = Q,(Q,), whence m(U) > m(V’). If, however,
m(U) > m(V"), since each w € V induces a homomorphism

[ ,w:U-V,

we would have V = T’y (V) < M4 a contradiction as usual. Thus m(U) =
m(V’') and so W= U x V'. But then UV'/V’ is weakly closed in UJ/V’, so by
Lemma 4.2 of [3), [U, J] = V' = Z(J), whence [U, J] = 1, a contradiction. This
proves (c).

To prove (a) suppose |Q| < |T|, let Q* =S n J n M? and let U? be as
given by (c). For u € U%#, by Lemma 5.9, T n T* = 1. However, T* centralizes
U*and W ~ Jand so centralizes U = U* x (W n J) = W, thatis, T" < TQ* =
SAM° Since TnT'=1, |Q*| <|T| and [T, u]< Q* we must have
0* = {[t, u]|t € T} and so Q* is an abelian group inverted by u and Q* = T.
Since u was arbitrary and m(U?) > 2, Q* is elementary. But then by Lemma 5.3
(and symmetry), Q* = Q, a contradiction.

In part (b), if no such x exists it follows that T(J? ~ J)is tightly embedded in
TJ and Lemma 5.1 is violated in view of [T, J] # 1.

Finally, to prove (d) let x be as in (b) and assume there exists t € U* with
[x, £] # 1. Since Q,(Qo) = U = U by Lemma 5.9 there exists u € U** with
tt* = 1t*, where U* is as given by part (c). Then xu € C(t) = M?and sou € M®.
Since J? is not tightly embedded in M?, U n U" # 1, contrary to Lemma 5.9.

We are now in a position to complete the proof of Theorem C. Notice that by
part (a) of Lemma 5.10 we are entitled to continue to apply results for T, J to Q,
J? (using g~ ! in place of g). In particular, since the element x described in (b)
normalizes TQ, TQ contains a Sylow 2-subgroup of D¢ n N i(J). By this sym-
metry TQ also contains a Sylow 2-subgroup of D n Ng(J?), whence

TQ € Syl,((D n Ng(J9))(D? n Ng(J))),
TQ<x) € Syl,((D n M?)(D* n Ng(J)).
Let TQ{x) = A € Syl,((D n M?)(D? ~ M)), so |A: TQ{x>| < 2. By Lemma
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5.10(b) (applied to Q, J?), A & N;(J) and there exists s € Np,(J) with s norma-
lizing TQ, s® € TQ, so A = TQ{s, x). Moreover, s centralizes Q, = Q,(Q) by
Lemma 5.10(d), so Q; < Z(D) and hence [Q, x] = 1. Similarly, [U, s] = 1, and
so W< Z(A).

Note that Cg(W) < M n M. Let U? be as described by Lemma 5.10(c), so
U“ < AD. Since A € Syl,(C ,p(W)) we may pick d, € D such that

U < Ng(W) N Ng(4) with U ¢ W

and for all ue U¥, [U,u]=Q,. By Lemma 5.10(c) applied to Q (since
A € Syly(C 4ps(W))) there exists d, € D? such that Q42 < N y(4) n Ng(W) and
for all v € Q%2 [Q,, v] = U = Q,(T). Let

N= <Aa Udl, Q‘P), N= N/CN(W)

and note that N is transitive on W* so 0 ,(N) = T. It follows from Theorem 2 of
[18] that N = L,(q), g = |U| and W is the natural module for N.

First note that A is non-abelian, for T #+ T* and (T, x> < A.

Next recall that U< TJ so U? normalizes A n TJ = TQ{x). If for all
ue U%, T < TQ, then Q = [T, u] is abelian and inverted by each u € U%”.
Since m(U) > 2, Q is elementary and hence so is T = [T, u]. Thus TQ = Wisa
central subgroup of 4 of index 4 and so A4’ is cyclic. Since N is transitive on W*,
A’ =1, a contradiction. This proves there exists u € U?* such that (TQ)" <
TQ(x) and (TQ)* # TQ. Symmetrically (or because we could now choose g to
be an involution) there exists v € N such that

(TQ) = TQ<s> and (TQ)" + TQ.
Thus

| TQ: (TQ) n (TQ)’| <4 and A =(TQ, (TQ), (TQ)"),

whereupon as TQ is abelian |A: Z(4)| < 16.

Next we decide Z(A)< TQ. Suppose this is not the case and let
ze Z(A)—TQ. Since A’ #1, |A: Z(A)TQ| =2 so either z ¢ TQ(x) or
z ¢ TQ{s). Without loss of generality z ¢ TQ{(x), so 4 = {TQ, x, z). Since
0¢x) = TQ(x) n J S TQLx), it follows that (Q(xD>) = Q<(x), whereas
J # J*® and, by Theorem A, Q{x> & Z(J), a contradiction.

Now N acts on 4/Z(A) and if N centralizes 4/Z(A), then N normalizes TQ;
but then U normalizes TQ and a previous argument leads to a contradiction.
Since N = L,(q), g > 4, the only possibility is 4/Z(4) = E,¢ =~ W.But W is the
natural F, L ,(4)-module and the map (a,, a,) - [a,, a,] induces a non-trivial
F, N-module homomorphism from (4/Z(A)) ®g,(4/Z(A4)) to W, whereas for
either of the two possible module structures for A/Z(A) no such homomor-
phism exists (see, for example, Lemma 2.2 of [26]). This contradiction com-
pletes the proof of Theorem C.
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VI. The proofs of Theorems D, E, F and G
We first study the following setup:

(6a) G is a finite group, S a 2-subgroup of G, L a product of components of
Ce(S);
(6b) V is a faithful F, G-module;

(6c) as an F, L-module V has a unique non-trivial irreducible composition
factor.

Under these hypotheses, for every subgroup H of G let P(H)=
[V, H)/Cyy i(H), so V(L) is a non-trivial irreducible F, L-module.

LemMmA 6.1. Ifse S, L centralizes [V, s] and V/Cy(s).

Proof. By induction on |s|, L centralizes [V, s*]. Let V = V/[V, s’] and s0 s
induces an automorphism of order 1 or 2 on V. The map V — V by

v [o, 5]

is an F, L-module homomorphism and so ¥/C(s) and [V, s] are isomorphic

F, L-modules. Since [V, s] < C{s), property (6c) forces them to be trivial
F, L-modules. Thus

[v.s} Ll [V, 5]

so since [[V, s], L, L] = 1, the 3 subgroups lemma forces [[V, s], L] = 1.
Similarly, by induction, [V, L] = Cy(s®) so the above argument applied to
Cy(s?) in place of V gives [V, L] = Cy(s), as claimed.

LemMaA 6.2.  If SL normalizes an odd order subgroup K of G, then L centralizes
K.

Proof. By induction a minimal counterexample G satisfies G = SLK, K
(being solvable) is either an elementary abelian or special p-group of exponent
p, for some prime p, SL acts irreducibly on K/¢(K) and [L, ¢(K)] = 1.

Let ¥V, =[V, K], G = G/C4(V,). Note that if S centralizes V,, since G is
faithful on ¥V and [S, K] centralizes V, and C,(K), [S, K] =1; but then
[L, K] =1as L=1Cg(S), a contradiction. This proves S # 1. Since K is faithful
on V,, if J is a component of C,(V,), then, by (6¢c), [L, Vo]=1, so
K = [K, L] < C¢(V,), a contradiction. Thus C4(V,) < SZ(L)so L < C(S)and
L acts non-trivially on K. By minimality of G, C{V,) = 1 and we may assume
V = Vo.

Now let s be an involution in Z(S). By the irreducible action of SL on
K/$(K), s either inverts or centralizes K/¢(K). Assume the latter happens so
that s centralizes K and so se Z(G). But then [V, s] is a non-trivial
F, G-submodule which, by Lemma 6.1, is centralized by L (hence also by K),
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contrary to V = [V, K]. Thus s inverts K/@(K), so C4(s) = SLP(K) = N4L).
By minimality of G, S = {s).

If K is abelian, since s inverts K, s acts freely on Vie. [V, s] = Cy(s) and it
follows from Lemma 6.1 and the 3 subgroups lemma that L centralizes V, a
contradiction. Thus K is special and since s inverts K/@(K), s centralizes ¢(K).

Let D = ¢(K) and argue that |D| = p, V = [V, D]. For let V, be an irredu-
cible F, G-submodule of [V, D}, D, = C,(V,) and V; = C (Do) n [V, D]. Thus
|D:Do| =p, Vy=[V;,D/Do] and since D,< Z(G), V; admits G. If
G = G/Cg(V;), then S = S, K =~ K/D, and L is a central quotient of L, whence
G, V, is also a counterexample. Thus G = G and we may assume V = V,, as
desired.

Now if e is an element of K of order p inverted by s, argue that s centralizes
Cy(e). For otherwise Cy(e) n [V, s] # 0 and so by Lemma 6.1,

Cyle) n Cy(L) #0;

but since e € K — ¢(K) and L acts irreducibly on K/¢(K), K = (e, contrary
to V = [V, K] In particular, if | K| > p3, since K is extra-special of exponent p,
there exists E~ Z, x Z,, with Ec K and E inverted by s; since E acts
faithfully on V it follows easily by Schur’s lemma that for some e € E*, s does
not centralize C,(e), contrary to the previous argument. This reduces to the
case |[K| =p*andso L=L,L,, L, = C;(K), Lo = SL,(p), p > 3.

Let Ec K with Ex Z, x Z,, let &,(E)={E,, E,, ..., E,, D} with E in-
verted by s, let V;=C,(E;)), L<i<pand let W=[V,E,],so V=V, W.
Since K acts transitively by conjugation on {Ej, ..., E,}, dimg, V; = dimg, V},
2 <i < p. Because D is fixed point free on V, V; n V;= 0, i # j, and since each
V, admits E,, V= W, 2 <i < p. Thus since V,® V; < W, dim W > dim V,,
whence dim W > 4 dim V. Now let g be a prime divisor of | Lo| withq # 2, p
and let x be an element of L, of order ¢q. As noted earlier s centralizes Vj, so

[V,s]=[W,s] and V/Cy(s)= W/Cyls);

moreover, s inverts E; so Cy(s) = [W, s]. By Lemma 6.1, x centralizes [V, s]
and V/C,(s) so it follows that dim C,(x) > dim W > % dim V. Since x is nota
scalar transformation on K/¢(K), there exists k € K — ¢(K) with <k, k*)
covering K/¢(K), whence K < (x, xk). Because (K, x>/¢(K) is a Frobenius
group and xk¢(K) is not in the Frobenius kernel, | xk¢(K)| = ¢. Thus if x is
an element of order g in the coset xk¢(K), K < <{x, x,». Moreover, {x) is
conjugate in K{x) to {x;) so by dimension counting {x, x,> has a non-zero
fixed point on V, contrary to C,(K)=0. This completes the proof of the
lemma.

We now list some additional hypotheses we will be working under:

(6d) V is an irreducible F, G-module;
(6e) G = (IFO)S.
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Note that by the ordinary L-balance theorem for components, Theorem 3.1 of
[23], and by Lemma 6.2, G = E(G) - S.

LEMMA 6.3. If H, is a subgroup of G containing LS, H = (LEH9)S, and W is
a non-trivial irreducible ¥, H-constituent of V, let H = H/C(W); then
(H, L, S, W) satisfy (6a)-(6e) in place of (G, L, S, V) and E(H) is isomorphic to a
central quotient of E(H).

Proof. Clearly only (6a) needs verifying to confirm the first assertion. Again
by the L-balance theorem L < E(H) so if K, ..., K, are the components of
E(H),

K1 K,, = <EE(H)> = <LE(H)S>.

If Cy(W) ~ E(H) & Z(E(H)), there exists i such that K; = C(W); but then
(K contains some component J of L so as J = C (W), by (6¢c), L = C (W),
whence

E(H) = Iy = Cx(W),

contrary to W being a non-trivial F, H-constituent. This proves EH)is a
central quotient of E(H). It remains to show L is subnormal in C g(S), for which
it suffices to show L < <0 Ny(SCp(W)). But

[Cu(W), L] = Z(E(H))

so as [Cy(W), L,L1=1, [C({W),L]=1, hence LIICyS Cyx(W)) <
Cy(S), as needed.

LeMMA 64. Let D be a semisimple subgroup of G. Assume C (D) is tightly
embedded in G with N ((C (D)) = N ¢D) and for all g e G — N D), [D, D?] &
D n D¢. For any involution x € Cy4(D) assume D centralizes [V, x] and that
D < Cg(v), for ve [V, x] — {0}. Let z,, z, be involutions in C4(D), h € G; then
the following hold:

(1) if 24, 2% is a 2-group, either 2% € Ng(D) or z, € N4(D*);

(2) if<zy, 25y = Dy, k 0dd > 1, 2% € C4(D).

Proof. To prove (1) suppose (z, z%> is a 2-group z% ¢ N4D), and
| {z4, z%) | is minimal subject to these conditions. Set a = z,, b = 2, t = ab, so
t¢ Ng(D) but t* e Ng(D); moreover, as Cgla)<= Ng(D), |t| >2. Let
U = C,(t?); since <t) acts faithfully on V, by looking at this representation of ¢
in Jordan canonical form one sees that ¢t acts non-trivially on U, hence one of a,
b does also. Since {a, b)""'is also a minimal counterexample, we may replace
a,b by a*', b*"! if necessary to assume a acts non-trivially on U. Then
[U, a] =[U, at*] = [U, a'}, so for v e [U, a] — {0}, D, D* < Cg4(v). By hypoth-
esis therefore D = D', a contradiction.

To prove (2) suppose

{24, 24y = Dy, kodd>1
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and let a = z,, b = 24, (x) = O(¢a, b)), and let {t) = Z(<a, b). Let
U=Cyt) n [V, x]

so U # 0 by the P x Q lemma and {a, b) acts on U. Since x acts Frobeniusly
on U and ainverts x, [U, a] # 0. Thus [U, a] = [U, at] # 0 and at = b** = z*1,
for some x; € (x). As before, hx, € Ng(D), so t € Cg(D). Thus

<a, by = Cy(t) < Ny(D),
s0 x; € N4(D) and therefore h € N g(D), as desired.

THEOREM 6.5. Assume (6a)-(6e) hold and also that L/Z(L) = Q% (2") and

V(L) is the natural 4-dimensional module for L/Z(L) viewed as a module over F ,;
then G = L.

Proof. Note that by (6b) and (6d), 0,(G) = 1 so (6e) implies
L=G=+LgdG=S=1.
Assume G is a minimal counterexample and let V;, = [V, L], V; = C,(L). Since
Q(2") = Ly(2") x L,(2")

let L,, L, be the components of L, so Z(L) is a 2-group. By Lemma 2.7,
V =V, @ V, where V, = V(L) as F, L/Z(L)-modules. Since Z(L) centralizes V,
and ¥, by (6b), Z(L)=1 and so L= L, x L,. Also, since S centralizes Vj,
Vo #Vso Ng(V})=G,i=0,1.

Let s be an involution in Z(S), Hy = Cg(s), H = ([FH9S. Since H = G, by
minimality of G, Lemma 6.3 forces L = H <t < H,,, so by the arbitrary nature of
S we may assume S = {s). Let S = §* e Syl,(C4(L)), s* an involution in Z(S*).
The same argument shows L <1 <1 C4(s*), whence we may assume s = s*. Now
applying this argument to any involution ¢ in S* we obtain L <1< C(t), so
L <1 <1 Cg(ty), for all involutions t, € C4(L). Finally, this argument shows that
if H is any proper subgroup of G containing L with |C(L)| even, then
L <t < H. In particular, L << Ng4(V;) and L < Ng(V5).

Next suppose I normalizes L, for some g € G; we prove either L = I¢ or
[L, I?] = 1. Notice that V% is the unique non-trivial irreducible constituent of I
onV?and factson V,, V3, soeither V§ = 1, or V§ < V,.In the latter case I must
centralize ¥, so since L, I commute in their action on V, by (6b), [L, I/] = 1. If
Vo< Vo, V=V, and so as L < Ny(V,), L = I?. This establishes the initial
claim of the paragraph.

Thus L acts like a single component so if 4,, ..., A, are a maximal set of
pairwise commuting conjugates of L with L = 4, and D = A4, --- A,, the argu-
ment of Theorem 9.7 of [3] verifies the hypotheses of Theorem 5 of [3]. Since
m(L) > 1 and 0,(G) = 1 Theorem 5 of [3] gives that one of the following holds:

(1) D=G;

(2) Cg(L) is tightly embedded in G with N g(CgL)) = N4L) and for all
geG—Ng(L),[L, F]¢ L L.
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If D =G, L < <G which we have seen means G is not a counterexample;
thus (2) holds and so Lemma 6.4 applies, via Lemma 6.1, to D = L.

If C4(L) has 2-rank 1, let z be an involution in C (L). It follows from Lemma
6.4 that z is a class of odd transpositions in G, and, by (6¢), we may assume

G = E(G)(z).

Since Cg(z) has a “standard subgroup” of type L,(2") x L,(2") and G/S(G) is
described by the Main Theorem of [2], (and the components of the centralizers
of the odd transpositions are described in this paper) the only candidate is

G/S(G)= 05(5), L/Z(L)= L,(4) x Ly(4).

However, since 0,(G) = 1 we would have G = O4(5) and since one easily sees
that O5(5) contains no subgroup isomorphic to L,(4) x L,(4) we must have

L= SL,(5)YSL,(5)

contrary to Z(L) = 1. This argument proves C4(L) has 2-rank > 1.

It follows from Theorem 3 of [4] that Sylow 2-subgroups of C L) are not
non-abelian dihedral groups nor are they weakly closed fourgroups. Thus by
Theorems 2 and 3 of [3] there exists g € G — N (L) such that C(L)y n N (L)
contains a fourgroup, W. Since

Lg No(lf) but Typ(l)< No(L2)

by Lemma 2.8 of [3], W normalizes L, and L,; moreover, the argument of
Lemma 3.5 of [3] is easily modified to show that if some w € W induces an
outer automorphism on L;, for some i, then

L= Ty w(L) = Ng(E).

Suppose say L; = Ng(I?). Since W centralizes an involution, a,in C¢(L), L, is a
component of Cg(a) N Ng(If) so by the L-balance theorem L; = L(N 4(I%));
more precisely, by Lemma 2.7(2) of [3] either

[, L,]=1, L,e{Lq, L% or L{ =L$§ with L, =Cprg(a).
In the first two instances I = Ny(L,) = NA[V, L1])= NgVo) = NgL), a
contradiction. If L, lies on the diagonal of I, note that in fact W centralizes a
fourgroup U in C 4(L) which we may assume contains a, so again by Lemma 2.8
of [3],
I =T () = Ng(L),

a contradiction. Similarly L, & N () and so each involution in W induces a
non-trivial inner automorphism on each L,.

Now L contains a diagonal subgroup, L, the centralizer of a transvection in
07 (2"), satisfying:

(i) Lo = L,(2");
(i) Cyo(Lo) = [Vo, Lol
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(li]) disz [Vo, Lo] = 3", dim CVO(LO) =n,
(iv) ¥, is an indecomposable F, L,-module with [V, L,]/Cy (L) the stan-
dard F, L,(2")-module for L,.

Since the diagonal involutions in L are all conjugate and each w € W* induces
an inner automorphism on L corresponding to a diagonal involution we may
replace Cg(L)¥ by an L-conjugate so that for some we W*, we L, Cg(L).
Since all non-trivial odd order elements of L, act Frobeniusly on V, and w
inverts one of these,

dim [V, w] = 2n,
and, of course, [V, w] = [Vo, Lo]. Thus it follows from (iii) and (iv) that
Cyo(Lo) < [Vo, W]
Let v e Cy,(Lo) — {0}. By Lemma 6.2, I!$w) < C(v) so as previously noted
Colv) = NolE2).

However, C,(w) contains a Sylow 2-subgroup T of L, whence (L, T) <
Ng(I?). One easily checks that L = (L,, T (see, for example, Lemma 2.5 (3) of
[3]) so a previous result (applied to g~!) gives L = I? or [L, I] = 1. Both
equalities are impossible and this contradiction completes the proof.

THEOREM 6.6. Assume that (6a)-(6e) hold and that L is quasisimple. One of
the following holds :

(1) G=1L;

(2) E(G)= A,y L= A,, V is the non-trivial irreducible constituent of the
natural (n + 2k)-dimensional permutation module for E(G) over ¥, n > 5;

(3) E(G)= Q3,+2(2™), L= Sp,,(2™), V is the natural (2n + 2)-dimensional
F,n E(G)-module viewed as a module over F5, n > 1, m > 1;

(4) E(G)= Z; - U,(3), L= Uy(2), dimg, V = 12, dimg, V(L) = 8.

Proof. Let G be a minimal counterexample. Since O,(G)=1and G # L,
S# 1. Also for all ve V—{0}, C4v)= G and for all involutions t e G,
Cq(t) = G. Notice that Lemmas 6.1-6.4 apply to arbitrary L, S which satisfy
(6a)-(6¢) for we will have occasion to change both L and S in the proof.

(6.6.1) We may assume |S| =2.

To prove this let s be an involution in Z(S), H, = Cg(s), H = ([F#9)S and Wa
non-trivial irreducible F, H-constituent of V. By Lemma 6.3 and the minima-
lity of G,

E(H)/Z(E(H)) = L/Z(L), A+ 21 Q342(2") or Z3 - U,(3)

and in all but the first instance we may identify L/Z(L) and W as well. In any
case since L < E(H), V has a unique non-trivial irreducible F , E(H)-constituent
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so without loss of generality W = P(E(H)). One easily checks that
Go = E(H)®){s), Ly = E(H), So = {s), V, = V satisfy (6a)-(6e) in place of G,
L, S, V resp. If L, is not quasisimple, Lo/Z(L,) = Q} (2") and V(L) is the
natural module. By Theorem 6.5, G, = L, whence s € 0,(G,), contrary to
0,(Go) = 1. Thus L, is quasisimple and the hypotheses of this theorem are
satisfied by G, Lo, So, Vo with L, # G, and E(G) = E(G,). Suppose one of the
conclusions of Theorem 6.6 holds for the new quadruple. In this situation, if
L, =L, G is not a counterexample so we must have

Lo/Z(Lo) = Aps 260 Q3ns2(27) O Z3 - U,(3).

Since L, must be one of the groups described in conclusions (2)-(4), the only
possibilities are Ly > A4, 5, or U4(2) (= Qg (2)) (note that Q¢ (2) = Agand the
6-dimensional F,-modules are the same for these groups). If L, =~ Qg (2), we
previously identified W = V(L) as the natural 6-dimensional module over F,
whereas conclusion (4) of Theorem 6.5 asserts that if L, has this isomorphism
type, the constituent P(L,) must have dimension 8, a contradiction. If
Lo~ A, 5, n+2k>7 and E(Gy) = 4,4, V is the non-trivial irreducible
constituent of the natural permutation module, whence it follows that L is an
alternating group and G is not a counterexample. This argument proves that
Gy, Lo, Sy, V, do not satisfy the conclusions of the theorem so without loss of
generality G = Gy, L = L,, S = {s) as claimed in (6.6.7).
By a similar argument we get the following two results:

(6.6.2) L is maximal in the component ordering of [3];
(6.6.3) L is a component of Cg(t), for all involutions ¢t € Cg(L).

By using (6.6.3) and the fact G = E(G){s) we may replace s by another involu-
tion in C4(L) and decide via the L-balance theorem (Lemma 2.7 (3) of [3]) that

(6.6.4) if |C4(L)|, > 2, G is quasisimple.

Now let A4, ..., 4, be a maximal set of pairwise commuting conjugates of L
with L = A, and let D = A, ‘-- A,. The proof of Theorem 9.7 of [3] shows that
the hypotheses of Theorem 5 of [3] are satisfied so since O ,(G) = 1, one of the
following holds:

(1) DxG;

(2) D=A, Ay, m(A;)=1, |A; N A,| is even, [L, E]=1<I = A,, for
all g € G, and C¢(D) is tightly embedded in G with N4(Cg(D)) = Ng(D);

(3) D=A,, [L, ]+ 1, for all g € G, and C (D) is tightly embedded in G
with Ng(C4(D)) = Ng(D).

Let N = Ng(D) and C = 0%(Cy(D)).
If (1) holds, L < < G which forces L = G, a contradiction; thus (2) or (3)
holds. Note that if (2) holds, since 4, and A4 , are conjugate in G and x € G with
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Af = A,, then x € C4(0,(D)) = Ng4(D); moreover, in this case, by Theorem 3.1
of [15], | C|, = 2. (The B-conjecture is not needed for the proof of Theorem 3.1
of [15]).

We first handle the situation when m(C) = 1. Let z be an involution in C and
for each element y of G, let V, = [V, y]. By Lemma 6.1, L centralizes V, and in
case (2) if AT = A,, x centralizes (z) = 0,(4;) = 0,(A4,) so D centralizes V, in
this instance as well. Suppose for all v € V, — {0}, D < C4(v): it follows from
Lemma 6.4 that z€ is a class of odd transpositions in G whence Lemma 2.10 and
(6e) assert that G is not a counterexample. This proves there exists v € V, — {0}
such that D £ Cg(v), so by (2), (3), L < < Cg4(v). Let

Ho=Cglv), H,=<(IPHN(z), W=V(H,),

and note that as L<I<H,, O,(H,)=1 and as L< H,, W is a non-trivial
irreducible F, H;-module. Let H, = H, /Cy (W) so by Lemma 6.3 and the
minimality of G we may identify H,, L and W; furthermore, the odd order
group Cy (W) stabilizes the chain

V2[V,H]2 Cy yy(H)20
whence centralizes V, so Cy,(W)=1. Let H= E(H,) so (we now know
m(L) > 1) since L is in standard form in H, one of the following holds:
(1) L = Am H = An+2a H<Z> = Zn+2;
(i) L= S8py(27), H= Q3. ,(2"), H{z) = 0%,,5(2");
(i) L= U,Q2), H=Z, Uy3);

and in all cases z¥ is a class of odd transpositions in H; and V(H) s the natural
module for H (described by conclusions (2)-(4) of this theorem). We may
therefore always pick g € H; — Ng(L) such that [z, z¢] = 1 and H = (L, I?).
Note that

veV,n V,#0.

We now include discussion which circumvents using the full weight of the
solutions to the various standard form problems we are faced with—this seems
desirable not only for reasons of independence but also to avoid invoking the
Unbalance Theorem on which some of these solutions rest.

Case L~ A,, H= A,4,,n>5. Let
<Z, Zg> cTe Sylz(NG(H));

since L is in standard form, C(H) has odd order so T is isomorphic to a Sylow
2-subgroup of )., 5. Let 7 =z A T, U =V, N V,,. Since N,,(7") is doubly
transitive on J and H{z) centralizes U,

U= () V,, Ng(U)<= Ng(H) and T e Syl,(Ns(7)).
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Let (z, z#) = P € Syl,(N), S = P n C; we prove S = {z). Choose a permu-
tation representation of H(z) so that z = (12); since H is doubly transitive on
J, without loss of generality z¢ = (34). Assume |S| > 2 so as S centralizes
LcH,

S ¢ Ng(H) = Ng(U);
therefore z¢ does not centralize S. Since m(S) = 1, there exists s € S such that
2% = zz% = (12)(34).

Now let h e G be chosen with z* = (34)(56) e L n P, so z* centralizes S. If
n>8, let

B=0%*Cy(z") = 4,4

so B< N"; moreover, since m(C)=1, SBn C"=1 so S acts faithfully on
I"C"/C" ~ A, and centralizes its subgroup BC"/C"~ A,_,. Thus if n>8,
S = {s) and s induces a 4-cycle on I*C"/C* hence also on I". Note that if
n=>5, 6, or 7, since m(S) = 1 and S acts faithfully on I*, S = (s) =~ Z, and s is
either a 4-cycle or the product of a 4-cycle and a transposition on I*. In any
case, let S, be a Sylow 2-subgroup of C" normalized by S. Thus
So € Cg(z) = N, s0 [S, So] = 1. By the action of z¢ on S, no 2-element of C(S)
induces an outer automorphism on L, whence in N*, S cannot induce a 4-cycle
on I*. The only remaining possibilities are n = 6 or 7 and s the product of a
4-cycle and a transposition on I*. Let P, = §¢(z%>, P, =P n L so

P=P; x P~ Dg x Dg, Z(P)* ={z, 2 zz"},

so by orders P e Syl,(Cs(2")) as well. It follows therefore that if P < P* with
|P*: P| =2, then P = J(P*), (z, z*) char P* and hence

P* e Syl,(G).

Since H{z’) ~Zg or X, (ie. |T| =2"), such P* exists so by orders
T € Syl,(G). Since Tn HS G’ and z° n H # ¢, G is perfect whence G is
quasisimple with Sylow 2-subgroups of type 4 ,,. By [21], however, no involu-
tion centralizer has a component of type A¢ or A, centralized by a Z,
subgroup. This contradiction proves S = {z)>. Note that as L{z, z?> contains a
Sylow 2-subgroup of N, z is not rooted in G.

Next we prove T € Syl,(G); for otherwise let T < T* with |T*: T| = 2and
let t € T* — T. By the initial paragraph of this case there exists y € H such that
z¥ € J but 2 ¢ 7. Since every involution in H is rooted in H{z%), z” ¢ H.
Now Lemma 2.5 asserts z + z”, a contradiction.

Again, since z is not rooted in G, z¢ n H = ¢. By Thompson’s transfer
lemma [5.38 of 27], z ¢ G’ and since H= G, Ty =T n H € Syl,(G'). If n <9,
[21] applied to G’ and the fact that L is standard in G gives G = H{z), again a
contradiction. Thus we may assume n>9. Let u=zz% K= Cgu), so
(K nH)*®) = Bx~ A,_, and V(B) is the natural module for B. Since B is a
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component of Cg(z) which has property (6c), as usual by Lemma 6.3 and
induction there exists I* a component of K with [* >~ 4,_,,, and V(L*) the
natural module. But now (I*,u)<= G =G and V is an irreducible
F, G'-module so by minimality of G, G’ =~ A,_,.,. By inspection, since L is
standard in G with m(C4(L)) =1, G = Y, ,, again contradicting G # H{(z).

Case L=~ L,(2™), H=Q;(2"), m>2. Note that H = L,(2*") and z is a
field automorphism of H, so all involutions of H(z) — H are conjugate under
H to z. Also, m(C) =1 implies m(C4(z)) =m+1soasm>2,2°n H=¢.
Since

CH(z)(Z) = <Z> x L
it follows that if

z€ T e Syb(No(H)),

then Ny ,,(7) is doubly transitive on 7 = z¥ n T, and as in the previous
case, T € Syl,(G). Let Ty= T n H so T/T, is cyclic. By Thompson’s transfer
Lemma, z ¢ G’ so since |G: G’'| <2 and H = G, T, € Syl,(G’). Since Sylow
2-subgroups of G’ are elementary abelian and L is standard in G, H(z) = G, a
contradiction.

Case L=L,(2"), H=Q{(2™), m>2. Let H=H; x H,, H;~ L,(2"),
Hj = H, and let V, = [V, H], V; = C\(H), so, by lemma 2.7, V = V, ® V; and
for each i, ¥}, is the direct sum of two natural modules for H;. For L = C(z), V,
is an indecomposable module with dimg, [V;, L] = 3m, and Cy, (L) = [V,, z] of
dimension m. Let '

(2,2 < T e Syl,(Ng(H)), E=T n H.

By Lemma 2.7, T/E =~ Z, x Z, where 2| m and there exists an automorphism
fi of H whose coset generates the second cyclic factor and with f; a field
automorphism on H;, i = 1, 2. Frattini’s argument, since z acts freely on E,
shows that C(z) covers T/E so we may pick f, € C(z) with f, = f,(mod E); set
f=£"" if k>1, and f=1 otherwise. Note that if f+ 1, f induces an outer
involutory automorphism on each H;, hence is a field automorphism on each
H,, so f acts freely on both E and V,,, and

Cao ()= Ls(2)| Zo, 2a=m.

Since m(C) = 1, it follows easily that if f # 1, z¢ ~ fE = ¢. Furthermore, since
m(Cs(z))=m+1 and m(E)=2m, z°~ E=¢. Suppose f#1 and
2% n zfE # ¢. Since zf interchanges H, and H,, zf is conjugate in {zf, E) to
every involution in zfE, whence there exists h € G such that z* = zf. Since f
induces a field automorphism on L and [V,, L] is the full cover of the natural
F, L,(2™)-module, f acts non-trivially on

[Vo, L] n Cy (L) = [Vo, 2]
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Thus there exists w € Vy, n V, n V,, with w = 0. As usual, by induction applied
in C4(w), there exists H* a component of Cg(w) with

H*~Qf(2™) and H*=(L, I')
(H* A, since 7(L) is not the permutation module for 4;). However,
Cu(z") = L2(27)
so as Cg(z") has a unique component of this type, Cy(z*) = I'. This means
H*= (L, I"Y=H,

contrary to H not centralizing w. This argument proves z¢ N zfE = ¢.

Again we argue T e Syl,(G). Let 7 = z¥ A T so by the preceding fusion
arguments z¢ € 7. Since N(7") is doubly transitiveon 7, V, N Vo= (ies Vi
and since

Ng(7)= Ng(H) and z°nT=J,

we have T e Syl,(G). Moreover, by Thompson’s transfer lemma applied to
{f1, E> the previous results on fusion also give z ¢ G'. Note that Ec H = G'.

If f = 1, we must have E € Syl,(G’) so G’ is a product of Goldschmidt groups.
Since L is standard in G it follows that G = H{z), a contradiction. It remains to
consider the case f# 1. Let T, = T ~ G’ and note that E < T, T,/E is cyclic
and G’ is perfect. If | Ty: E| =2, T, = <E, f) or (E, zf), whence in either case
To =~ E;n 1 Z,, m > 2. By aresult of Harada [the proof of Lemma 18 of 24] G’ is

not perfect, a contradiction. Thus T, /E = Z,,, r > 1. Since f acts freely on E
and {(fE) = Q,(T, /E), E = J(T,) char T, and so E < N4(T,). Since T,/E is
cyclic,

To N NG/(T())I c E.

Also, for each Sylow 2-subgroup Q of G',Q’is elementarysoQ’' n T, = <E, f).By
Grun’s Theorem [7.4.2 of 20], T, N (G') < <, E) again contrary to G’ being
perfect. This completes the proof of the case.

Case L= Ag= Sp,(2), I* = QF(2). We have already considered when
H{z) =~ 0{(2) = Zg (note that the corresponding modules are the same for the
two isomorphism types), and when H(z) = Og (2) = Weyl (E¢) the arguments
are similar—we sketch the details.

Let Vo, = [V, H], V; = Cy(H) so by Lemma 2.7a, V = V, @ V,; and since

Aut (Q5(2)) = 05 (2),

if (z,2) = T € Syl,(H{z)), then T € Syl,(N4H)). Moreover, H is doubly
transitive on 7 = z# n T so T € Syl,(N4(7)) as usual.

Let Vo =0Q5YQsYQs be extraspecial so that Out (V,)=~ O5(2) and
Vo/Z(V,) is the natural module for Og (2). From this representation it is easily
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deduced that H{z) has exactly 4 classes of involutions, and representatives z, ¢,
ty, t, have the properties: t € Hz, ty, t, € H,

dimpz [Vo, Z] = 1, dil’rllr2 [Vo, t] = 3, disz [Vo, tl] = 2, i= 1, 2,

Cu(tr) = (SLo(3) | Z)/Z(SL,(3) | Z2),
Cul(t:) = Z,/(E4 x Ay), Cylz)x Ze

and every involution in 0%(Cg(t,)) is H-conjugate to ¢,.

Suppose z* € H, for some h e G. By the structure of Cy(ty) z %4ty so we
may assume z" = t,. Let (z, 2%) = P € Syl,(N), Py =P n C{(z*),P, =P L
and {x) = Z(P,) so by the last remark of the preceding paragraph x € z¢
whence

P € Syl,(Cgl(x))

as well. Since Ng(H) = Ng(V, N V) and z is not rooted in Ng(H), {z) =
Cp,(2%), so P=P; x P, with P, dihedral or quasidihedral. By Sylow’s
Theorem x is conjugate to z in Ng(P) so Py =~ P, = Dg and, as in the 0§(2)
case, because

|G|2 = |H<Z>lz=27,

there exists P* 2 P with |P*: P| = 2. It follows that <z, x) = Z(J(P*)) so
P* € Syl,(G) and therefore T € Syl,(G). Again H <G’ and z°< G’ so G is
quasisimple with Sylow 2-subgroups of type 4,,. By [21], G cannot have an
involution centralizer with a component of type A, centralized by a Z,
subgroup. This contradiction proves z¢ N H = ¢.

As noted earlier, dim g, [V, z] = dimg, [V, t] -2, whence z #5t: thus
2 " T = so because T € Syl,(N (7)), T € Syl,(G). By Thompson’s trans-
fer lemma, z ¢ G’ so

T n H e Syl,(G'),

that is, G’ has Sylow 2-subgroups of type Ag. It follows from [21] that
G = H{z), a contradiction.

Case L>U4_2), H=Z;  Uy?3). In this situation let (x) = Z(H),
Vo=L[V,x]=[V, H],V;=Cyx) = Cy(H),so V =V, ® V,. By Lemma 6.1, z is
not free on ¥, so [z, x] = 1. By Lemma 2.8, zH contains 2 classes of involutions
with representatives z, u and

dimg, [V, z] =2, dimg, [V, u] = 6.

Because [V}, z] =[Vy, u), z 4 gu. Let ze T € Syl,(Ng(H)), To = T n H so by
Lemma 2.8 and the fact that |Cg(H)| is odd,

T/To=Z,or Z, x Z, and Tyz) = Cy(x).
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Suppose there exists h € G such that z* € T — T(zD, so z" inverts (x). Let
Q = Cy(z") so by Lemma 2.8,

(x>0
o = UsB) Zo, Ua(2) or SLy(3) | Z2/Z(SLa(3) | Z2)

In any case, since Cg(I’) has 2-rank 1 and |N: LC4(L)| <2 it follows that
Q=0nL+1

Note that since z centralizes V(L) z centralizes [V, L] whence z* centralizes
[V, Qo]; but then z** centralizes [V*, Q3] = [V, Qo] and so

[V, Qo] = Vo 0 Cyl(z*) n Cy(") =0,

contrary to Q, # 1. This argument proves z¢ N T < Ty(z).

Finally, suppose z" € Ty, for some h € G. Since H has one class of involutions
we may assume z' e Z(T(z)). Since Ty(z) is isomorphic to a Sylow 2-
subgroup of E,s Ag, where E,s is the permutation module modulo the one
dimensional submodule, z* € (Ty{z>)". However, in a Sylow 2-subgroup P of
Cq(z), since m(C) = 1, z ¢ P”, a contradiction.

For 7 =z n T H is doubly transitive on 7 (z¥ is the class of reflections in
05 (3)) so as usual T e Syl,(G) and for any subgroup T, of T with To< T,,
z¢ Ty and |T: T;| = 2, by Thompson’s transfer lemma applied to T}, z¢ G'.
Now let Ty € Syl,(G’). Since dimg, [V, z] = 2, for any involutiona € H,aisa
product of two H-conjugates of z so dimg, [V, a] = dimg, [V}, a] < 4. On the
other hand, if d is an involution in T, — T, d inverts x so dimg, [V, d] >
4 dimg, V, = 6. This proves d° n H = ¢ so since by Lemma 2.8 each coset of
T, in T contains involutions, Thompson’s transfer lemma applied to the perfect
group G’ forces Ty = T,. Because L is standard in G, [22] implies G = H{z), a
contradiction.

Case L= Sp,,(2™), H =~ Q%,,,(2™), n > 2. By previous considerations we
may also assume L ¢ Sp,(2). Let V, = [V, H], V; = C,(H) so by Lemma 2.7,
V=V,®V,. Let wy be any non-singular vector in ¥, and let w be an H-
conjugate of wy with w € [V,, z], z being an F ,,, orthogonal transvection on V,,.
By Lemma 6.1,

Cs(w)2<L, 2)

whence as usual, by induction, there exists M a component of Cgw) with
L = M and either

M=Q%,,2™) or M=L.
If M # L, however, by the decomposition of ¥ under Q%, , ,(2™) it follows that
w¢ [V, L] < [V, M],
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whereas one easily sees that V;, is an indecomposable F, L-module with
Cy (L)< [Vo, L)

Thus L < < Cg(w) and as L is in standard form, Cg(w) = N. This proves that
for each non-singular vector w, in ¥, C g(w,) has a unique component of type
Sp,,(2™), denoted by L,,, and L,,, < H.

If u, is a non-zero singular vector in V,, Cy(uo) = EK where E = E;z,m
K =~ Q%,(2™) and E is the natural module for K. Since N does not contain a
subgroup isomorphic to EK, uy #¢Wo -

Now let a be an element of H which is of type a (in the sense of [10] page 16)
so Cy(a) has F,-codimension 2m in V; and so C\{(a) also has F ,-codimension
2min V. Since H £ G’ = {a®) we may pick a G-conjugate b of a with V% # V.
Since dimg, Vo = m(2n + 2), dimg, Vo N V% > 2nm, from which it follows that
Vo N V3 contains a vector w, which is nonsingular with respect to the form on
Vo (consider the corresponding F ,-quadratic form). Thus for some h e H,
Cs(wo) = N". Considering w,, in the form on V3, by the previous remarks w, is
also non-singular with respect to this form and I"=L, < H® Thus
Vo n Vi 2 [V, I']. As argued before, w € [V, I'] is non-singular in Vj, if and
only if w is non-singular in V4. One easily checks, however, that

H = (L,|w is a non-singular vector in [V, I'].
Thus H® = (L, |w is non-singular in [V, I*]) by this argument, contrary to
H + HP.

This completes the treatment of the various standard form problems which
have arisen when m(C) = 1. This lengthy argument plus (6.6.4) gives:

(6.6.5) L is in standard form in G, m(C) > 1 and G is quasisimple.

Next suppose for some proper subgroup H of G with L Hand |C n H|
even, L # H, whence also L </< H. By Lemma 6.3, and induction L~ A4,,
Sp2.(q), or U,(2), for some g = 2™ and L < I* < H with

I* = An+ k> SI-itn+ Z(Q) or ZS ’ U4(3) resp.,

P(I*) the natural module. By the Main Theorem of [11] we must have L~ 4,,
G~ A,44 Or L= A5, G~ J,. In the former case, by Lemma 2.4, V is the
natural module for G, contrary to G being a counter-example. In the latter case,
since by the 2 local structure J , does not contain subgroups of type 4, Q7 (4)

or Q; (4) we must have I* = A, and for z an involutionin C n H, (z)I* =Z,;
then

Cu(z)(z) =Z, X Xs
which is incompatible with the structure of C,,(z). This contradiction proves:

(6.6.6) L < H whenever Lc H<G and |C n H| is even.
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By lemma 6.4 we obtain:

(6.6.7) 1If z,, z, are involutions in C and {z,, z%) is a 2-group, for some
h € G, then either z% € N or z, € N*; and if z,, z, are involutions in C and
{z4, 28> = Dy, k odd > 1, for some h € G, then 24 € C.

We next prove:
(6.68) 0,(C)=1.

Forsuppose 0,(C) # landlet Z = Q,(Z(0,(C))), Z = {z?|z € Z*,g € G}.Itfol-
lows from (6.67) that & is a set of root involutions in G, hence G may be
identified by [28]. However, in none of the groups in Timmesfeld’s list does the
centralizer of a root involution contain a standard component centralized by a
fourgroup. This contradiction establishes (6.6.8).

(6.69) If |C* n N| is even, for some ge G — N, [C, C?] = 1.

Suppose |C? N N| is even, forsomeg e G — Nandlet T € Syl,(C* n N), tbe
an involution in T. If t ¢ O ,(CT), by the Baer-Suzuki Theorem ¢ inverts an
element of C* of odd order. Note that since C = 0*(C), by Lemma 6.7, for
every x € C,

[V, x] € C(L).

It follows therefore that [V, t] n C,{L) +# 0. But then for some involution
z € C(t) and some non-zero v € [V, t] n CAL) n Cfz), C4(v) 2 <L, I, z, t)
and (6.6.6) conflicts with (6.6.5). Thus ¢t € 0,(CT)so (6.6.8) forces [t, C] = 1.1In
particular,

Cc C4(t)= N*

and since g was arbitrary in G — N, this argument applied to g~ * gives C? = N.
Since for each x € C, [V, x] = Cy(L) and O(G) = Z(G),

0(C) n O(G) = 1.
If O(C) n O(C?) + 1, by (6.6.6) and (6.6.5), L = I, a contradiction. This proves
[C, C'] < O(C) n O(C?) = 1,

as claimed.

By Theorem 1 of [4] the Sylow 2-subgroups of C are elementary abelian and
by Theorem 4 of [3] C is solvable. This establishes:

(6.6.10) C/O(C) is an elementary abelian 2-group;
(6.6.11) If |C?* n N| is even, for some g e G — N, <C, C?) = C x C*.

Now let E € Syl,(C), ES S e Syl,(G) and let {E;, ..., E}}=E®° N S, g,€ G
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such that E; = C%. By (6.6.7), (6.6.10) and (6.6.11) <Ej, ..., E,) is elementary
abelian and since E; centralizes O(C%), for all i # j it follows that

(66.12) ES A S=E, xE, x - x E,.

For each set & of commuting conjugates of C define M(¥) = (\coesr N?,
where M(¢) = G. Over all such sets let &* be one of largest cardinality such
that there exists g e G with C? commuting with all members of ¥* and
C? <)< M(F*); since C </< G, such &* is always available. Replacing &* by
a G-conjugate if necessary we may assume C commutes with all elements of #*
and C </ M(&*). Set M = M(5*).

If z is an involution in C™, m € M define

0(z) = <{C"|he M and |C"* n N p(C™)| is even).

By the maximality of &* and (6.6.9), whenever |C* n Ny(C™)| is even, for
some he M — N (C™),

[Ch C"=1 and C*< < Nu(C").

Thus 6(z) < Nm(C™). Since C/O(C) is an elementary abelian 2-group, by
(6.6.12) so is 6(z)/0(6(z)). Finally, since C™ <6(z), by construction of M,
0(z) & M.

(66.13) Ifz;€C, z,€ C", he M and z,, z, are commuting involutions,
0(z,) = 0(z2).

By symmetry it suffices to show 8(z,) < 6(z,): this is clear if C = C" so we may
assume h ¢ N. By (6.6.9), [C, C"] = 1, s0 C < 0(z,). Since Sylow 2-subgroups of
0(z,) are abelian and Cp(z1) S Nu(C), the latter group contains a Sylow 2-
subgroup of 0(z,). Finally, since m(E) > 2, 0(6(z;)) = I'y,£(0(0(22))) = Nu(C),
whence 6(z,) = N u(C) which yields the inclusion 6(z,) < 6(z,).

Let D be the involutions in M-conjugates of C. Note that by (6.6.7), D
satisfies property (+): for d, e € D, either Z({(d, e)) = 1 or Z({d, e)) n D # ¢.
Let 9 be the graph whose vertices are the elements of D and (d, e) an edge if
and only if de = ed # 1.

(6.6.14) 2 is disconnected.

For if 2 is connected, by (6.6.13), for all z,, z, € D, 6(z,) = 6(z,), and so
6(z;) < M, a contradiction.
Let H = (D), H = H/S(H). By (6.6.14) and Theorem 4.1 of [28] of the follow-
ing holds:
() H=1;
(i) H is a Bender group;
(iii) H = L,(q) 12,,, g=2">2k=3or4;
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(ivy H'+ H" and D is a class of odd transpositions in H.

Let E < T e Syl,(H) and note that if C" n T # 1, C* < 6(z), for all z € E*.
Suppose H is non-solvable but E n S(H) # 1. In this situation, by Frattini’s
argument,

Ny(T n S(H)) = H,

covers H and for z € E* n S(H), 6(z) = 0(z,), for all z, e D ~ H,. Thus H,
normalizes 6(z), so 6(z) = S(H) contrary to E & S(H). If H is non-solvable,
therefore, E n S(H) = 1. This means cases (iii) and (iv) cannot hold for in each
of these H contains no fourgroup all of whose involutions are in D, whereas
E* =D and m(E) = m(E) > 2.

Since the centralizer of each involution in a simple Bender group is a 2-group
and m(E) > 2, in either case (i) or (ii), O(C) = S(H). As above, T normalizes
0(z), for each z € E* so by properties of solvable groups

0(C) = 0(0(z)) = O(TS(H)) < O(H).
Let H = H/O(H) so by (6.6.7) we obtain:

(6.6.15) D is a set of odd transpositions in H.

Suppose D is not a single class in A so by properties of odd transpositions
D =D, u D, where [D;, D,]=1 for some non-empty subsets D, of D. If
E* = D, let D, denote the preimage set of involutions in H ie. D, = E*<PV,
Also, since D = E*™, there exists h e M such that D, = E**<P2>_ It follows
from (6.6.9) that [D,, D,] = 1 which contradicts 2 being disconnected. Thus
E* ¢ D, and similarly E* ¢ D,. Now H =T, ;(H) < N(C), contrary to 9
being disconnected. This argument proves D is a single class in H. In particular,
H = A’ so H is not solvable. Since E n S(H) = 1, it follows that

(66.16) H = L,(q), Sz(g), Us(g), 9 = | E.

Now replace H by a suitable subgroup H, containing O(H)E with H, = L,(q),
Sz(q) and D n H, is a single class in D with B,= (D n A,>. We lose no
generality in assuming H = H,, ie. H = L,(q) or Sz(q). By Lemma 2.6 and
(6.6.12) applied to H,

(6.6.17) H = Ly(q) or Sz(q).

Let /' be an element of H of order g — 1 normalizing E. As noted, O(H) < N
so every element of the coset /'is in N. Since A'is inverted by e*, for some e € E,
x € H we may pick h € H in the coset A with hinverted by f = e*. Clearly f ¢ N
else H={O(H), E, h, f> = N, contrary to C being solvable.

First note that ifa e E* and V,=[V, a], V, n V{ = 0: for otherwise there
exists v e Cy (f) with v#0 and Cg(v) 2 (a, f, L); by (64.6) C4(v)= N, a
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contradiction. For any a € E*, a ~¢ fso.dim ¥V, = dim [V, f]; thus if U is any
subspace of V with U n U/ =0, dim U < dim V,. Since V,< C,{L) but by
(6.6.8), a does not centralize Cy(L), ¥, = Cy(L) and so Cy(L) n Cy(L)Y #O0.
Let

A=Ng(Cy(L) n CAL)")2 (L, f, h).

If |C ~ Al is even, by (6.6.6), A< N, again a contradiction. Next suppose
C* n A contains a fourgroup F which we may assume contains f. Since
F = C* < H, by properties of Ly(g), Sz(q), (F, h) covers H. Thus (F, h) con-
tains E, with E,O(H) = EO(H). But since O(H) < N, E, < 0*(EO(H)) =
contrary to |C N A| being odd. This proves {f> e Syl A{C*n A). Tt follows
from (6 6.7) that f* is a class of odd transpositions in A. By [2], f4=F, v
F, v - v F, where F; is a non-empty class of odd transpositions in {(F;> and
[F;, F;] = 1, for all i # j. Without loss of generality we assume f e F, and set
A, = (Fy{); note that as finverts he A, h € 4,.

(66.18) Lc A,

If L=[L,h], then L< {f*>; since A, <{f4>, Lc A; as claimed. If
[L, h] =1, since L permutes {F,, ..., F,}, L normalizes 4,. Suppose L & A4,.
Because

OH)c A and A4,<94,

we have [O(H), f]= X = A,. Since O(H) < N either [X, L] = Lor [X, L] = 1.
Because L & A;, X centralizes L. Since O(H)< N*, X < O(C*) and since
X A OG) =1,

(L, I, f) = No(X) = G.

By (6.6.6), Ng(X) = N*. Thus L acts on C{L¥) and V/C(L). If L centralizes
Cy(I¥), by orders C,(I¥) = C,(L) so by (6.6.6) applied to

NG(CV( )) = <L9 Ea C, Cx>

we obtain L = I* or [L, '] = 1, a contradiction. If, however, L does not centra-
lize CAL), [L, L¥] centralizes C(L*) and V/C (L) and so is a 2-group. This
forces [L, L] = 1 again contrary to L being in standard form. Thus L< A4,.

Let A, = A f>, B= A,. By [2], A,/S(A4,) is isomorphic to one of:

(1) Z

(2) Spau(r), Uy(r), OF (r), Sz(r), r even;

(3) O%f(r),r=3o0r5;

(4) Fj3, Fa3, Fou;

(5) Ly(r) 1}2,,, r even.

Now because G is not a Bender group, by Theorem 2 of [3], there exists
g € G — N such that |C? n N| is even, whence, by (6.6.9), C? normalizes L. If
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L normalizes I, since C = C¢(C?) = N¥, by (6.6.6), I¢ normalizes L, a contra-
diction. Since L ¢ N? and C? = 0*/(C?) it follows from (6.6.6) that C? centra-
lizes Cy(L), whence C? < A. Since C? normalizes L and permutes {F, ..., F,},
C? normalizes B.

Suppose X < O(C?) with X #1, |N(X)| even and [X,L]=1. As
X n O(G) =1, Ng(X) = G so by (6.6.6), L normalizes I which we have seen to
be impossible. By Lemma 5.34 of [27] there exists Ky x K, < C? with
K; = D,,, for some odd primes p;.

If LS(B)/S(B) < E(B/S(B)) and B/S(B) = L,(r) 1A,,, then L~ Ly(r,), for

some ry | r; in this situation C? has a normal subgroup X with |0(C?): X| <3
and [X, L] = 1. By the preceding paragraph, X =1 and so the statements
|O(C)| <3, m(E) =2 and 0,(C) = 1 are incompatible. Thus in case (5),

LS(B)/S(B) & E(B/S(B)).

From this it follows that B=[B,d],de K}, i=1,2.
Note that O(B) = T'y ;,(O(B)) < N¥, so

[0(B), C*] < O(B) A C* = X.

Since [X,L]<Lnn OB)< Z(L), [X,L]=1 by the 3 subgroups lemma,
whence X = 1 by previous results. Thus B = [B, C?] centralizes O(B). Let d be
an involution in K, so Cy,(d) = N?. Therefore

[Com(d), O(K,)l = 04(B) n O(C*) =1

so, by the P x Q lemma, O(K,) centralizes O,(B), whence so does
[B, O(K,)] = B. This argument proves S(B) = Z(B). Indeed, if 0(B) # 1, as L
centralizes O,(B), by (6.6.6), L < A4, contrary to f¢ N. Thus S(B) = O(B) as
well. By Lemma 2.9 applied to B/O(B), C? has a normal subgroup X with

|0(C?): X| <3 and [X, B]< O(B).

Again [X, L]=1 so X =1 and the properties m(C) > 2, |0(C)| <3 and
0,(C)=1 are incompatible. This contradiction completes the proof of
Theorem 6.6.

Proof of Theorem G. Let J,, J, be distinct blocks with J; — J, and let
V = U(Jz), .72 = 12/02(']2).

By definition of “—” there is a 2-group S normalizing J, such that J, is a
component of Cj,(S); moreover, as U(J,) = [0,(J,), J,}, J, has a unique non-
trivial irreducible constituent in V. Let J,8 = J,S/C 1.s(V) so J, is a central
(odd order) quotient of J,. If je J, and [§,7] =1, then [S,j]< C,(V)<
0,, »(J,) so it follows that C;,(S) covers Cy,(5). Theorem G is now immediate
from Theorem 6.4.
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Proofof TheoremE and F. Let J € #*(G), for some finite group G of charac-
teristic 2 type, S € Syl,(Cg(J/0,(7))), so by assumption J < < N4(S). Let

2,(G) = {K| K is an QF (2")-block, K <<t No(T), T € Syly(Ce(K/05(K))))

so the relation “—” extends mutatis mutantis to #(G) U #4(G).

(EF.1) If K € #*(G) v %,(G), either K < < N, for every maximal 2-local
N < K or K is a block of L,(2")-type and K — L € #,(G).

To prove this let K = Y < KT, T e Syl,(C4(K/0,(K))), with Y maximal sub-
ject to Y </<IN, for some maximal 2-local N containing Y. Let Q = 0,(Y); we
first show K < < Ng(Q). This is true by assumption if Q = T so consider when
QcT. Then Q*=N{Q)>Q so as Y=QK, by maximality of Y,
K < < Ng(Q) as claimed. Let H = O,(N). If QH > Q, then Q = Ny4(Q) and
Nou(Q) = C4(K/05(K)), so by maximality of Y, K < < N, contrary to assump-
tion. Thus QH = Q and since H # Q, H = Q. Since G is of characteristic 2 type
U(K)< H. Since KH/H is a component of Cy(Q/H), by the L-balance
Theorem [3.1 of 23], KH/H = L(N/H). Let

HS X< N with X/H = ((KH/H)-MHy

so X/H is a product of 2-components of N/H and Q normalizes X. Since
H < Q, KH has a unique non-central 2-chief factor, whence X Q has a unique
non-central 2-chief factor, V. Let an overbar denote passage to XQ/C (V).
Since G is of characteristic 2 type every non-trivial odd order element of N acts
faithfully on H, so X = X/H. Thus K is a component of C(Q). By Lemma 6.2,
K centralizes O(X) so X = (KEX®) is semisimple. If K is an QF (2™)-block, by
Theorem 6.5, X = K, whence K = X g < N, a contradiction. Assume there-
fore X is quasisimple. By Theorem 6.6, X is either a block or an
Q1 (2™)-block and K — X, Next, over all such N 2 Y with Y < < N pick N
to maximize first | X‘*)| and, subject to this, to maximize

| CNX /0 5(X )|,

Let L= X and P e Syl,(Cy(L/O,(L))) with P normalized by Q. Let M be a
maximal 2-local subgroup of G containing N ¢(P), so Y = M. Since initially N
was arbitrary, there exists L,, a block or Qf(2")-block of M, with K< L,.
Since L = M we must have L < L, so by maximality of |L|, L = L. Since

P < 0,(Ng(P)) = Ca(L/O,(L)),
by maximality of | P|, P € Syl,(Cg4(L/O,(L))). Thus L < < Ng(P) implies
L e #(G) U %,(G).

Since K is quasisimple, by hypothesis K € #*(G) and since K —» Land K # L,
L ¢ B(G). 1t follows therefore by Theorem 6.6 that the second conclusions of
(EF.1) holds in this situation.
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By (EF.1) to prove both Theorems E and F it suffices to show:

(EF.2) If K e #*(G) v #,(G) and K < < N, for every maximal 2-local
N 2 K, then K is contained in a unique maximal 2-local subgroup.

To prove this let K, ..., K, be a maximal set of commuting conjugates of K
with K = K, and set

D=<K,, ...,K,>, M =Ng0,D)).

By the hypothesis of (EF.2), M is a maximal 2-local subgroup and M = N ((D).
Suppose N is any maximal 2-local containing K. Let

Do=<(K*K°< N, g e G).

By hypothesis Dy, < N. Let L be a block of D,; we show L € {K, ..., K,}: this
is clear if L =K so assume [L, K]=1. Then N4O4(K))= Dy, D and by
hypothesis Dy, D < < N4(0,(K)) so by Lemma 2.1 distinct blocks in {D, D>
commute; by maximality of D, L € {K,, ..., K,} as claimed. Thus D, < D so
D = Ng(Do) = N, whence D = D, by definition. Thus N = Ng(D) =M, as
needed to complete the proof.

Proof of Theorem D. Let J be a block in some maximal 2-local subgroup M
of G with G of characteristic 2 type, let Q = 0,(M), Q < F with F/Q =
F*(M/Q) and note that as Q = F¥(M), U(J)= Qso J < F.

(D.1) There is a maximal 2-local M, of G with Ny(J) = M andJ << M.

Assume this is not the case so, in particular, Ng(J) ¢ M. Let N be a maximal
2-local containing Ng(J), P=0,(N)and JM={J, J,, ..., J},r>2,J=J,.
For Py = Np(Q), Po =M so [Py, F]< F n P< Q; thus P,Q/Q centralizes
F/Q so by properties of F*, P, < Q. This proves P = Q so P = Q. Since J; acts
non-trivially on P, U(J;) < P so J,P/P is a component of Cy,(Q/P). As in the
preceding proof by Theorem 6.6, there exist K;, blocks or Q7 (2")-blocks of N
with J; > K;, 1 <i < r. Moreover, either J; = K; or K,;/0,(K)) = 4,, Q5,(2")
or Zy - Uy(3). From this it follows that [K;, K] =1, for all i # j. Now let
m;e M such that J,=J™,1=2,3, ..., r. Since J"™ 1 # J, [Jm !, K,]=1
whence [J, K] =1,i=2,...,r. Thus K}'c N{J) < N. Since J; < K; n K™
and K; <<N, K;=K7, i=2,...,r. Suppose (K, ..., K,> £ N so there
exists ne N, je{l, ..., r} such that [K], K;] = 1, 1 < i < r. In this situation

K = K;.C_ CG(<J1, ey Jr>) S M.
Furthermore, since K << N 2 F, by properties of F*, K is a block of M. Let
K* = <KM> S CG(<J1’ ey Jn>)

so K*< F< N. Since for each K; either K;=J; or K; is of known
type and since [K* J,]=1 by inspection [K* K,]=1.Thus
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K, = Ng(K*¥)= M and since J, << M, K, =J,. But now we may take
M, = N, contrary to assumption. This argument proves

(K, ...,K,><N.

Since Ng(J,) = N and Ny(J,) normalizes K,, (K, ..., K,> = <K}> is nor-
malized by M, contrary to M # N. This establishes (D.1).

Without loss of generality Ng(J) < M so as an immediate consequence of
(D.1) for R € Syl,(Cp(J/0,(J))) we obtain

(D.2) Re Syly(CalJ/0,4(1))).

It remains to prove J << < N¢(R). Letg € N4(R); we prove J = M?. IfU(J)
is abelian,

U()< Z(R)< Z(Q) and [J, Z(QF] < UU) < Z(R) = Z(RY < Z(QY,
whence

J < No(Z(QF) = M.

If U(J) is non-abelian, since R centralizes U(J) and [U(J), R]< U(J), R’
centralizes U(J). Thus [J, Rl = U(J) n C(U(J)) < Z(J)and so [J, R'] = 1 by
the 3-subgroups lemma. Since U(J)= Q, Q' # 1 and [J, Q?]<[J, R]=1,
whence

J = Ng(Q*) = M°.
In both cases J = M? and, since J < < M,

J<9 () M* A Ng(R) < Ng(R).
geNG(R)

This completes the proof of Theorem D.
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