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I. Introduction

In recent years Aschbacher blocks or constrained components have entered
the limelight in the theory of finite simple groups, not only in their connection
with pushing up theorems but also as a possible direction for revising some of
the classification program. In this paper the basic foundations are laid for a
theory of blocks closely analogous to that for ordinary components in M.
Aschbacher’s fundamental work [3]. Since the development and present status
of the theory of blocks is described in detail in the survey article [17] which
serves as an introduction to this paper, only the technical essentials are
repeated here together with some comments about the proofs.

DEFINITIONS. A subgroup J of a finite group H is called a block ofH if and
only if (i) < < H, (ii) J J’, (iii) J/O2(J) is quasisimple and (iv)J has a
unique non-central 2-chief factor; if H J, we simply say J is a block. For a
block J let

U(J) IOn(J), J] and LT(J)= U(J)/U(J) Z(J).

For any finite group G let

M(G) {J[ J is a block of N(S)where S Syl2(C(J/O2(J)))}.

If J, J2 are blocks which are subgroups of a group G, write J - J 2 if and only
if J

_
J2 with U(J) [O2(J2), J] and for some 2-subgroup T of Na(J2), J

is a component of C(T), where’ an overbar denotes the natural projection of
J2 onto J2/O2(J2). Extend via chains to a partial order on (G) and let *(G)
be the maximal elements under this order.

Say a block J is ofL 2(2m)-type if and only if J/O 2(J) L 2(2") and/(J) is the
natural 2-dimensional F2.L 2(2)-module for J/O 2(J) viewed as a module over
F2. Finally, say a subgroup J of a finite group H is an f (2")-block if and only
if (i) J< H, (ii) J J’, (iii) J/O2(J) - (2) L2(2m) L2(Em), and (iv)
J has a unique non-central 2-chief factor which is the natural 4-dimensional
F2-f (2m)-module for J/O2(J) viewed as a module over F2.
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The main theorems can now be stated"

THEOREM A. Let J be a block and let x be an involution in Aut (J); then x
centralizes a 2-element in J Z(J) and, moreover, if U(J) is abelian, x centralizes
an involution in J Z(J).

THEOREM B. Let x be an involution in thefinite group G, J a block ofCG(x), K
a block of G and assume the outer automorphism group of K/O2(K) is solvable;
then one of the following holds:

(1) J
_
K with U(J)_ U(K);

(2) K 4: rx and J Crrx(x)’;
(3) [J, K] 1.

THEOREM C. Let G be a finite group with a maximal 2-local subgroup M and
block J ofM such that M is the unique maximal 2-local subgroup ofG containing
J" then either M G or J M.

THEOREM D. IfG is afinite group ofcharacteristic 2 type and J is a block in
some maximal 2-local subgroup M of G, then J M(G).

THEOREM E. IfG is a finite group ofcharacteristic 2 type and J M*(G) with
J not ofL 2(2m)-typefor any m, then J is a block ofsome maximal 2-local subgroup
M ofG and M is the unique maximal 2-local subgroup of G containing J.

THEOREM F. IfG is a finite group of characteristic 2 type and J *(G) with
J of L2(2m)-type, then either

(1) J is a block of a maximal 2-local subgroup M of G and M is the unique
maximal 2-local suboroup of G containino J,
or

(2) J
_
K where K is an f(2m)-block ofsome maximal 2-local subgroup M

ofG and M is the unique maximal 2-local suboroup of G containing K.

THEOREM G. If Jx, J2 are distinct blocks with Jx- J2, then one of the
following holds"

(1) x g A., if2 A.+ 2k, and /(J,) is the irreducible constituent of the nat-
ural permutation module for Ji over F2, 1, 2;

(2) Sp2n(q)’, 2 f,+ 2(q), q a power of 2, n >_ 1, and C(J,) is the
natural FJi-module viewed as a module over F2, 1, 2;

(3) x U4(2), "if2 Z3" U4(3), and dimv 0(J2)= 12, dim O(Jx)= 8.
In the literature the blocks J with U(J) abelian seem to be of primary interest

so in Theorems A and C where the arguments handle the cases U(J)abelian,
U(J) non-abelian, the former is treated first for those who wish to skip the
latter case; indeed, Theorem A is trivial when U(J)’ 1 but since it tidies up
the proofs of Theorems B and C, it may be worth the inordinately large effort
required to complete the non-abelian case.



64 RICHARD FOOTE

Theorem B was proven by M. Aschbacher, K. Harada and the author in 1977
at the ongoing conference at Caltech that spring. Using an approach of R.
Gilman, Harada has proved this theorem without recourse to Theorem A.
The proof of Theorem C follows the argument of Aschbacher’s Standard

Form Theorem (specifically, Theorem 5 of [3]) although the endgame is differ-
ent. The presence of Theorem A makes matters smoother than the original,
especially when U(J) is abelian.
The remaining arguments generalize results of Aschbacher in [7] and [9] and

in some cases in our more general setting the arguments are easier. The main
technical difficulty is in the discussions related to the proof of Theorem G
where cores and standard form problems cause the grief. This could be swept
under the carpet by invoking the Unbalanced Theorem and complete solutions
to certain standard form problems but it seems clearer to maintain independence
from these Gargantuan tools.

I am especially indebted to Michael Aschbacher for some helpful conversa-
tions and correspondence and, in particular, for the crucial observation,
Lemma 6.1.

II. Preliminary lemmas

Throughout the paper we make constant use of the immediate consequence
of the 3-subgroups lemma: if X is perfect and [X, A, A] 1, then [X, A] 1.
Using this one verifies that for a block or (2")-block J and normal subgroup
A of J either A

_
Z(J) or U(J) A.

LEMMA 2.1. If J, K are distinct blocks or)(2")-blocks ofG then [J, K] 1.

Proof Let H O2(G), G G/H. By subnormality ofblocks, J, K are semi-
simple subnormal subgroups of G and J (JH)), K (KH)), so ff 4: .
Since J normalizes KH, J normalizes K and so acts on iT(K). Since K acts
irreducibly on [7(K), H centralizes O(K).

Suppose [J, K] 1. Then J commutes with the irreducible action of K on
iT(K) so ff centralizes O(K). Since [J, K]

_
O 2(K) and K/U(K)is semisimple,

[K, J] U(K). Thus [K, J, J]
_
Z(K) so by the 3-subgroups lemma applied to

K/Z(K), [K, J] Z(K). Thus [J, K, K] 1, so [J, K] 1 as claimed.
If [if, ] 4: ], then at least one of J, K is isomorphic to

(2")
and, interchanging J, K if necessary, we may assume there exists J 1, a compon-
ent of of type L2(2"), with [-il, K--] -1- and 7 1 x 2 with 2 - . Pick the
preimage J1 with J1 (J1 H)t). By the argument of the preceding paragraph
applied to J1 in place of J, [J1, K] 1. Because 0(J) is the direct sum of 2
natural F2, L2(Z)-modules for , U(J) [O2(J), J] - J. But then 72 centra-
lizes O(J), a contradiction.
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LEMMA 2.2. Let J be a block, V [O2(J), J].
(a) If V is abelian, V

_
fI(Z(O2(J))),

(b) If V is non-abelian, V’ ok(V)is elementary abelian, Cj(V)= Z(J).

Proof. (a) Note that because J acts irreducibly on V/V c Z(J),
[O2(J), l/’]

_
Z(J). Let J/V so ff is quasisimple and acts on V. For

] O2(), v e V, Iv, j-] z Z(J); thus for all x e J, [v’, j-] z so [vv, j-] 1.
Since V (vv[ v V, x J), V Z(O2(J)), as desired.

(b) If V’ 4: 1, since J O2(j) acts non-trivially on V/V’, J acts non-trivially
on fx(V/V’) so the non-central 2-chief factor of J lies in f(V/V’), whence
V/V’ t)(V/V’). Since V’

_
Z(J), V’ is elementary abelian.

Finally, [J, C(V)]
_
C(V) and as V’ 4: 1, V C(V). Since O(J)

_
Z(J) it

follows that J centralizes Cj(V) as claimed.

LEMMA 2.3. Let K be a block ofG, x an involution in G, J a block ofC(x), W
a subgroup of N(K) of order 4.

(a) IfK 4= K, then Ko Crr(x)’ is a block ofC(x) isomorphic to a central
quotient of K and the map k kk, for all k K, is a homomorphism ofK onto
Ko; either J Ko or [J, K] 1.

(b) FI,v(K) contains a fourgroup and if w is an involution in N(K),
Cx(w) Iz > 8 or m(Cr(w))> 2.

Proof (a) Suppose K K" so, by Lemma 2.1 [K, K"] 1. Let

KK"= KK/K c K,
so KK" - x -x and CK(x)- -. Let L be the complete preimage
of in KK" so, because is perfect and K K"

_
Z(KK"), L’= Lo is also

perfect; moreover, clearly Ko - Lo. However, [x, Lo] - Z(KK) so
Ix, Lo, Lo] 1, whence Lo - Crr(x)’ Ko. It is also clear that k kk is a
homomorphism of K into Ko whose image covers L. Since this image and Ko
are both perfect and agree modulo a central subgroup, equality holds as
claimed. Finally, suppose J 4: Ko so, by Lemma 2.1, [J, Ko] 1. Let y be an
odd order element of J. As y permutes the blocks of G but centralizes Ko, y
normalizes KK, and, since yl is odd, y normalizes both K and K’. For k e K,

1= [kkx, y] [k, y][kx, y]

so [k, y] K c Kx

_
Z(K). Thus [y, K, K] 1 so [y, K] 1 which proves

J O2(j) centralizes K as claimed.
(b) Let V U(K) so N(K) acts on V and m(V/V’) > 3. If V is abelian, for

every involution w N(K), m(Cv(w)) > 2 so all parts of (b) follow in this case.
Thus we may assume V’ 1 and since V’ is elementary abelian, by similar
reasoning m(V’) < 2.

Let T SyI2(K) with T normalized by W. If F ,w(T) has 2-rank 1 it follows
that every characteristic abelian subgroup of T is cyclic. Since T’ is cyclic by
Theorem 5.4.9 of [20], [/7(J), T] has order 2, so some subgroup To of T of index
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< 2 in T centralizes /7(J), contrary to T/Oz(J) acting faithfully on/7(J). This
proves the first assertion of (b).
Now suppose w is an involution in No(K) with m(CK(w))= 1. If

V </)1, /)2> Z2 x 22,

then we may assume v’ v, v2, v’ v2, whence c/<o>(w)l Cw)l. It
therefore suffices to assume V’ (v> Z2 and prove for any w, C(w)l >_ 8,
Let

C={aeV [a, w] e (v>}
so C/(v) Cv/v,(W). If c/<> >_ 8, it follows that Cv(w)l _> 8, as desired.
Assume Ic/<>l < 8, so Iv/v’l <_ 16 whence V/V’ - Ex6, K/O2(K) - As,
V -Qs YDs and Ic/<>l--4. Since Aut (V) E6 "02(2)and w is not a
transvection on V, there exists k K-O2(K) with k-Xw centralizing K. Thus
[Cv(w)l--ICv(k)l-- 4 and k CK(w) V, so C(w)l, _> 8, as needed.

LEMMA 2.4. If L A. is a standard component in G A.+a and V is an
irreducible F2 G-module in which [V, L]/Ctv,.(L is the natural modulefor L (i.e.
the non-trivial irreducible constituent of the n-dimensional permutation module
over F2), then V is the natural module for G.

Proof See [13].

LEMMA 2.5. Suppose H Z, n > 7, V is a faithful F2 H-module such that

[v, n’]/Ctv...(n’)
is the natural modulefor H’ (as in Lemma 2.4) and suppose t, 2 are involutions in
H-H’ with t a transposition; then either t2 is a transposition or

dim IV, t] < dimr IV, t2].

Proof. Let Vo IV, H’], V Cv(H’), f= VolVo c V. By 11.3 of [5],
H(. n’)l X if is odd. 2 if n is even. Note that t t2(mod H’)implies

[V, tt] [V, t2]. If n is odd, since i7 is self-dual, V Vo V, and in this case
if t2 is not a transposition, dim [Vo, t2] > 1 dim [Vo, t] as desired. If n is
even, IV: Vo + V < 2 and Vo c V] < 2. In this case if t2 is not a transposi-
tion, since n > 7 dimr [i7, t2] > 3, whence as dimr [Vo, t] 1,

dim,_ [Vo + V, t2] > dim [Vo + V, t] + 1,

which suffices to establish the lemma.

LEMMA 2.6. Let G be a group generated by a conjugacy class D of odd
transpositions with O(G)= 1 and G/S(G)- L2(q) or Sz(q), q 2m > 2; let
E G with E - E. Assume E#

_
D, E is tightly embedded in G and ifE ,..., E,

are distinct commutin# conjuoates of E, <E t, E,>.= E x x E,. Then
S(G)-- 1.
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Proof. Note that since D is a class and E*
_
D with m(E)> 2, G G’.

Proceed by induction on ]G] and let M be a minimal normal subgroup of G.
First consider M (z) - Z2. Let E T Syl2(G), E, E, the G-

conjugates of E in T, so, by the odd transposition property and our
assumptions,

(E,..., E) E x x E.
Note that E covers a Sylow 2-subgroup of G/S(G) and Sylow 2-subgroups of
G/S(G) are T.I.-sets, so

N(T) Na(E, x x e,).
Since E# _D and the fusion of elements of E* takes place in
N(E x x E,), by the T.I. property of E we may pick h N(T) c Na(E)
with (h)S(G)/S(G) a Cartan subgroup of, G/S(G). Sinc D is a class of odd
transpotions it follows that for all e E, e ,,ez. Thus for U G/(z), - is
tightly embedded in 6. Suppose z (E, E.)" write z e e, e E
and without loss of generality e E E, e =/= 1; h normalizes E and so
normalizes E2 x... x E,, whence

whr e =/= e,z Zh= eheh2.., e.
contrary to z having a unique expression in this direct product. Thus

<E,..., E,> E x x E,,

so by induction, S()= . Clearly G SLy(5) and since in Sz(8), e ez,

e E, z(8") is not generated by odd transpositions. These are the only pos-
sible perfect extensions of by Z2, so [M[ 4= 2.
Now M is an irreducible F G/O (G)module and by the proof of 4.1.8 of [28],

E acts quadratically on M. By Lemmas 2.1 and 2.5 of [30], k dimr C(E)
1/2dimr,_ M. By hypothesis therefore <EU> E x x E which is absurd in
view of <E>

_
EM, k > 2. This contradiction completes the proof of the

lemma.

LEMMA 2.7. Let H O2:l:n(2m), n >_ 2, m >_ 1, V the natural 2n-dimensional
F2m-module for H viewed as a module over F2 and let
G Aut (V)- GL2,m(F2).

(a) Ifn O (2), n’(n’, v)= 0 n’(n’, v*), v* the dual module to V.
(b) Let H - O(2m), T Syl(N(H)), To T c H’; then

T/To - Z2 x Z2k
where 2k[[m and there is an element f of T of order 2k which induces a field
automorphism on H.

Proof. (a) The case n 2 is 4.27 of [6] and 2.7 of [7]. Now the same argu-
ment as Lemma 2.2 of [29] yields the general result.
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(b) By the irreducible action of H’ on V, [CdH’)I is odd. It is clear that
since we are considering F 2-automorphisms such an elementfexists, and sincef
acts on H and ]H:H’ =2, T/To is at least as big as claimed. Since

H’ L x L2, L L2(2m), a Sylow 2-subgroup of Out (H’) is of type Z2 t Z2.
If T/To is not as described it follows that there existsf T withf inducing an
outer automorphism on L, an inner automorphism on L2 and with f2 To.
Replacingf byf a, for suitable a L2 we may assumef centralizes L2. Since
the cosetf L contains an involution which is a field automorphism of order 2
on L, we may assumef is such an involution. Now [V, f] admits L2 so since
V is the direct sum of two natural irreducible modules for L, IV, f] is an
irreducible 172 L2-module. Since C. 1(fl) L2(2m/2) commutes with the action
of L2 on [V, fl], C(f)’ centralizes [V, f] contrary to all odd order elements of
L’ acting Frobeniusly on V. This contradiction completes the proof of (b).

LEMMA 2.8. Let H Za" U(3) Z2 where H has a faithful irreducible 12-
dimensional module V over F2 such thatfor some involution t H H’, Cn(t) has a
component L U(2) and V has a unique non-trivial irreducible F 2 L-constituent.
Let

G Aut (V)- GL2(F2), T Syl2(N(H’)), To T H’, Z Z(H’).
(a) T/To Z2 or Z2 x Z2, tTo contains exactly two H-classes ofinvolutions

and if a, b are representatives of these,

Cn,(a Za x U,(2), Cn,(b Z3 x (SL2(3) t Zz/Z(SL(3) t Z2));
if T/To - Z2 x Z2, there is a coset uTo of order 2 in T/To with

uTo tTo but (u, H’)/Z - (t, H’)/Z,

tuTo contains exactly two H-classes ofinvolutions and ifc, d are representatives of
these, Cn,(c - E6, Cn,(d) - U3(3).

(b) If e is an involution in tH’, dim IV, e] 2 or 6.
(c) dimr, [V, L]/Ctv,.1(L)= 8.

Proof. Note that SU6(2 contains a subgroup H with the requisite proper-
ties so the situation is not vacuous, by Theorem 16.1.12 of [14]. Since Z acts
Frobeniusly on V, C C(Z) GL6(4)and N(Z)= C(f> wherefinduces an
involutory field automorphism on C.
The claims in part (a) are simply assertions about Aut (U(3)). Since

Out (U(3)) Da and only a fourgroup in Out (U(3))normalizes a 3-fold
cover (and since C.(H’)I is odd), T/To Zz or Z1 Zz. Note by the struc-
ture of Cnt) L, t is a reflection in H/(x)

_
O-g (3); moreover, by 15.1 of

[14], if T/To Z2 x Z2 there is a coset uTo 4 tTo with (u, H’)/Z H/Z. The
classes of involutions in the coset t(H’/Z) are represented by a reflection and a
product a a2 a3 of three distinct commuting reflections so the structure of the
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centralizers is easily computed. Finally, we may pick d in the coset tuTo with
matrix representation

0 1 0
0 0 1

acting on H’/Z in its usual matrix representation as U(3), (e.g. [25]) so
Cn,/z(d) Ua(3). Also, <d, H’>/Z

_
O(3) so it acts on the natural projective

module V. Thus there is one other class of involutions in the coset dH’ and if c
represents this class, IV, c] has Fa-dimension 4 and Witt index 1, whence

Z6.
To prove (b) and (c) we make use of Lemma 6.1 which asserts that L centra-

lizes [V, t] and V/Cv(t), so, in particular, does not act freely on V. Thus
centralizes Z and so H

_
GL6(4), dim, [V, t] 1 or 2. Since dim V/Cv(t)=

dim IV, t] and L acts on Cv(t)/[V, t] we must have dim, IV, t] 1 and since

dim, IV, L]/Ctv,.(L 4.

We may pick commuting H-conjugates a, a., a3 of with span {[V, a]li
1, 2, 3,} of dimension 3 over F#, whence dimF, IV, ala2a3] 3 and ala2a 3 is
an involution in tH’. This completes the proof of both (b) and (c).

LEMMA 2.9. Suppose n < G with n isomorphic to one of An, Spn(q), Un(q),

fn (q), Sz(q), q even, fn (q), q 3 or 5, F 22, F 23, F’2, or L 2(q) t An, q even >_ 4,

and assume H H’. If K
_
G with E e Syl2(K), E elementary abelian of

rank >_ 2, K O(K)E, K tightly embedded in G and K actint faithfully on H,
then IO(K) _< 3.

Proof Assume O(K) 1. Since m(E)>_ 2, there exists e E with
1 O(Cr,(e))_O(C(e)). Since K acts faithfully on H, by inspection
H Sp(q), U(q),Sz(q),F22,F2a,F’2,,H D+/- (q), (n, q) (2, 4), (4, 2), (4, 4), q

H L2(q) t An, (n, q) (1, 4), (2, 4). By Theorem 4.9 of [11] Heven,

3 or 5. Thus the only possibilities for H are An or A 5 -I. Z 2 and the result isq

easily checked in these instances.

LEMMA 2.10. Let G be a group oenerated by a conjulacy class D of odd
transpositions with G’ semisimple, let V be afaithful irreducible F2 G-module and
assume, for e D, C(e) has a component L such that V has a unique non-trivial
irreducible F2 L-constituent. One of the following holds:

(1) L An, G En+ 2, V is the non-trivial irreducible constituent of the nat-
ural (n + 2)-dimensional permutation F2 G-module, n >_ 5;

(2) L - Sp2n(Em)’, G - O2n+ 2(2m), V is the natural (2n + 2)-dimensional
F2mG-module viewed as a module over F2, n _> 1, m _> 1;
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(3) L- U,(2), G- Z3. U4(3)" Z2, dimv, V 12,

direr, [V, L]/Ctv,L(L 8.

Proof By the Main Theorem of [2] we may identify (G, D); the only in-
stances in which the centralizer of an odd tranposition contains a component
are when G/S(G)is one of the following" E,, O2,/ z(2m), O(q), q 3 or 5, Fz2,
F2 or Fz4; moreover, in each of these cases for e D, (e)< No(L),
(e) Sylz(Co(L)) and any proper subgroup of G containing (e)L is contained
in No(L). It is convenient to use Lemma 6.1 to see that L centralizes [V, el. Let
(7 be the semidirect product VG, so from these remarks it follows that [V, el(e)
is a T.i.-set in (7. By 7.11 of [8], L, G are one of the pairs described by conclu-
sions (1)-(3) so it remains to identify the module structure of V.

If G ,, by 7.10 of [8], V is the F2G-module described in conclusion (1).
Next assume G Z3 U,(3) Z2 SO Co(e) = (e) x Z x L, L - U4(2), and,

for each 3-subgroup T of C o(e), T has a subgroup A(T) T L of index < 3
in T with A(T)c Z= 1 and A(T) centralizing [V, e]. Let X= [V, L],
Y Cx(L W X/Y so W is an irreducible F 2 L-module. Let z be a 2-central
involution in L and since z the unique class of root involutions in L we may
choose g G such that e ez.
We show that [W, z] is a T.I.-set under the action of L. For suppose x L

and

[w, [w, zx] 4: o.
Let v [W, z] c [W, zX], v v i5 so there exists w [X, z] {0} and y Y with
wy [X, zX]. By Lemma 6.1 (or because X IV, L]), e centralizes X so
w IX, e], wy 6 IX, e"]. Let

Syl3(C.z(e))),

A2 (A(T)I T Syla(CLz(eX))),
so, since 03’(C(z))- SL2(3)YSL2(3), it follows that

A - SL2(3)YSL2(3) or Za x (SL2(3)YSL2(3)).

Moreover, because A centralizes Y and is generated by 3-elements, A centra-
lizes wY wyY , i= 1, 2. Because

(g) Z(O2(A1) and (z) Z(O2(A2)),
if z zx, H (An, A2) Ct.(z), so since Ca(z) has an intrinsic component of
2-rank 1, by inspection in U4(2) (or by Theorem 1 of [16]), necessarily H L.
Since 4: and L acts irreducibly on W, z z as needed to prove W, z] is a
T.I.-set.
By Proposition 1.3 of [30] and the irreducible action of L on W,

dimr W=8 and dim,[W,z]=2.
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If v Y c [X, eg], v = 0, then by Lemma 6.1, Co(v)
_

(L, e,/, eg) which, as
noted earlier, forces L =/, a contradiction. Thus [X, e] c Y 0 and so

dim, IX, e] 2 dim IX, z].

By Lemma 12.1.11 of [14] there are 5 L-conjugates of z which generate L,
whence dim,_ X < 10. Since z inverts an element t of order 3 in L, [V, t]
[X, t] has F-dimension < 4. Pick h G such that n q No(L) so by a previous
remark G (L, e, th); since X Cv(e), G normalizes Cv(e) + IV, tn], so Cv(e)
has codimension < 4 in V. Note also that since Z acts Frobeniusly on V, by
Clifford’s Theorem applied to Z(e), dimr [V, e] is even.

Since D is a class of 3-transpositions and L (D) has 3 orbits on D it
follows that we may pick f A such that G (L,f). Since G normalizes
X + [V, f], dim,_ V _< 14. If dim [V, e] 4, then as X =_ Cv(e) and
Y[V,e], dimX/Y<6 which is not true. Thus dim[V,e]=2,
dim V < 12 and, as above, since dimr,. X/Y 8, dim,_ V 12, as needed.

Finally, suppose G - On+ (2"), n _> 1, so Co(e) Z2 x Sp2,(2), and first
consider the case n= 1. Since L L2(2"), by 7.7 of [8] applied in
to the T.I.-set [V, eO](eO), where eO ((e)x L)-{e}, for suitably 0 G,
W [V, L]/Ctv,z(L is the natural Fz,Lz(2)-module for L viewed over F z.
Since Ha(L, W) 2", dim, [V, L] < 3m. Moreover, if is an element of L
of odd order, dim, [V, t] 2m. Let h G with tn q No(L); by inspection L is
maximal in G’ so (L, n) G’. Thus G’ normalizes [V, L] + [V, t], and since V
has a unique non-trivial irreducible F z L-constituent, G normalizes this space
as well. This proves dim V < 5m. If G O(2") L2(Z2’n)(e) where e
induces a field automorphism, by Lemma 2.6 of [30] dim V 4m and V is
either the natural F2,_,L2(22")-module or the natural F2,f2(2")-module for
G’; in the first instance, however, V would be a free F2(.e)-module and L would
have two non-trivial irreducible constituents, a contradiction. If

G = O(2) =~ Lz(2") t Z,
let G, Gz be the components ofG interchanged by e. For each i, V is the sum of
(more than one) isomorphic irreducible F z Grmodules, whence by Lemma 2.6
of [30] each of these is either the natural Fz,L(2")-module or the natural
Fzf (2*)-module, 2k m, so dim, V 4m. For E Syl(G), [V, E] and
Cv(E) admit Gz, whence the only possibility is dim,,[V, E] 2m
dim** Cv(E). Since E acts quadratically, V is the sum of natural F z, Lz(2")
modules for G and for G] Gz. Thus if W is such a natural module over F
V - W (R) , W as an F G-module, which is the natural module for O (2"), as
desired.
We have already treated the ease G- O(2) Es. Consider the case

G Og(2); so Ct;(e)=.(e) x L* where L* E. 6and we maychoose 0 Gsuch
that L* L(e). By 7.10 of [8] applied to L*, dim, [V, L]/Ctv,t,](L 4 so by
11.3 of [5], dimr [V, L] _< 5. For a 3-cycle in L, dim [V, t] 2. Let h G
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with h 4 NdL), whence G’= (L, h) so G’, and hence also G; normalizes
[V, L] + [V, th]. This proves dim V < 7 and since L centralizes [V, e] and
V/Cv(e) it follows that e induces an F-transvection on V. Thus dim V 6
and V is the natural F20(2)-module for G.

Let G - O+(2m) O(2), n > 2, and proceed by induction. Let n be the
centralizer in G of some hyperbolic plane chosen so that e H and H O (2).
Since n’ 2,(2m), by Lemma 2.7, V Vo V where Vo [V, n’],
V: Cv(H’), and by induction Vo is the natural module. If e does not centralize
Vt, let v [V, e] {0}; then Co(v)

_
(e, L, H) G, a contradiction. Thus

dimn,_ IV, e] dimn,_ [Vo, e] m.

Let hx, h2 G with G (H, ehi, ehe), whence V Vo + IV, eht] + IV, eh2] has
F2-dimension _< (2n + 2)m. Now V (R), F2, is isomorphic as an F2 G-module
to a direct sum of m copies of V; also Vo (R)2 F2, is the direct sum of m natural
F2.O,(2m)-modules for H. Thus if V (R),_F2, Ut "’ Um is a Krull-
Schmidt F2. G-module decomposition, since H acts non-trivially on each Ui,

Ui In W T where W is the natural F2,02n(2m)-module for H and T is a
trivial module. Because e centralizes Vt, e centralizes T and so e induces a
F2,-transvection on U, 1 < < m. As an F2-module, therefore, each U is the
natural module for On+ 2(2m), as desired.

III. The Proof of Theorem A

Throughout this section let J, x be as given by the hypothesis of Theorem A,
let V U(J), Z V Z(J) and let J(x) J(x)/O 2(J(x)). We may clearly
assume O(J)= 1.
We first dispose of the case when V is abelian, that is, (by Lemma 2.2) when

v =__

Let P be a subgroup ofJ ofodd prime order with P normalized by , where the
Baer-Suzuki Theorem [1] is used if q: T. Thus x normalizes V, P] and so has
a non-trivial fixed point therein. Since IV, P] c Z(J) 1 and V is elementary
abelian, the result holds in this case. Henceforth it is assumed that V’ q: 1.
The following lemma due to J. G. Thompson facilitates the proof ofTheorem

A.

LEMMA 3.1. If t is an involution actin9 on a solvable oroup S with

c (t) =_

then inverts a T-Hall suboroup of S.

Proofi First note that ifu is an involution acting on a solvable group H with
n O2,,(n) and u inverting n/o 2(H), then an easy induction on HI shows u
normalizes (hence inverts) a 2’-Hall subgroup of H.



COMPONENT TYPE THEOREMS 73

Now let G S(t) be a counterexample to Lemma 3.1 of minimal order and
let G/O2(G). If Co(i is a 2-group, i inverts O()and since /O()acts
faithfully on O(), has a normal 2-complement (which is inverted by i); in
this situation, by the initial paragraph G is not a counterexample. Thus there is
a subgroup P of G of odd prime order with

_
Co(i), whence

G 02(G)P(t) 02(G)P.
Moreover, (t, P) is also a counterexample so G (t, P). In particular, if
H O2(G), H (t’) so H’= $(H) and H/H’ is a cyclic F2 P-module. Let
K [H, P] so K/cp(K) is a direct sum ofnon-isomorphic F 2 P-modules. Thus if
f Cn(P) with f-= (mod K), H K(f> and [K, f]

_
$(K). Since t and P

commute in their action on Z(K) and [Z(K), P] Z(G)= 1, P centralizes
z(r).
We now prove K has class 2. For suppose A is a characteristic abelian

subgroup of K and let W [tat(A), P]. Since W c Z(G) 1, WW* W x W*
and since centralizes D {wwt[ w W}, D

_
Z(G). Thus WW WD admits

(t, P) and so is normal in G. However t is conjugate in (W, t) to every
involution in (WWt)t, so G/WW is also a counterexample to the lemma. By
minimality of G, W 1, i.e. P centralizes every characteristic abelian subgroup
of K. By Lemma 5.17 of [27], K is special. Let gs" K/K’ --, K’ by bAk) [k, f].
It follows that $, is an F2 P-module homomorphism. Since K/K’ is a Frobenius
F2 P-module and K’ is a trivial module, Hom2e(K/K’, K’)= 0, whence
[K, f] 1. However, kf, for some k K and since t centralizes k, k Z(G);
but then t centralizes K, the desired contradiction.

Continuing the proof of Theorem A, we proceed by induction and assume
J(x) is a counterexample of minimal order. It will be necessary to establish a
number of properties of J(x) before utilizing Thompson’s lemma in a setup
where a contradiction can be reached.

First observe that x centralizes Z(J). For otherwise there exist z t, z 2 Z(J)#
such that z lxzt xz2 with Ix, z2] 1. Putting J J/(z2), the minimality of
J forces the existence of a 2-element J with " $ Z(?)and [t, x] (z 2). Since
either or tz centralizes x and neither lies in Z(J), we have the desired
contradiction.
Next suppose for some subgroup P of odd prime order in J, centralizes .

Then Vo [V(x), P] admits P and x. Let x Vox with [x, P] 1 and let
Zo Vo Z, so x and P commute in their action on Vo/Zo. Let Q

_
Zo with

Q/Zo Cvo/zo(X), so Q admits P with Q/Zo [Q/Zo, P] =P Zo/Zo. Since
x _= xl (mod Vo), [Q, xt]

_
z0. As in the proof of Lemma 3.1 the map

Q/Zo --, Zo, [q,
is an F2P-module homomorphism and since Homt2e(Q/Zo, Zo)=0,
[Q, xt] 1. Now let v Vo with x vxt. Note that v2, x2t Zo, whence

1 x2 v2x2i[v, x t],
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and so [v, x] Zo, that is, v 6 Q. Since x centralizes Q, Ix, v] 1, so v Zo.
But then x centralizes Q, contrary to Q g Zo. This proves C() is a 2-group.

Let P be any subgroup of J of odd prime order p inverted by x (such
subgroups exist by the Baer-Suzuki Theorem), Vo = [V, P], Vt Cv(e). By
arguing as in the previous paragraph with xt 6 Vt and q Vo, we obtain
[Vo, V] 1. Let

Vo /V’o E22,, V’o ’ E2m

and let Q be the complete preimage in Vo of Cvo/v6(x), so as x is free on Vo/V’o,
Q/V’o Ez, and Q/V’o [Vo/V’o, x]. We show Q is abelian. If a 6 Q, v 6 Vo and
z [a, v], then

z zX= [ax, v] [azt, vX] where zt= ix, a-t] 6 Z;

so [a, v] [a, v’], whence [a, vvx] 1. Since Q (Z c Vo, vvX[ v Vo), a cen-
tralizes Q, for all a Q, as desired. Now for a Q-V’o, (Q, V’o, v) Cv(a)
and so

V’Cv(a) <_ 2".

This means A [V, a] has order at most 2". Let ? J/A, so Y is a block and
since P acts non-trivially on fi 6 Z(O,_(J)), the non-central 2-chief factor for L
namely 1/2, lies in Z(O z(Y)), whence V’ A by Lemma 2.2(a). In particular,
V) V’= a so m _< n. However, [Q, x] __. v so 2m >_ I[Q, x]l Q" co.(x)1,
and as Co(x V’o, [Q’Co.(x) 2", whence n < m. This proves m n and
since

Vo" Cvo( ,)l 2z",

x is conjugate in Vo<x> to every involution in Vo x. Thus every element ofQx
is an involution, x inverts Q and Q Z x x Z, (n copies).
By considering 3 J/V’o as above we obtain V’

_
V’o and so V’o V’=

We next show x centralizes Vx/Z. If v V and v] v (rood Z), it follows
that u va v has order 4 and is inverted by x. However, u V’ so there exists
v s Vo such that v- axv xu, and therefore uv Cs(x), contrary to uv Z(J).
Now let N Na<>(P) and note that N acts on both Vo and Va. Let

x S Syl(U) and R S c Cs<,,>(P).
We first show R centralizes Vo. If not, pick r R C(Vo) with r, [r, x] C(Vo).
For q s Q,

[q, r]X [qX, r] [qz, r[r, x]],
where z q2 e Z; so [q, r] [q, r], proving [q, r] Z. Thus [Q, r]

_
Z and so

[Vo, r] [Qe, r] Z.

See the remarks at the end of this proof.
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As usual, r induces an F 2 P-module homomorphism from Vo/V’o to Z, whence
[Vo, r] 1, as claimed. Note that if y is an odd order element ofN centralizing
Vo Z/Z, then [x, y] centralizes V/Z so [x, y] O 2(J), whence y 1 in view of
C() being a 2-group. Now if Sylow p-subgroups of J are not cyclic, there
exists X

_
N with P

_
X and X Z, x Z,. Since X is faithful on Vo IV’o, by

Schur’s lemma there exists y X such that 2n > dimr [Vo/V’o, y] > n. Let
v Cvo(y Z, so as usual v centralize [Vo, y]. But

C,,o(V)
___

[Vo, y], v’>
and the latter group has order exceeding 2", contrary to IV0, v]l
V’] 22". This proves that Sylow p-subgroups ofJ are cyclic, and, in particu-

lar, N contains a Sylow p-subgroup of J. Next we show S R(x). If this is not
true, since SIR is cyclic, there exists s S with s2 x (mod R)and, of course,
[s, x] centralizing Vo. Then for all q Q, [q, s] [q, s], so [Q, s]

_
Vo

z=V’o. Also, for qQ-Z and vVo if z=[q, v], then z=[q, v] so
[q, vv] 1 which gives

IVo, s]
_

Cvo(q)= Q.

But then s acts as an involution on Vo/V’o contrary to S2 acting identically to x
on Vo/V’o. Now let M Cs(V/Z). Since R centralizes Vo, acts faithfully on
V/Z, so R M 1. Thus () is a Sylow 2-subgroup of M. Note that C()
therefore covers N/M so O2()_ and has a Hall T-subgroup which is
inverted by . Since P was arbitrary subject to being inverted by x (and by
properties of involutions x inverts an element of order p for each odd prime
divisor p of MI), applying these results to each odd prime divisor of lMI
gives that M has a cyclic 2’-Hall subgroup P* inverted by x and P* is a Hall
subgroup of J. Let 1 P

_
P* so [V, P] Vo. Byarguing with P in place of

P, x acts trivially on Cwz(P)so [V, P] Vo. Note that [R, x] centralizes V/Z
so [R, x]_ O2(J). Also, [R, P] centralizes V/Z so [R, P]_ O2(J N
VZ(J), hence

JR, P,] [R, P,, V,] 1.

Since P was arbitrary, R Syl2(Cz<>(P)), for all 1 =/= P_ P*. Finally, if
x S, for some J, then as Cz() is a 2-group, inverts , so x xr, for
some r R; but then x is free on Vo/V’o and since dimr [V/Z, x] n, x
centralizes V/Z, so f 1, i.e. x.

In summary, J, x satisfy the following"

(1) x is an involution acting on J with C(x)_ 02(Z(J));
(2). if P is a subgroup of J of odd prime order p inverted by x, then
(a) Sylow p-subgroups of J are cyclic,
(b) N<>(P)= (R x P*)(x), where P* is a cyclic Hall subgroup of J in-

verted by x and R Syl2(C.<>(Px)), for all 1 =/= P
_

P*,
(c) JR,
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(d) if x R(x), for some # J, xx O(J).

Although one would expect an easy contradiction at this point it seems that a
considerable amount of elementary argument is yet required and that the best
course is to consider all groups J satisfying (1) and (2) (not just for J a block).
The final contradiction will be immediate once we have established:

(,) If J, x are any pair satisfying (1) and (2), then J(x)= 02(J)H(x),
where H is a cyclic 2’-Hall subgroup of J inverted by x.

To prove (,) we proceed by induction and let J be a counterexample of
minimal order. Note that every proper subgroup of J(x) containing x satisfies
(1) and (2) so these are described by the conclusion of (,). By Lemma 3.1, J is
not solvable so by minimality of J, J J’ and J/S(J) is simple. Moreover,

s(J)(x>

where H is cyclic and inverted by x. Let J(x) J(x)/O2(J(x)) SO ff is quasi-
simple. Since Nj<x>(H)covers ff and contains x, by minimality of J(x),
H < J(x). By Frobenius’ normal p-complement theorem together with
property (2a), H 1, so J is simple. Note that_Cj() is necessarily a 2-group so
we may pick T Syl2(J(x)) with Cj--US(

_
T.

Let -be any involution in Z_) and let be a maximal subgroup of J(x)
containing Cj--()= o. If Mo , by a result of Baumann [12], L2(q),
Ua(q), Sz(q), La(q), S,(q), q 2" or L2(q), q 2 + 1. As C_()is a 2-group, by
Lemma 2.10 of [12], induces inner automorphisms on J; but then in every
case x lies in a proper subgroup of J(x) which does not satisfy the conclusion
of (,). Thus o :/: - so we may write M 02(M)n(x) where n is a cyclic
2’-Hall subgroup ofM inverted by x and Ho H M0 is a 2’-Hall subgroup
ofMo. Since Cj<x>(no) covers Cr-(0) we may assume [t, n0] 1, whence by
(2b), It, HI 1, H is a Hall subgroup of J, H Ho and M Mo. For any
1 :/: P

_
H, Nj<x>(P) covers N() so by (2b), (2c) and the fact that

C-5(
_ - and Cj-US( ,

N(ff)
_ . Finally, if x M, for some e J, inverts so by properties

of involutions there exists m e O2(J(x)) such that xom inverts H; then there
exists hH such that xomeT. By property (2d) = so

#mh Cj-us(Yc
_ -, whence . Thus x M/M and, by the struc-

ture of M, x T,0 e T.
Now if N is any proper subgroup of J(x) containing T, then / is 2-

constrained" for otherwise some odd prime order subgroup P of N inverted by
x would have [02(), if] ; but then since C,>(P)covers Cj-(-P), (2c)
forces to centralize O2() and since O2(N).__(J:), a previous argument
applied to i gives a contradiction. Secondly, ifN is any 2-local subgroup of
J(x) containing , then either __. or I 1) 2, for some a. For as
x lies in a unique Sylow 2-subgroup of J(x), N T Syl2(-); suppose some
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odd prime p divides Wl and I[ and let P be a Sylow p-subgroup of N
inverted by x. Since Sylow p-subgroups of J arc cyclic, there exists 9 J such
that P

_
M; and finally, as x Nx(P)_ M, O M so

N (N T)Ns(P)_ M, as claimed.
Now suppose there is an involution - in Z()with CiUS() M. Let

The arguments using t also apply to show that M 1, M 2 are maximal subgroups
of J(x)and, by the previous paragraphs, M, M1, M2 are 2-constrained 2-locals
with [ [2,, [1 [2,, [2 [2, pairwise coprime. Thus for two of these subgroups,
say M, Ma, 3 [[, [-1 [. Since Z(7) . or -1, by the Thompson factori-
zation Lemma 5.54 of [27] one sees that J(-) and 1, contrary to M, M
being distinct maximal subgroups. This shows Cs(I(Z())).
As before, if x inverts some subgroup of odd prime power order p and

p [M[, then
_ . If (u) is a subgroup of 2-power order inverted by x, then

u M" for let u be of minimal order with respect to u M; then u2 6 M and
xu2 x M so u 6 M, a contradiction. Now for all g 6 J, x inverts [, x] so
since J [J, x] M, there exists Q of odd prime order q inverted by x and
q [M[. Let No Ns<x>(Q), S SyI2(C<x>(Q)). If i, then () is a Sylow
2-subgroup of N-T(). Since Sylow q-subgroups ofJ are cyclic but J does not
have a normal q complement, <> Syl2(Ns-(_.)), that is, . However, J<x>
cannot be simple, otherwise by Thompson’s transfer lemma [5.38 of 27] there
exists # 6 J such that x 60 2(-), whereas no such # M exists. This argument
proves S 4:1 so let N be a maximal (2-local) subgroup of J(x) containing

Wc first show N contains T. In any case since T is the unique Sylow 2-
subgroup of J(x containing x, To T c N Syl2(N). Let Q* be a T-Hall
subgroup of N inverted by x. Assume To T and let a Nr(To)- To with
a2 To. If is not 2-constrained, by (2b), (* x 02())(, and by
maximality of and the fact that centralizes 02() by (2c),

i.

This forces O2() g Z2. Since Nr-()= x (2> has order 4, Z()=
has order 2 and i 6 {, g} where S (g). As noted before, is not central in T
so i and a i. This, however, contradicts property (2d) applied in N(H)
and so proves that is 2-constrained. Since Z()_ Z(O 2(-)) but , Q*
acts faithfully on Z(O2(N)). If 1 2"1>3 it follows that J(o)--<
and so N(J(To)), a contradiction. It remains to treat the case_when
1(2" 3 and no non-trivial characteristic subgroup of To is normal in N. By a
result of Glauberman [9], has exactly one non-central 2-chief factor which
lies in ft(Z(O 2())), hence equalsW [fx(Z(O 2())), *]. Since* acts non-
trivially on the Frattini quotient of O2(), i7i7 (O2(-)) whence

O2()=Wx, =Cro(Q*), Wzzxz2,

W(x)D8 and [,]=-f.
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Since "= T, [[ < 8, and since 8 normalizes Z(), if S is abelian,
S[ 2. Recall that t is an involution in Z(-) c Z(o) and t S; moreover, by

property (2d) applied in N(H), -i, so i W. Let Z(S)= <s>, iV <, a>
where W Z(To), so = and i . If IS[ 2, go g Ds x Z2 and neces-
sarily a= W, contrary to N(S-) not containing a Sylow 2-subgroup of J<x>.
Thus [’[ 8 and W. Now X inverts * and so Xa= "w. Thus Xra-,
so with aua-k for suitable k chosen in 02(J<x>) so that xg normalizes {2*
one sees that property (2d) is violated in N<x>(Q*). This contradiction proves
Tcc_N.
As decided earlier since T c_ N, N is 2-constrained so

Moreover, Cz.(Y) and since for every involution i in , C-u__>(i ,
* [*, *]. Thus acts freely on * and so i, for each 6 #. It
follows that (2d) is again violated in N(H). This contradiction completes the
proof of (.) and hence also of Theorem A.

Remarks. The referee has observed that at the indicated point the following
alternate argument shortens the proof of Theorem A.
By the same argument that showed m <n, QZ Z(Cr.z(y)), for all

y QZ z, so QZ/z Q* is a TI-set in VZ/Z V*. Now let X CQ*) c
C(I/*/Q*) and form the semidirect product, H, of i7 with V*; let
W XQ* H. From the TI property of Q* it follows that W is an elementary
abelian TI-set in H and since Q* [v*, x], X. By [8] the members ofX*
are root involutions in and is described in [8] or [28], whereas by [8] or [28]

O2(), for some - c__ with - not a 2-group, contrary to Lemma 3.1.
The author has listed his longer but more elementary proof in order to avoid

using the deep results of [8] and [28]. Since the principal application for
Theorem A is in the proof of Theorem C it seems desirable to maintain such
independence, for, as noted in [17], if one uses the classification of characteristic
2 type groups in which a maximal normal elementary abelian 2-subgroup of
some maximal 2-local is a TI-set (which relies ultimately on [28]), the proof of
Theorem C in characteristic 2 reduces immediately to the "easy" case when
U(J) is abelian.

IV. The proof of Theorem B

Throughout this section, G is a minimal counterexample to the assertion of
Theorem B, so G=(K,J,x). Let L=(KG)=K1YK2Y... YKn with
K K1. The proof proceeds in a series of steps.

(4.1) O(G) 1.

For it is easily seen that G/O(G) is also a counterexample.

(4.2) Z(G)= 1.
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For ifz is an involution in Z(G), let O= G/(z); then ICd) Cdx)l < 2 so
is a block of Cg(). It follows that is also a counterexample so by minimality
we must have Z(G)= 1.

(4.3) n>l.

Suppose to the contrary n 1 and let V U(K), -d G/V. If J centralizes V,

[j, Iq =_ c (v) =_

so [J, K, K] 1 whence by the 3 subgroups !emma, [J, K] V. But then
[K, J, J] [V, J] 1 so the 3 subgroups lemma shows [K, J] 1, a contra-
diction. Since J does not centralize V and J O(J), by the P Q lemma J
does not centralizes Cv(x), from which it follows that__U(J) V.
By assumption J induces inner automorphisms on K and since J K there

is a perfect normal subgroup E of KJ with KJ KYE. Because E commutes
with the irreducible action of on O(K), E centralizes O(K). Thus [K, E,
E]
_
Z(K) so by the 3 subgroups lemma, [K, E] __%_ Z(K); another application

of this lemma gives [E, K] [E, K, K] 1. Thus E K
_
Z(K) and since

Z(G) O(G)= 1 and G EK(x), Z(K)= 1, EK E K and E is quasi-
simple. Now [K.I, x]

_
K so [E, x]

_
C(K) K 1. Since E < G and E is

quasisimple, [E, J] 1. But then E is centralized by (K, J, x) G, which is
absurd. This contradiction establishes (4.3).

(4.4) x normalizes each K.
For ifK’ Ki, 4: j let Ko Cr,r(x)’ so by Lemma 2.3, Ko is a block of C(x).
Since G is a eounterexample Ko :P J so [Ko, J] 1. But by Lemma 2.3
[K, J] 1 and so K

_
(Ks<>)

_
C(J), a contradiction.

(4.5) Z(L)= 1.

Notice that Z(L)= Z(Ka)Z(K)... Z(K.) and Z(L)is a 2-group. Suppose
Z(L) v 1 andleti7 G/Z(L),so-E ’g K--’-.. Since Z(G) 1, J Land
J acts non-trivially on Z(L). Because J 0(.I), by the P Q lemma, J acts
non-trivially on Czu(x), hence U(.I)_ Z(L). By Theorem A there exists a
2-element in Cx(x) with . Since J permutes the transitively and n > 1,
does not centralize (/’); so since 2 is quasisimple, J [, ]

_
Z, a contradic-

tion. This also proves"

(4.6) U(K) is abelian and L K x K2 x X K..
Now let V U(K,), V Vx x... x V., A, Cv,(X), B, [V, x],

A=A x...xA., B=B x...xB.,
so A

_
B and A/B (A/B) x... x (A,,/B,,). Since J acts non-trivially on

A, U(J)_ A. If B 1, J acts non-trivially on B and if A # B, J acts
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non-trivially on A/B. Since A Co(x), AJ has a unique non-central 2-chief
factor so either B 1 or A B. We argue that the former equality holds, so
assume to the contrary A B. This means x acts freely on each V and so is
conjugate in (V, x) to each involution in Vx; by a Frattini argument there is
(a 2 element) Cr(x) with V1. As before, however, J

_
[J, t]

_
L contrary

to n > 1. Indeed, a similar argument shows Cc,(x)
_
V so in summary we have

(4.7) U(J)_ V and Cr,(x)= V, l <i <n.

The latter equality means [K, x]
_
K m C(V) 02(Ki) and so"

(4.8) x centralizes Ki/Vi, 1 < < n.

Now let H Nj(K), so
any non-zero F2 H-submodule of V and At Vt and A, B J-conjugates of
these for > 1, one easily sees we must again have At B, that is,

(4.9) H acts irreducibly on Vt (and non-trivially since Vtl > 2).
Let M KH, - M/C(V ), U V, U* V (x) and C().
(4.10)

For since E commutes with the irreducible action of K on U, E is cyclic ofodd
order. Suppose () =/: T, whence U [U, ]. But then U* [U*, )] x

Cv.07 and since 35 centralizes U*/U, 2. Since (7), fixes
Cv.()). However, H has a unique non-trivial fixed point on U*, namely x,
hence (x) Cv.(). But then [x, K] 1, contrary to (4.7).
Now let Pbe a minimal normal subgroup ofH chosen, if possible, within K.

By (4.9), [U, P] U and so Cv.(P)= (x). Since Cx(x)_ U and P fixes x,
P K and so we must have H c K 1. Since therefore H induces outer
automorphisms on K, by assumption H is solvable so P is a p-group for some
odd prime p. If l I 1, let= Cx.._(-) - i, whereas if p , I 1, let be a Sylow
q-subgroup of K normalized by P, for some odd prime q dividing I 1. In any
case,

u, [u*,
both factors admit P, and ] U. Since has a unique non-trivial fixed
point, x, on U* and x U, we must have x Cu.(-). This aain contradicts
(4.?) and so completes the proof of Theorem B.

V. The proof of Theorem C

Throughout this section G, J, M satisfy the hypotheses ofTheorem C and set

D (jM) ji YJ2 Y YJn with J J.
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Proceeding by way of contradiction assume M :/: G and J M; thus
O(G) 1, n > 1, and for any 2-element of M* centralizing J, for some i,
Co(t)

_
M. Also, since m(J) > 1, O(G) M and so [O(G), D] 1.

The proof proceeds in a sequence of lemmas, the first of which explores the
action of tightly embedded subgroups on blocks.

LEMMA 5.1. Let K be a block, 1 4: T a 2-oroup actino on K with T c K 1,
T Syl2(P) where P

_
TK and P is tiohtly embedded in TK. Let

T
_

S Syl2(TK) with Ns(T Syl2(NrK(T))
and assume IT] _> INs(T): T]. Then IT, K] 1.

Proof. Note that if IT, K]
_

O(K), then since O(K)
_

Z(K), IT, K, K] 1
whence IT, K] 1; thus we may assume O(K)= 1. The hypotheses of the
lemma are set up so that Theorem 3 of [3] applies directly. Let W be the weak
closure of T in S with respect to K so we conclude W

_
TK and one of the

following holds: (a) W T; (b) W T x T’ Ns(T), for some x K and
W’-- 1 (note that since s/wl > 2, conclusion 5 of Theorem 3 is impossible).
Since (a) is the assertion of the lemma, assume by way ofcontradiction that (b)
holds and let V U(K). Since W

_
02(TK), 1 :/: [W, K]

_
O2(K), so V

_
W

and hence V is elementary abelian. Let

TK TK/W TK/CrK(W).
For any involution g in , W T x T so W c K [W, g]_ V, whence
V= [W, Yc] Cw(YO. Since centralizes V, Oz()_ Z(). Let Q be a
subgroup of K of odd prime order, so [Q, x]

_
v. Thus W [W, Q] Cw(Q),

both factors admit and 1 6: [W, Q]
_

v. But centralizes [W, Q] and

dimr Cw(Q) Cw(Y) < 1/2 dim Cw(Q)
so cannot act freely on W. This contradicts a previous remark and so estab-
lishes the lemma.

LEMMA 5.2. J is not tiohtly embedded in M and, in particular, 0 2(Z(J)) 1.

Proof Since n > 1 and M ’(Ji), 1 < < n, J is tightly embedded in M if
and only if J is tightly embedded in G. Assuming this to be so, suppose
O G N(J) and J c N(J) has even order. Let T Syl2(J c N(J)),
P T(Jg c J) so T Syl2(P) and P is tightly embedded in TJ. From the
symmetry between J and J it follows that T [Nr,(T): TIz so the hypoth-
eses of Lemma 5.1 are satisfied. The conclusion gives [J, J] 1. Since 0 was
arbitrary in G N(J), Theorem 1 of[4] asserts that either J

_
G, (J) has a

strongly embedded subgroup, or J has abelian Sylow 2-subgroups, all of which
are impossible. This proves J is not tightly embedded in G or M and since for
> 1, J c Ji

_
Z(J), Z(J)l is even, as claimed.
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For the remainder of this section let Z fI(O2(Z(D))).

LEMMA 5.3. If W is a fouroroup in M such that for some 0 G- M,
Cn(w)

_
M, for all w W#, then Wnormalizes each J.

Proof. Suppose the lemma is false so that with suitable renumbering
J JE, for some x W. By the proof of Lemma 2.8 of [3], since
J1 02(j1) M, Nw(J1) 4 1. Let

(y> Nw(J), K Ca,a2(x)’.
By Theorem A, Ca(y Z(J) so 1 : [Ca(y), K]

_
Ma. Again J M whence

V(J) [C(y), K]. Since a(J) acts on Za we may pick z e Z with z centraliz-
ing (V(J), x), so z CG(U(J)) M, and J. J, i= 1, 2.. Let V [z, K], so
U
_
Z. Notice also that [z, J]

_
Cj(U(J)) so if U(J) is non-abelian

C(U(J)) Z(J) and it follows that [z, J] 1; since CG(z)
_
M, this is impos-

sible, i.e. U(J)’ 1.
Firstassume U lsosinceKis ablockin C(x), U U(K).Letj J O2(J)

with j2 O2JJ) and let J/C(U(J)). Since j-inverts an element ofodd prime
order in J, Ca(j) Z(J). By definition of K, U(J)_ U’U(J2)and, U(J2)]= 1, so j must have a non-trivial fixed point a on U. Then
j e C(a)

_
M so J , K] c_ M, again a contradiction.

Thus [K, z] 1, so for every j J, 1 [/jx, z] [/’, z][jx, z], so

[j, z] J jx Z(J).
It follows that J

_
C(z)_ M, the final contradiction.

LEMMA 5.4. n 2.

Proof. Assume to the contrary n > 3.

Suppose first that for all g G M, Jg c M is odd. Then for x an involu-
tion in J, xg 6 M :, g 6 M; also if x x C(x)and y xx 1, then since
n>3 and x’eJ, for some i, y centralizes Ji, j 6 {2, 3, n} {i}, so
CG(y). M. Suppose y 6 M:,# 6 M, for any such product y; then by
Theorem 3.3 of [3] (since (J) is perfect), (x) has a strongly embedded
subgroup, which is easily seen to be false. Thus for suitable y xxm and
# G M, y 6 Ma. Since n > 3, y centralizes a fourgroup W of D such that
C(w) M, for all w 6 W#. (This follows from Lemma 2.3 and Theorem A
although it is easy to verify directly.) By Lemma 5.3, W normalizes J and so
clearly J Mgl2 =/= 1, contrary to assumption.

Pick 6 G- M such that J M has even order, let T be a 2-group in
Ja M ofmaximal order subject to (jT =/= D and let T

_
T* Syl2(Ja M).

Note that n _> 3 implies T # 1. Let Q be a T-invariant Sylow 2-subgroup of
(jr) c M. Since n > 3, re(Q) _> 2 (again, use Lemma 2.3 and Theorem A or
direct argument), so by Lemma 5.3 applied to #-1, fll(Q) normalizes Jg. Thus
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m(T*) > 2 by Lemma 2.3(c) and so fx (T*) normalizes. J. Finally, by Theorem A,
T* Z(J), (2 J Z(J).
Let R N(T); we show R Q. Note that as Q T 1, TR T x R. If

xeN(RT)-R, then TcTT"_RT, so To=TT"RI. SincexM
and n > 3, To centralizes J, for some j, which is incompatible with To -Q
centralizing J, for some i. Thus R Q and since Q J z(J), (jr} j. By
maximality, T* T. Let P T(J J). From the symmetry between J and J
we may assume

ITI-> INTAT): TIz.
By Lemma 5.1, P is not tightly embedded in TJ so there exists x J Ns(P)
with IT c TXl even; note that x e M. If r r, since r Z(J), x would
normalize ja, hence also P, a contradiction. Thus Tx jo j, for some _> 2
and so (T, Tx) TT" is a 2-group properly containing T. By orders,
To TT J =fi 1, a contradiction as before. This completes the proof of the
lemma.

LEMMA 5.5.
fouroroup.

There exists h e G- M such that jh No(J) contains a

Proof Let A, Syl2(J,), AxA2 - S Syl2(G) with S c M SyI2(M). Note
that A A2 is strongly closed in S M with respect to M, m(Ai) > 1, Ai is
neither dihedral nor quasidihedral, M :/: G and (A) does not have a strongly
embedded subgroup. By Lemma 3.4 of [3] therefore, there exists a s A i, 9 G
such that

a Ns(Ai) (Ax w A2).
In fact, if b is the involution in (aO>, b A w A2 else 9 M, which is false.
We may therefore assume ]a 2. Now a normalizes J and C6(a)

_
M so if

m(Cs(a*)) > 2, the lemma is true for h 0- by virtue of Lemma 5.3. If,
however, T Syl2(Cs(a)) and re(T)= 1, by Lemma 2.3(b), ]T] > 8, whence
IT c N(J)[ > 4. This same lemma now shows m(F,r u(s,)(J))_> 2, so
m(J c M) > 2. Again Lemma 5.3 establishes this lemma for h O.

LMMA 5.6. U(J) is non-abelian.

Proof Suppose to the contrary U(J) is abelian and put V U(J) so V is
elementary abelian. Note that by Lemma 5.3 if JO c M contains a fourgroup,
then every involution in JO c M normalizes J. Over all 9 G M such that
JO M contains a fourgroup pick O to maximize J c M 12. Let

T Syl2(J Na(J)), T
_

S Syl2(TJ)
with Ns(T) Syl2(Nrj(T)), so Ns(T)= T x Q, Q Ns(T) c J. Now since
re(V) _> 3 by Lemma 2.3b, m(Q) _> 2 so fx(Q)_ N(JO). By Theorem A each
involution in Q centralizes an involution in JO- z(Jo), so T gg Z(JO). Since
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Q Mg centralizes T, Q normalizes Jg. Since we could replace # by #-1, the
maximality of TI forces I1 -< TI. Let P T(J J) so, by Lemma 5.1, P
is not tightly embedded in TJ. Let x J be such that P 4: px and 1 4: T Tx.
Since x M and T Z(JO), TT’ is a 2-group 4: T. Finally, since x2 N(J)
we may assume x S and so x normalizes TQ.
Now suppose T centralizes V. Then T

_
O 2(TJ) and so [T, J]

_
V. If P is

any odd order subgroup of J, [TV, P]
_

V; moreover, as Z 4: 1,

l[TV, P]I I[V, P]I < VCz oJ(T)I <-]QI-<ITI,
and so T c Cry(P) 1. Thus J OZ(d)_ M, a contradiction.
Thus T TV so there exists v 6 V with T =/= T

_
Nrv(T). Since v2 1 it

follows from Lemma 5.3 that T T= 1; therefore TT= T x T and
T [T, v]

_
Vso Tis elementary abelian. Since IQI <- TI, TO T To, Let

W= TQ.
Suppose W is weakly closed in S with respect to J. Set TJ TJ/V so W T

is weakly closed in with respect to and - c i. By Lemma 4.2 of [3],
[T, ]

_
O(} so [-, ] . Since - commutes with the irreducible action of

on V/V c Z, IT, V]
_

Z. Since V IV, J] and Hom**j (V/V c Z, Z)= O,
IT, V] 1, contrary to a previous argument. Thus there exists y J such that
Wr

_
Ns(W), Wr W. Without loss of generality, Tr W.

First suppose for all u Ty#, TT T T. In this situation, for each
T*, the map u [u, t] is a bijection of Tr with Q. Since T T, there exists
T with tt Q*; by the preceding remark there exists u Tr with tt tt.

But xu C(t)
_
M and since x Mg, u M*, contrary to T {T, TX}.

Let u Tr# with 7* {T, TX}. Note that xZ N(J) c S Q so for all
T*, Cs(t

_
TQ(x). If T T, then u Ns(T TQ. Write u tq,

q Q. Since u centralizes Q, Q
_
M*r whence Lemma 5.3 implies Q

_
N(J*r).

It follows that [Q, Tr] 1 and so Tr centralizes t. Then Tr Mg and as
m(Tr) > 1, Tr normalizes J, contrary to T g; W. Thus T Tx, that is, u is an
involution in M* interchanging J and J with Ca{u)

_
M. Let K C{u}’,

so by Lemma 2.3/a),
{tt"l T} Qo - K;

moreover, since Q
_

v, by symmetry T
_

U(Jo) and hence this lemma shows
Qo - U(K). Clearly Qo - Q as well. Now u centralizes some involution z Zg,
so z M and [z, K] 1. We show K (Do c M)t: for otherwise we must
have U(Jo)

_
Mo; by Lemma 5.3, U(J) would normalize U(J) hence

FI,vjo)(U(JOr)) would be a subgroup of Jg c M containing a fourgroup
whereas u (jo c Mo) N(J), violating Lemma 5.3. This proves
K Cto(z). Let

X U(JY)" U(Ja2Y
and argue that U(K) centralizes X" for if not, since X admits (K, z) and
K O2(K), by the P x Q-lemma, K acts non-trivially on Cx(z); but then
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U(K) X and as X’= 1, [U(K), X] 1 contrary to assumption. Thus, in
particular, Qo centralizes X, so X

_
M. Since M # Mgy (as y M, g M) and

U(J)
_
M, Lemma 5.3 yields U(J)

_
No(J). By the maximality of IT I,

I_< ITI so it follows that Tcentralizes V, contrary to a previous
argument. This completes the proof of the lemma.

For the remainder of this section let 0 G-M be such that
T Syl2(J c N(J)) with m(T) _> 2. Let T

_
S Syl2(TJ) with

Ns(T) SyI2(Nrj(T)), Qo Ns(T) J and V U(J).

LEMMA 5.7. T is abelian.

Proofi Since [T, J] 4= 1, by Lemma 4.2 of [3], there exists x J such that

rx_S and [T,T]___T T,r4:r.
IfxeM,xqNo(J)so T__Jand[T,T]=l;ifxM, Tc T=lso
again [T, T] 1. Now T

_
rQo r x Qo so as r c Q0 1, rQo

Since both T’ and Qo centralize T, T Z(TQo), as desired.

Note that Lemma 5.7 implies V M, for otherwise as m(V c No(J)) > 2
and T was arbitrary, V No(J) would be an abelian subgroup of V of index
_<2, which is impossible.

LEMMA 5.8. There exists v V with fl(T)fl(TV)= fl(T)x f(TV)=
I(TQo).

Proof Let U /,(T). Since as noted V g M, [U, V] =/= 1. Thus there
exists x V with U =/= U and [U, U] U c U. If U c U 1, take v x;
otherwise x M N(J). In the latter case since J is not tightly embedded in

u u / 1, so uu l < u Thus if UU <_ UV, then V
_
Mg which

we have already seen to be impossible. Pick v V with U" normalizing UU,
U" UU; hence U c U 1 and U"

_
M. By Lemma 5.3, U normalizes J,

hence normalizes J c Ns(J T. Since T
_

Z(TQo), U centralizes U, as
claimed.
To establish the remaining equality let Q, [U, v] - U so Q

_
Qo and, by

Lemma 5.3, Q,
_
N(J)whence m(J c N(Jg)) >_ m(J c N(J)). However,

was arbitrary so we may apply these arguments to 0- and Q-*_
N(J) to get

m(J c N(J))>_ m(J c N(J)),
whence (via Lmma 5.3) Q (Qo c N(Jg)) fll (Qo), as desired.

LEMMA 5.9. Let U l,(T), W l,(TQo). Ify J with Uy normatizino W,
then Uy

_
W or for all u Uy*, UU U x U.

Proof Without loss of generality Uy_ S. Assume Uy W and let
Q, /,(Qo).
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First, suppose there exists u U Ns(T)*. Then u f(TQo) Wand so
W
_

Co(u Mgr. Since #y q M, by Lemma 5.3 (applied to Mn, h-= gy),
Q

_
No(Jg). Since Ur normalizes W c J Q , [U, Q ] _ Q Jg 1.

Write u aq, a u ’, q Q , whence U centralizes a. Thus U
_
Mg and

Lemma 5.3 gives U No(Jg), so Ur normalizes Jg Ns(J T, contrary to
U f(Ns(T)). This proves U Ns(T)= 1.
Assuming the lemma to be false, let u Uy with 1 4: U c U" and with

u M No(J). Let K C(u)’, so K/Z(K)- J/Z(J) and

K
_

Co(u) - Ma’.

Also, M, M, M’ are distinct conjugates of M. As in the proof ofLemma 5.6, if
u centralizes a fourgroup, Zg, in Z, then Zg acts on Z and F,zg(Z) Z*
has rank > 2; so m(Z*(u))> 1, Z*(u)_ M but u q Na(J), contrary to
Lemma 5.3 (applied with suitable change of coordinates). Thus Cz,(U)= (z).
Similarly, U(J) M (use the remark preceding Lemma 5.8) so

K

Let X U(J)U(JY).
We next prove U(K)’ centralizes X: this is clear if [K, X] 1; if [K, X] 4: 1,

by the P x Q lemma, K acts non-trivially on Cx(z), from which it follows that
U(K) X and the claim is true by virtue of X’ Z(X). Now U(K)’
however, as noted after Lemma 5.7, U(J) 9/;: M, so we must have U(K)’ 1.
But for a6 U(Ja)’, by Lemma 2.3, aa6 U(K)’ whence aa= 1, i.e.
[U(J)’, u] 1. Since (z) Cz,(U), V EYZ(V), E Ex sp 2m.
Now m(U)> 2 so there exists a 6 U such that b aa4: 1. Note that
Q

_
V and m(Q)= m(U) so by Lemma 5.8 applied to 0- we may assert

U
_
V. Thus b U(K) and also b [a, u] e Q . Again by the P x Q lemma

either U(K)
_
X or [U(K), X] 1, so in either case b induces inner automor-

phisms on U(J). Let Eo Cv,(b), so Eo
_
M. By Lemma 5.7, E Eo ca

No(J) is abelian, hence E has an abelian subgroup E of index _< 4. This forces
E Ex sp 2S.Moreover, by Lemma 5.3, f(Cv 0y(b)) is abelian and so E V,
E - Qs YDs, Eo - Z2 x Qa, E Z2 x Z4 and b induces an automorphism of
E corresponding to an involution in E. Furthermore, J/O 2(J) A , G(J) is the
"permutation module" of dimension 4. But then for each involution e E, a
Sylow 2-subgroup F ofCa(e) has index 2 in a Sylow 2-subgroup ofJ containing
it, F covers a Sylow 2-subgroup ofJ/O 2(./) and so F has no abelian subgroup of
index 2 (as V/V’ is a free F 2(F/F 0 2(J))-module). Since b X, however, b
induces such an inner automorphism on Ja and so Lemma 5.7 is violated for
Ja in place of Ja. This contradiction establishes Lemma 5.9.

For the remainder of the proof of Theorem C assume O is chosen subject to
the above conditions with TI as large as possible. Let Q Qo c No(J) so

Q Syl(J No(J))
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and by maximality of IT I, QI -< I1. Let U, W be as in Lemma 5.9.

LEMMA 5.10. (a)IQI--Izl.
(b) There exists x S M with x q Q.
(c) There exists d J with Ud

_
Ns(W), Ua W.

(d) With x as in (b), [U, x] 1.

Proof We first prove (c). Suppose to the contrary W is weakly closed in TJ
and set TJ/O2(J), so is weakly closed in U"-J and ff T. By
Lemma 4.2 of [3], [, 2] i, whence [U, J]

_
V. Since U commutes with the

irreducible action of J on V/Z(V), [U, V]
_

Z(V). Since

V IV, J] and Hom (V/Z(V), Z(V)/V’)= O,

we have [U, V]_ V’. Finally, since [U, V]
_

Z(V), [U, V’] 1. Now V’ is
elementary abelian, so V’

_
ft(Qo), whence m(U)> m(V’). If, however,

re(U) > m(V’), since each w s V induces a homomorphism

we would have V_ F,v(V)_ M*, a contradiction as usual. Thus re(U)=
m(V’) and so W U V’. But then UV’/V’ is weakly closed in UJ/V’, so by
Lemma 4.2 of [3], [U, J]

_
V’
_

Z(J), whence [U, J] 1, a contradiction. This
proves (c).
To prove (a) suppose QI < IT I, let Q* S c J c M* and let Ua be as

given by (c). For u Ua#, by Lemma 5.9, T T 1. However, T centralizes
U and W J and so centralizes U U (W J)= W, that is, T

_
TQ*

S c M*. Since T c T= 1, Q*I-< TI and [T, u]
_

Q*, we must have
Q* {It, u][t T} and so Q* is an abelian group inverted by u and Q* T.
Since u was arbitrary and m(Ua) > 2, Q* is elementary. But then by Lemma 5.3
(and symmetry), Q* Q, a contradiction.

In part (b), if no such x exists it follows that T(J c J) is tightly embedded in
TJ and Lemma 5.1 is violated in view of [T, J] q: 1.

Finally, to prove (d) let x be as in (b) and assume there exists U # with
Ix, t] q: 1. Since ta(Q0) u Ua, by Lemma 5.9 there exists u U# with
tt tt", where Ud is as given by part (c). Then xu C(t)

_
M and so u M.

Since Jg is not tightly embedded in Mg, U c U 1, contrary to Lemma 5.9.
We are now in a position to complete the proofofTheorem C. Notice that by

part (a) ofLemma 5.10 we are entitled to continue to apply results for T, J to Q,
Jg (using g- in place of 0). In particular, since the element x described in (b)
normalizes TQ, TQ contains a Sylow 2-subgroup of D N(J). By this sym-
metry TQ also contains a Sylow 2-subgroup of D c N(Jg), whence

TQ Syl2((O c N6(Ja))(Og N6(J))),

Let TO(x) A Syl2((D c Mg)(D c M)), so a" TQ< > _< 2. By Lemma
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5.10(b) (applied to Q, Ja), A No(J) and there exists s No,(J) with s norma-
lizing TQ, s2 e TQ, so A TQ(s, x>. Moreover, s centralizes Q, ta,(Q) by
Lemma 5.10(d), so Q

_
Z(D) and hence [Q , x] 1. Similarly, [U, s] 1, and

so w Z(A).
Note that C(W)__ M m M. Let U be as described by Lemma 5.10(c), so

Ue
_
AD. Since A Syl2(Cao(W)) we may pick d 6 D such that

ud’ m_ N(W) N(A) with ud’ W

d#and for all u 6 U ,, [U, u] Q t. By Lemma 5.10(c) applied to Q (since
A Syl2(CAo(W))) there exists d2 6 Da such that Qz_ N(A) N(W) and
for all v 6 Q’2, [Qt, v] u ft(T). Let

N <A, Uat, Qdl2>, / N/CN(W
and note that N is transitive on W# so 0 2(/) I. It follows from Theorem 2 of
[18] that/ L2(q), q uI and W is the natural module for .

First note that A is non-abelian, for T :p T’ and (T, x)
_

A.
Next recall that Ua_ TJ so Ua normalizes A TJ TQ(x). If for all

u Ua*, T"
_

TQ, then Q IT, u] is abelian and inverted by each u Ue*.
Since re(U) > 2, Q is elementary and hence so is T [T, u]. Thus TQ = Wis a
central subgroup ofA of index 4 and so A’ is cyclic. Since/ is transitive on W#,
A’= 1, a contradiction. This proves there exists u Ua* such that (TQ)_
TQ(x) and (TQ)" q: TQ. Symmetrically (or because we could now choose ff to
be an involution) there exists v e N such that

(TQ)
_

TQ<s> and (TQ)O TQ.

Thus

TQ" (TQ)" c (TQ)I <_ 4 and A <TQ, (TQ)’, (TQ)O>,

whereupon as TQ is abelian A:Z(A)I <_ 16.
Next we decide Z(A)_ TQ. Suppose this is not the case and let

zeZ(A)-TQ. Since A’I, A:Z(A)TQI =2 so either zqTQ(x) or
z TQ(s). Without loss of generality z TQ(x), so A (TQ, x, z). Since
Q(x) TQ<x) J <_ TQ(x>, it follows that (Q(x))’= Q<x), whereas
J J and, by Theorem A, Q(x) Z(J), a contradiction.
Now/ acts on A/Z(A) and if/ centralizes A/Z(A), then/ normalizes TQ;

but then Ua normalizes TQ and a previous argument leads to a contradiction.
Since/ L2(q), q _> 4, the only possibility is A/Z(A) - E6 - W. But Wis the
natural F 2 L2(4)-module and the map (a, a2) [a,, a2] induces a non-trivial
F2/-module homomorphism from (A/Z(A))(R)tz(A/Z(A)) to W, whereas for
either of the two possible module structures for A/Z(A) no such homomor-
phism exists (see, for example, Lemma 2.2 of [26]). This contradiction com-
pletes the proof of Theorem C.
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Vl. The proofs of Theorems D, E, F and G

We first study the following setup"

(6a) G is a finite group, S a 2-subgroup of G, L a product ofcomponents of

(6b) V is a faithful F2 G-module;
(6c) as an F2 L-module V has a unique non-trivial irreducible composition

factor.

Under these hypotheses, for every subgroup H of G let H)=
[V, n]/ctv.m(n), so if(L) is a non-trivial irreducible F2 L-module.

LEMMA 6.1. If s S, L centralizes [V, s] and V/Cv(s).

Proof By induction on s 1, L centralizes IV, s2]. Let V =__ V/[V__, s2] and so s
induces an automorphism of order 1 or 2 on V. The map V V by

is an F L-module homomorphism and so -ff/C v(s} and [V, s] are isomorphic
FL-modules. Since [V, s]

_
Cv(s), property (6c) forces them to be trivial

F2 L-modules. Thus

[[v, L] =_ [v,
so since [[V, s], L, L] 1, the 3 subgroups lemma forces [[V, s], L] 1.

Similarly, by induction, [V, L]
_

Cv(s2) so the above argument applied to
Cv(s) in place of gives [V, L]

_
Cv(s), as claimed.

LEMMA 6.2.
K.

IfSL normalizes an odd order sub#roup K ofG, then L centralizes

Proof. By induction a minimal counterexample G satisfies G SLK, K
(being solvable) is either an elementary abelian or special p-group of exponent
p, for some prime p, SL acts irreducibly on KIck(K) and [L, b(K)] 1.

Let Vo [V, K], G/Co(l/o). Note that if S centralizes Vo, since G is
faithful on V and IS, K] centralizes Vo and Cv(K), IS, K] 1; but then
[L, K] 1 as L< Co(S), a contradiction. This proves 4: ]. Since K is faithful
on Vo, if J is a component of CL(Vo), then, by (6c), [L, Vo]= 1, so
K [K, L]

_
Co(Vo), a contradiction. Thus Co(l/o) - SZ(L)so Co() and

L acts non-trivially on K. By minimality of G, Co(Vo) 1 and we may assume
V= Vo.
Now let s be an involution in Z(S). By the irreducible action of SL on

K/k(K), s either inverts or centralizes K/ck(K). Assume the latter happens so
that s centralizes K and so s Z(G). But then IV, s] is a non-trivial
F G-submodule which, by Lemma 6.1, is centralized by L (hence also by K),
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contrary to V [V, K]. Thus s inverts K/(K), so Co(s)_ SLp(K)_ N(L).
By minimality of G, S (s).

If K is abelian, since s inverts K, s acts freely on V i.e. IV, s] Cv(s) and it
follows from Lemma 6.1 and the 3 subgroups lemma that L centralizes V, a
contradiction. Thus K is special and since s inverts K/(K), s centralizes b(K).

Let D tp(K) and argue that [D[ p, V [V, D]. For let Vo be an irredu-
cible F2 G-submodule of IV, D],Do Co(Vo and Vt Cv(Do) IV, D]. Thus
J_D" Do[ =p, V1 =_[V1, D/Do] and since Do_ Z(G), V1 admits G. If
G G/C(V1), then S S, - - K/Do and Z is a central quotient of L, whence
G, V1 is also a counterexample. Thus G G and we may assume V V1, as
desired.
Now if e is an element of K of order p inverted by s, argue that s centralizes

Cr,(e). For otherwise Cr,(e) c IV, s] =/: 0 and so by Lemma 6.1,

Cv(e) CF(L) =p 0;

but since e 6 K b(K) and L acts irreducibly on K/dp(K), K (eL), contrary
to V [V, K]. In particular, if K > p3, since K is extra-special ofexponent p,
there exists E Zp x Zp, with E

_
K and E inverted by s; since E acts

faithfully on V it follows easily by Schur’s lemma that for some e E#, s does
not centralize Cv(e), contrary to the previous argument. This reduces to the
case [K[ p3 and so L Lo L1, L1 CL(K), Lo - SL2(p), p > 3.

Let E
_
K with E Z x Z, let 1(E)= {El, E2, E, D} with E1 in-

verted by s, let V Cv(E), 1 < <_ p and let W [V, El], so V V W.
Since K acts transitively by conjugation on {E,..., E}, dimz V dim
2 < < p. Because D is fixed point free on V, V c V 0, :p j, and since each
V admits El, V

_
W, 2 < < p. Thus since V2 V3 - W, dim W > dim

whence dim W > 1/2 dim V. Now let q be a prime divisor of Lol with q q: 2, p
and let x be an element of Lo of order q. As noted earlier s centralizes V1, so

IV, s] [W, s] and V/Cv(s)- W/Cw(s);

moreover, s inverts E1 so Cw(s)= [W, s]. By Lemma 6.1, x centralizes IV, s]
and V/Cv(s) so it follows that dim Cv(x) > dim W > 1/2 dim V. Since x is not a
scalar transformation on K/dp(K), there exists k K- $(K) with (k, kx)
covering K/$(K), whence K

_
(x, xk). Because (K, x)/$(K) is a Frobenius

group and xkdp(K)is not in the Frobenius kernel, q. Thus if x is
an element of order q in the coset xkdp(K), K

_
(x, xl). Moreover, (x) is

conjugate in K(x) to (xt) so by dimension counting (x, xt) has a non-zero
fixed point on V, contrary to Cv(K)= 0. This completes the proof of the
lemma.
We now list some additional hypotheses we will be working under"

(6d)
(6e)

V is an irreducible F2 G-module;
G (Le())S.



COMPONENT TYPE THEOREMS 91

Note that by the ordinary L-balance theorem for components, Theorem 3.1 of
[23], and by Lemma 6.2, (3 E(G). $.

LEMMA 6.3. Ifrio is a subgroup ofG containin# L$, H (Ln)$, and W is
a non-trivial irreducible F2H-consttuent of V, let -= H/Cn(W)" then
(, L, $, W) satisfy (6a)--(6e) in place of(G, L, $, V)and E()s isomorphic o a
central quotient of E(H).

Proof Clearly only (6a) needs verifying to confirm the first assertion. Again
by the L-balance theorem L

_
E(H) so if K , K are the components of

Kt K, (Le’(n))
If Cn(W c E(H) Z(E(H)), there exists such that K,

_
Cn(W); but then

(K) contains some component J of L so as J
_

Cn(W), by (6c), L
_

Cn(W),
whence

E(H) <Ltl> Cn(W),
contrary to W being a non-trivial FzH-constituent. This proves E() is a
central quotient of E(H). It remains to show Z is subnormal in Ca(S), for which
it suffices to show L < < Nn(SCn(W)). But

[C,(W), L]
_

Z(E(H))
so as [CH(W), L, L] 1, [CH(W), L] 1, hence L < < Cn(S Cn(W))

_
Cn(S), as needed.

LEMMA 6.4. Let D be a semisimple subgroup of G. Assume Co(D) is tightly
embedded in G with No(Co(D))= No(D) and for all g e G N(D), [O, Oo]
D Da. For any involution x e Co(D) assume D centralizes [V, x] and that
D < C(v), for v e IV, x] {0}. Let z, z2 be involutions in Co(D), h e G; then
the following hold"

(1) /f (zx, z) is a 2-group, either z e N(D) or zx e No(D);
(2) if (z,, z2) - O,, k odd > 1, z2 e Co(D).

Proof. To prove (1)suppose (z, z) is a 2-group z No(D), and
I(zx, z2) is minimal subject to these conditions. Set a z, b z, ab, so
t$N(D) but No(D); moreover, as Co(a)_No(D), Ill >2, Let
U Cv(t2); since (t) acts faithfully on V, by looking at this representation of
in Jordan canonical form one sees that acts non-trivially on U, hence one of a,
b does also. Since (a, b)n-t is also a minimal counterexample, we may replace
a, b by an-t, bn-t if necessary to assume a acts non-trivially on U. Then
[U, a] [U, at2] [U, aq, so for v e [U, a]- {0}, D, D’

_
Co(v). By hypoth-

esis therefore D D, a contradiction.
To prove (2)suppose

(zt, z)D,, kodd>l
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and let a zl, b z, (x) O((a, b)), and let (t) Z((a, b)). Let

ts c (t) Iv, x]
so U 0 by the P x Q lemma and (a, b) acts on U. Since x acts Frobeniusly
on U and a inverts x, [U, a] =/= O. Thus [U, a] [U, at] 0 and at bx’ zx’,
for some x (x). As before, hx N(D), so t C(D). Thus

(a, b)
_
C(t)_ Na(D),

so x e Na(D) and therefore h e N(D), as desired.

THEOREM 6.5. Assume (6a)-(6e).hold and also that L/Z(L) - f(2")and
I(L) is the natural 4-dimensional modulefor L/Z(L) viewed as a module over F 2;
then G L.

Proof Note that by (6b)and (6d), 02(G)= 1 so (6e)implies

L G,L < G:,S 1.

Assume G is a minimal counterexample and let V0 IV, L], V Cv(L). Since

f2 (2")- L2(2") x L2(2")
let L, L2 be the components of L, so Z(L) is a 2-group. By Lemma 2.7,
V Vo V where Vo (L) as F2 L/Z(L)-modules. Since Z(L) centralizes Vo
and Vx, by (6b), Z(L)= 1 and so L L x L2. Also, since S centralizes Vo,
Vo V so N(E) m G, i= 0, 1.
Let s be an involution in Z(S), Ho Co(s), H (Ut))S. Since H G, by

minimality of G, Lemma 6.3 forces L H Ho, so by the arbitrary nature of
S we may assume S (s). Let S S* Syl2(C(L)), s* an involution in Z(S*).
The same argument shows L Co(s*), whence we may assume s s*. Now
applying this argument to any involution t in S* we obtain L Co(t), so
L C(t), for all involutions t Co(L). Finally, this argument shows that
it U is any proper subgroup of O containing L with ]CL) even, then
L a H. In particular, L N(V:) and L No(Vo).
Next suppose normalizes L, for some O G; we prove either L or

[L, ] 1. Noti that V is the unique non-trivial irreducible constituent of
on Vandffaetson Vo, V:, so either V Vo or V V:. In the latter ease must
centralize Vo so since L, commute in their action on V, by (6b), [L, ] 1. If
V Vo, V Vo and so as L No(Vo), L . This establishes the initial
claim of the paragraph.
Thus L acts like a single component so if Aa, A, are a maximal set of

pairwise commuting conjugates of L with L A and O A A,, the argu-
ment of Theorem 9.7 of [3] verifies the hypotheses of Theorem 5 of [3]. Since
re(L) > 1 and O2(G) 1 Theorem 5 of[3] gives that one of the following holds"

(1) O G;
(2) C(L) is tightly embedded in G with No(C(L))= No(L) and for all

o
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If D G, L
_ _

G which we have seen means G is not a counterexample;
thus (2) holds and so Lemma 6.4 applies, via Lemma 6.1, to D L.

If C6(L) has 2-rank 1, let z be an involution in Co(L). It follows from Lemma
6.4 that z is a class of odd transpositions in (3, and, by (6e), we may assume

G E(G){z).
Since C(z) has a "standard subgroup" of type L(2") L(2")and G/S(G)is
described by the Main Theorem of [2], (and the components of the centralizers
of the odd transpositions are described in this paper) the only candidate is

G/$(G) - O(5), L/Z(L)- L(4) L(4).
However, since O2(G 1 we would have G Os(5) and since one easily sees
that O(5) contains no subgroup isomorphic to L2(4 x L2(4 we must have

L SLm(5)YSLm(5)
contrary to Z(L)= 1. This argument proves Co(L has 2-rank > 1.

It follows from Theorem 3 of [4] that Sylow 2-subgroups of Co(L are not
non-abelian dihedral groups nor are they weakly closed fourgroups. Thus by
Theorems 2 and 3 of[3] there exists g G No(L such that Co(Ly c No(L)
contains a fourgroup, W. Since

L No(/-q) but FI,w(L)- N(/Y),
by Lemma 2.8 of [3], W normalizes L and L2; moreover, the argument of
Lemma 3.5 of [3] is easily modified to show that if some w W induces an
outer automorphism on L, for some i, then

Li -Suppose say L
_

N(Lq). Since Wcentralizes an involution, a, in C(L), L is a
component of C(a) c N(I) so by the L-balance theorem L

_
L(N(/Y));

more precisely, by Lemma 2.7(2) of [3] either

[/Y, L] 1, L1 {L, L} or L L with L Cqz4(a).
In the first two instances /Y

_
N(L) N([V, L1])= N(Vo)= N(L), a

contradiction. If L lies on the diagonal of/Y, note that in fact W centralizes a
fourgroup U in C(L) which we may assume contains a, so again by Lemma 2.8
of [3],

/ F,v(/)_ No(L),

a contradiction. Similarly L2 No(/) and so each involution in W induces a
non-trivial inner automorphism on each L.
Now L contains a diagonal subgroup, Lo, the centralizer of a transvection in
0 (2"), satisfying:

(i) Lo L2(2");
(ii) Cvo(Lo)_ [Vo, Lo];
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(iii) dimF [Vo, Lo] 3n, dim Cvo(Lo)= n;
(iv) Vo is an indecomposable F2 Lo-module with [Vo, Lo]/Cvo(Lo) the stan-

dard F2 L2{2")-module for Lo.
Since the diagonal involutions in L are all conjugate and each w e W induces
an inner automorphism on L corresponding to a diagonal involution we may
replace Co(L) by an L-conjugate so that for some w e W, w e Lo Co(L).
Since all non-trivial odd order elements of L act Frobeniusly on Vo and w
inverts one of these,

dim IVo, w] 2n,

and, of course, [Vo, w]
_

[Vo, Lo]. Thus it follows from (iii) and (iv) that

C o(Lo) [Vo, w].
Let v e Cvo(Lo) {0}. By Lemma 6.2, 12(w)

_
Co(v so as previously noted

co( )
However, CL(w)contains a Sylow 2-subgroup T of L, whence (L o, T}_
No{B). One easily checks that L (Lo, T} (see, for example, Lemma 2.5 (3) of
[3]) so a previous result (applied to g-) gives L =/2 or [L,/2] 1. Both
equalities are impossible and this contradiction completes the proof.

THEOREM 6.6. Assume that (6a)-(6e) hold and that L is quasisimple. One of
the following holds:

(1) G L;
(2) E(G) - A.+ z, L - A,, V is the non-trivial irreducible constituent of the

natural (n + 2k)-dimensional permutation module for E(G) over Fz, n > 5;
(3) E(G) fz,+ 2(2m), L SP2n(Zm)’, V is the natural (2n + 2)-dimensional

Fz.E(G)-module viewed as a module over F2, n > 1, rn _> 1;
(4) E(G) - Z" U4(3), L U(2), dimv V 12, dim 9"(L)= 8.

Proof Let G be a minimal counterexample. Since O z(G)= 1 and G 4= L,
S 4: 1. Also for all v e V-{0}, C(v) G and for all involutions e G,
C,(t) G. Notice that Lemmas 6.1-6.4 apply to arbitrary L, S which satisfy
(6a)-(6e) for we will have occasion to change both L and S in the proof.

(6.6.1) We may assume SI 2.

To prove this let s be an involution in Z(S), Ho Co(s), H (Len))S and W a
non-trivial irreducible F

_
H-constituent of V. By Lemma 6.3 and the minima-

lity of G,

E(H)/Z(E(H)) - L/Z(L), a,+ 2, f.+ 2(2m) or Z3 U,,(3)
and in all but the first instance we may identify L/Z(L)and W as well. In any
case since L

_
E(H), V has a unique non-trivial irreducible F z E(H)-constituent
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so without loss of generality W= 17(E(H)). One easily checks that
Go (E(H)>(s>, Lo E(H), So (s), Vo V satisfy (6a)-(6e)in placeofG,
L, S, V resp. If Lo is not quasisimple, to/Z(Lo) f(2") and iT(Lo) is the
natural module. By Theorem 6.5, Go Lo whence s O2(Go), contrary to
O2(Go) 1. Thus Lo is quasisimple and the hypotheses of this theorem are
satisfied by Go, Lo, So, Vo with Lo =/= G o and E(G) E(G o). Suppose one of the
conclusions of Theorem 6.6 holds for the new quadruple. In this situation, if
Lo L, G is not a counterexample so we must have

Lo/Z(Lo) - A,+ 2k, f,+ 2(2") or Za" V,(3).
Since Lo must be one of the groups described in conclusions (2)-(4), the only
possibilities are Lo A,+ 2k or U,(2) ( f(2)) (note that f (2) As and the
6-dimensional F2-modules are the same for these groups). If Lo f (2), we
previously identified W lT(Lo) as the natural 6-dimensional module over F 2

whereas conclusion (4) of Theorem 6.5 asserts that if Lo has this isomorphism
type, the constituent 17(Lo) must have dimension 8, a contradiction. If
Lo A,+ 2k, n + 2k > 7 and E(Go) A+ 2k,, V is the non-trivial irreducible
constituent of the natural permutation module, whence it follows that L is an
alternating group and G is not a counterexample. This argument proves that
Go, Lo, So, Vo do not satisfy the conclusions of the theorem so without loss of
generality G Go, L Lo, S (s) as claimed in (6.6.7).
By a similar argument we get the following two results"

(6.6.2)
(6.6.3)

L is maximal in the component ordering of [3];
L is a component of Co(t), for all involutions Co(L).

By using (6.6.3) and the fact G E(G)(s) we may replace s by another involu-
tion in Co(L) and decide via the L-balance theorem (Lemma 2.7 (3) of [3]) that

(6.6.4) if IC(L)Iz > 2, G is quasisimple.

Now let A 1, A, be a maximal set of pairwise commuting conjugates of L
with L A and let D A A,. The proof of Theorem 9.7 of [3] shows that
the hypotheses of Theorem 5 Of [3] are satisfied so since O 2(G) 1, one of the
following holds:

(1) D <1 G;
(2) D A1 A2, m(A1)= 1, A, c A2 is even, [L, /Y] 1,La A2, for

all O G, and C(D)is tightly embedded in G with N(C(D))= N(D);
(3) D A t, [L,/Y] 4: 1, for all O G, and C(D) is tightly embedded in G

with N(C(D))= N(D).

Let N NG(D)and C 02’(CG(D)).
If (1) holds, L <1 G which forces L G, a contradiction; thus (2) or (3)

holds. Note that if (2) holds, since A and A 2 are conjugate in G and x G with
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A A2, then x C(02(O))_ No(O); moreover, in this case, by Theorem 3.1
of [15], C [2 2. (The B-conjecture is not needed for the proof ofTheorem 3.1
of [15]).
We first handle the situation when m(C) 1. Let z be an involution in C and

for each element y of G, let Vy [V, y]. By Lemma 6.1, L centralizes Vz and in
case (2) if A’ A2, x centralizes (z) O2(Aa) O2(A2) so D centralizes Vz in
this instance as well. Suppose for all v e V {0), D

_
C(v)" it follows from

Lemma 6.4 that z is a class of odd transpositions in G whence Lemma 2.10 and
(6e) assert that G is not a counterexample. This proves there exists v e Vz {0}
such that D CG(v), so by (2), (3), L

_ _
C(v). Let

Ho CG(v), H1 (Lr’m))(z), W= VZ(Ha),
and note that as L H a, O2(__H a) 1 and as L

_
H a, W is a non-trivial

irreducible F2Ha-module. Let H Ha/Cn(W)so by Lemma 6.3 and the
minimality of G we may identify H a, L and W; furthermore, the odd order
group CH,(W) stabilizes the chain

v Iv, H,] 0

whence centralizes V, so Cn,(W)--1. Let H E(Ha) so (we now know
re(L) > 1) since L is in standard form in H a, one of the following holds"

(i) L- A,, H- A,+2, H(z) E,+2;
(ii) L SP2(2m), H - fh+ 2(2m), H(Z) " 0,+ 2(2m);
(iii) L~U(2) H~Z U (3)"4 3 4

and in all cases zn is a class of odd transpositions in H and 17(H) is the natural
module for H (described by conclusions (2)-(4)of this theorem). We may
therefore always pick g Ha N(L) such that [z, zg] 1 and H (L, if).
Note that

We now include discussion which circumvents using the full weight of the
solutions to the various standard form problems we are faced with--this seems
desirable not only for reasons of independence but also to avoid invoking the
Unbalance Theorem on which some of these solutions rest.

Case L - A., H - A.+ 2, n _> 5. Let

(z, z)
_
T e SyI2(N(H));

since L is in standard form, C(H) has odd order so T is isomorphic to a Sylow
2-subgroup of,+ 2. Let 7- zn T, U V g. Since Nn<z>(’) is doubly
transitive on and H(z) centralizes U,

U (’] V, N(U) N(H) and T SyI2(N(-)).
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Let (z, zo)
_
P SyI2(N), S P c C; we prove S (z). Choose a permu-

tation representation of H(z) so that z (12); since H is doubly transitive on
’-, without loss of generality zg (34). Assume sl > 2 so as S centralizes
L_H,

s SdH)= NdV);
therefore zg does not centralize S. Since m(S)= 1, there exists s S such that

z"’= zz" (12)(34).
Now let h G be chosen with Zh= (34)(56) L P, so zh centralizes $. If
n > 8, let

B A._,
so B

_
Nh; moreover, since re(C)= 1, SB Ch 1 so S acts faithfully on

LhCh/Ch’ A, and centralizes its subgroup BCh/Ch’ An_ 4 Thus if n > 8,
S (s) and s induces a 4-cycle on I2Ch/Ch, hence also on . Note that if
n 5, 6, or 7, since m(S) 1 and S acts faithfully on , S (s) Z, and s is
either a 4-cycle or the product of a 4-cycle and a transposition on . In any
case, let So be a Sylow 2-subgroup of Cn normalized by S. Thus
So - C(z)

_
N, so IS, So] 1. By the action of z on S, no 2-element of C(S)

induces an outer automorphism on L, whence in Nh, S cannot induce a 4-cycle
on/. The only remaining possibilities are n 6 or 7 and s the product of a
4-cycle and a transposition on . Let P1 S(z), P2 P c L so

P= P1 x P2 - Da x Da, Z(P)# {z, zh, zzh},
so by orders P Syl2(Ct;(zh)) as well. It follows therefore that if P

_
P* with

IP*: PI 2, then P J(P*), (z, zh) char P* and hence

P* e Syl2(G).
Since H(z") Ea or Y9 (i.e. TI- 27), such P* exists so by orders
T SyI2(G). Since T c H

_
G’ and zG H b, G is perfect whence G is

quasisimple with Sylow 2-subgroups of type A lo. By [21], however, no involu-
tion centralizer has a component of type A 6 or A 7 centralized by a Z4
subgroup. This contradiction proves S (z). Note that as L(z, z) contains a
Sylow 2-subgroup of N, z is not rooted in G.
Next we prove T Syl2(G); for otherwise let T

_
T* with IT*: T 2 and

let e T* T. By the initial paragraph of this case there exists y H such that
zr e ’- but zyt q ’-. Since every involution in H is rooted in H(zg), z’ q H.
Now Lemma 2.5 asserts z zr, a contradiction.

Again, since z is not rooted in G, zG c H 4). By Thompson’s transfer
lemma [5.38 of 27], z q G’ and since H G’, To T n Syl2(G’). If n < 9,
[21] applied to G’ and the fact that L is standard in G gives G H(z), again a
contradiction. Thus we may assume n > 9. Let u zz, K C(u), so
(K H)t) B A,_ 2 and ’(B) is the natural module for B. Since B is a
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component of Cx(z) which has property (6c), as usual by Lemma 6.3 and
induction there exists L* a component of K with L* A_ 2 /k and iT(L*) the
natural module. But now (L*,u)_ G’ G and V is an irreducible
F2 G’-module so by minimality of G, G’ A,-2+k,. By inspection, since L is
standard in G with m(Co(L))= 1, G- ,+ 2, again contradicting G n(z).

Case L - L2(2m), H - f. (2m), m > 2. Note that H g L2(2TM) and z is a
field automorphism of H, so all involutions of H(z) H are conjugate under
H to z. Also, re(C)= 1 implies re(Co(z))= m + 1 so as m > 2, z c H .
Since

it follows that if

z T Syl2(N(H)),
then Nn<>(’) is doubly transitive on " zn T, and .as in the previous
case, T Syl2(G). Let To T c H so T/To is cyclic. By Thompson’s transfer
Lemma, z G’ so since G: G’ < 2 and H

_
G’, To Syl2(G’). Since Sylow

2-subgroups of G’ are elementary abelian and L is standard in G, H(z) G, a
contradiction.

Case L - Lz(2m), n "2(2m), m > 2. Let H= H x Hz, H, L2(2m),
n] nz and let Vo [V, n], Vx cv(n), so, by lemma 2.7, V Vo Vx and
for each i, Vo is the direct sum oftwo natural modules for Hz. For L Ca(z), Vo
is an indecomposable module with dimr [Vo, L] 3m, and Cvo(L) [Vo, z] of
dimension m. Let

(z, z)
_
T e Syl2(N(H)), E T n.

By Lemma 2.7, TIE Z2 x Z2 where m and there exists an automorphism
f of H whose coset generates the second cyclic factor and with f a field
automorphism on Hz, i= 1, 2. Frattini’s argument, since z acts freely on E,
shows that Cz) covers TIE so we may pickf2 6 Cz) withf2 f(mod E); set
f -, if k 1, and f= 1 otherwise. Note that iff 1, f indues an outer
involutory automorphism on each H, hence is a field automorphism on each
H, so f acts freely on both E and Vo, and

Cn<>(f L2(2a) Z2, 2a m.

Since re(C) 1, it follows easily that iff 1, z . Furthermore, since
m(C(z))=m+l and m(E)=2m, zE=. Suppose fl and
z z . Since zf interchanges H and H2, zfis conjugate in (z: E) to
every involution in z, whence there exists h 6 G such that zn z: Sin f
induces a field automorphism on L and [Vo, L] is the full cover of the natural
F2 L2(2m)-module, f acts non-trivially on

Vo, L] Cvo(t) Vo, z].
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Thus there exists w Vo c V c Vzh with w # 0. As usual, by induction applied
in Co(w), there exists H* a component of Co(w) with

H*f$(2m) and H*=(L,)
(n* A7 since 17(L) is not the permutation module for As). However,

CH(Z) -- L2(2m)
so as C(z) has a unique component of this type, Cn(z) =/2. This means

H* (L, ) H,

contrary to H not centralizing w. This argument proves z zfE b.
Again we argue T Syl2(G). Let ’- zn c T so by the preceding fusion

arguments z 6 -. Since Nn(")is doubly transitive on ’-, V c Vg t- V
and since

N(") N(H) and zG c T -,
we have T Syl2(G). Moreover, by Thompson’s transfer lemma applied to
(fl, E) the previous results on fusion also give z G’. Note that E

_
H
_

G’.
Iff 1, we must have E Syl2(G’) so G’ is a product ofGoldschmidt groups.

Since L is standard in G it follows that G H(z), a contradiction. It remains to
consider the case f# 1. Let To T c G’ and note that E To, To/E is cyclic
and G’ is perfect. If To: E 2, To <E, f) or (E, zf), whence in either case

To E2, ) Z2, m > 2. By a result of Harada [the proof of Lemma 18 of 24] G’ is

not perfect, a contradiction. Thus To/E Z2,, r > 1. Since f acts freely on E
and (fE) f(To/E), E J(To) char To and so E < N,(To). Since To/E is
cyclic,

7"0 e.

Also, for each Sylow2-subgroupQof G’,Q’is elementaryso Q’ To (E,f).By
Grun’s Theorem [7.4.2 of 20], To c (G’)’

___
(f E) again contrary to G’ being

perfect. This completes the proof of the case.

Case L a6 Sp4(2)’, L* - f6(2). We have already considered when
H(z) - 0- (2) Ya (note that the corresponding modules are the same for the
two isomorphism types), and when n(z) - Og (2) Weyl (E6) the arguments
are similar--we sketch the details.

Let Vo [V, n], V1 Cv(H) so by Lemma 2.7a, V Vo V; and since

Aut (f; (2)) O; (2),

if <z, zO>
_
T Sylz(H<z>), then T Sylz(Nz(H)). Moreover, H is doubly

transitive on Y" z c T so T SyI(NG()) as usual.
Let 9o Qs YQs YQs be extraspecial so that Out (tgo) Og(2) and

o/Z(Po) is the natural module for O; (2). From this representation it is easily
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deduced that H<z> has exactly 4 classes of involutions, and representatives z, t,
tl, t2 have the properties" e Hz, tl, t2 e H,

dim, [Vo, z] 1, dimn IVo, t] 3, dimn IVo, t,] 2, i= 1, 2,

C.(tl) - (SL2(3) t Z2)/Z(SL2(3)t
Cn(t) Z/(Ea x A4) CH(Z - 6and every involution in 02(C(t2))is H-conjugate to t2.

Suppose z H, for some h G. By the structure of C(tl) z tl so we
may assume z t2. Let (z, z)

_
P SyI2(N), P P c C(z), P2 P c L

and (x) Z(P2) so by the last remark of the preceding paragraph x z,
whence

e Syl2(C6(x))

as well. Since N6(H)= N6( c Vo) and z is not rooted in N6(H), (z)=
Ce(z), so P= P1 x P2 with P1 dihedral or quasidihedral. By Sylow’s
Theorem x is conjugate to z in N6(P) so P1 P2 DB and, as in the O(2)
case, because

G I -> In<z>
there exists P*

_
P with IP*: PI 2. It follows that <z, x} Z(J(P*)) so

P* e Syl2(G) and therefore T SyI2{G). Again H < G’ and za
_

G’ so G is
quasisimple with Sylow 2-subgroups of type A lo. By [21], G cannot have an
involution centralizer with a component of type A centralized by a Z4
subgroup. This contradiction proves aa c H b.
As noted arlir, dim a [1/, z] dim= [V, t]- 2, whn z qa t: thus

za T " so because T Syl2(Nd-)), T SyI2(G). By Thompson’s trans-
fer lemma, z G’ so

T c n SyI2(G’),

that is, G’ has Sylow 2-subgroups of type A a. It follows from [21] that
G H(z), a contradiction.

Case L U,(2), HZ3" U4(3). In this situation let <x)=Z(H),
Vo IV, x] [V, HI, V, Cv(x) Cv(H), so V Vo ( V,. By Lemma 6.1, z is
not free on Vo so [z, x] 1. By Lemma 2.8, zH contains 2 classes of involutions
with representatives z, u and

dim,= IVo, z] 2, dim,, [Vo, u] 6.

Because [V1, z] [V1, u], z , o u. Let z r SyI2(No(H)), To T c H so by
Lemma 2.8 and the fact that cdn)l is odd,

T/To - Z2 or Z2 x Z2 and To(z> Cr(x).
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Suppose there exists h G such that zh T- To<z), so zh inverts <x>. Let
Q Cn(zh) so by Lemma 2.8,

U3(3), E6, U4(2)or SLy(3) t Zz/Z(SL(3) t Zz).

In any case, since C(O) has 2-rank 1 and IN" LC(L)I < 2 it follows that

Qo=Q c IP, :I.
Note that since z centralizes iT(L) z centralizes [V, L] whence zh centralizes

Vx[V, Qo] but then zn centralizes Q] [V, Qo] and so

IV, Qo] - Vo c Cv(zh) Cv(z’) O,

contrary to Qo :/: 1. This argument proves zG c T
_

To(z).
Finally, suppose zh To, for some h e G. Since H has one class of involutions

we may assume Zh Z(To(z)). Since To(z) is isomorphic to a Sylow 2-
subgroup of E2s A6, where E2s is the permutation module modulo the one
dimensional submodule, zh e (To(z))". However, in a Sylow 2-subgroup P of
C(z), since m(C)= 1, z qt e", a contradiction.

For - zn c T H is doubly transitive on - (zn is the class of reflections in
O(3)) so as usual T Syl2(G) and for any subgroup T1 of T with To - T1,
z Tt and ]T" Tt[= 2, by Thompson’s transfer lemma applied to T, z G’.
Now let Tt Syl2(G’). Since dimv2 [Vo, z] 2, for any involution a e H, a is a
product of two H-conjugates of z so dimv IV, a] dim2 IVo, a] < 4. On the
other hand, if d is an involution in Tt- To, d inverts x so dimr2 IV, d] >
dimr2 Vo 6. This proves de’ c H b so since by Lemma 2.8 each coset of-To in T contains involutions, Thompson’s transfer lemma applied to the perfect

group G’ forces Tt To. Because L is standard in G, [22] implies G H(z), a
contradiction.

Case L Sp2n(2m), H fl,+ 2(2m), rl _> 2. By previous considerations we
may also assume L Sp,(2)’. Let Vo [V, H], Vt Cv(H) so by Lemma 2.7,
V Vo B Vt. Let Wo be any non-singular vector in Vo and let w be an H-
conjugate of Wo with w e [Vo, z], z being an F2,orthogonal transvection on Vo.
By Lemma 6.1,

Cdw) =_ <t., z>
whence as usual, by induction, there exists M a component of C(w) with
L G M and either

Mf2.+2(2m) or M=L.

If M :/: L, however, by the decomposition of V under f2+ 2(2m) it follows that

w [v, t.] [v,
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whereas one easily sees that Vo is an indecomposable F2 L-module with

Cvo(L) - [Vo, L].
Thus L < < C(w) and as L is in standard form, C(w)

_
N. This proves that

for each non-singular vector Wo in Vo, C(wo) has a unique component of type
Sp2,,(2m), denoted by L,o, and L,o

__. H.
If Uo is a non-zero singular vector in Vo, Cn(uo)= EK where E E2,,

K f2,(2m) and E is the natural module for K. Since N does not contain a
subgroup isomorphic to EK, Uo t; Wo.
Now let a be an element ofH which is of type a2 (in the sense of [10] page 16)

so Cvo(a) has F2-codimension 2m in Vo and so Cv(a)also has F2-codimension
2m in V. Since H ; G’ (a we may pick a G-conjugate b ofa with Vbo =/= Vo.
Since dimF Vo m(2n + 2), dimr,_ Vo Vo > 2nm, from which it follows that
Vo c V contains a vector Wo which is nonsingular with respect to the form on
Vo (consider the corresponding F 2-quadratic form). Thus for some h 6 H,
C(wo) N’. Considering Wo in the form on Vo, by the previous remarks Wo is
also non-singular with respect to this form and L,,,o_ Hb. Thus
Vo c V

_
[V, ]. As argued before, w 6 IV, ] is non-singular in Vo if and

only if w is non-singular in V. One easily checks, however, that

H (L[ w is a non-singular vector in IV, ]).
Thus Hb= (L w is non-singular in [V, ]) by this argument, contrary to
H#H.

This completes the treatment of the various standard form problems which
have arisen when m(C)= 1. This lengthy argument plus (6.6.4) gives"

(6.6.5) L is in standard form in G, m(C) > 1 and G is quasisimple.

Next suppose for some proper subgroup H of G with L
_
H and C HI

even, L H, whence also L/ H. By Lemma 6.3, and induction L- A,,
Sp2n(q), or U4(2), for some q 2 and L_ L*

_
H with

L* A,,+k, f2.+ 2(0)or Za. U,(3) resp.,

iT(L*) the natural module. By the Main Theorem of [11 we must have L - A,,
G- A,+ or L As, G J2. In the former case, by Lemma 2.4, V is the
natural module for G, contrary to G being a counter-example. In the latter case,
since by the 2 local structure J 2 does not contain subgroups of type A9, f] (4)
or t22 (4) we must have L* A7 and for z an involution in C H, (z)L* ET;
then

C,,<>(z) Z x :s
which is incompatible with the structure of Cs,(z). This contradiction proves"

(6.6.6) L
___
H whenever L =_ H = G and C c H is even.
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By lemma 6.4 we obtain’

(6.6.7) If Z1, Z2 are involutions in C and (z l, z) is a 2-group, for some
h G, then either z N or z e Nh; and if z 1, z 2 are involutions in C and
(zt, Zh2) D,k, k odd > 1, for some h G, then z C.

We next prove"

(6.6.8) O2(C) 1.

Forsuppose O2(C):/: 1 and letZ KI(Z(02(C))), (zalz Z#,# G}. Itfol-
lows from (6.67) that e is a set of root involutions in G, hence G may be
identified by [28]. However, in none of the groups in Timmesfeld’s list does the
centralizer of a root involution contain a standard component centralized by a
fourgroup. This contradiction establishes (6.6.8).

(6.6.9) If [Ca c N[ is even, for some g G N, [C, Ca] 1.

Suppose Cg c N[ is even, for some g G N and let T Syl2(Cg c N), be
an involution in T. If O 2(CT), by the Baer-Suzuki Theorem inverts an
element of C* of odd order. Note that since C O2’(C), by Lemma 6.7, for
every x C,

Iv,
It follows therefore that IV, t] c Cv(L) O. But then for some involution
z Cc(t) and some non-zero v IV, t] c Cv(L) c Cv(z), C(v) (L, I, z, t)
and (6.6.6) conflicts with (6.6.5). Thus t O2(CT)so (6.6.8) forces It, C] 1. In
particular,

C c_ C(t)c_. Ng

and since g was arbitrary in G N, this argument applied to g- gives C
_

N.
Since for each x C, [V, x]

_
Cv(L) and O(G)

_
Z(G),

o(c)

If O(C) O(C) :p 1, by (6.6.6) and (6.6.5), L =/Y, a contradiction. This proves

[C, C]
_
O(C) O(C) 1,

as claimed.
By Theorem 1 of [4] the Sylow 2-subgroups of C are elementary abelian and

by Theorem 4 of [3] C is solvable. This establishes"

(6.6.10)
(6.6.11)

C/O(C) is an elementary abelian 2-group;
If [C c N[ is even, for some ff G N, <C, C> C x C.

Now let E SyI2(C), E
_

S Syl2(G) and let {El, E} E c S, [/, G
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such that E, C’. By (6.6.7), (6.6.10) and (6.6.11) <E a, En> is elementary
abelian and since E centralizes O(C), for all 4: j it follows that

(6.6.12) E c S Ex x E2 x E,.

For each set 5e of commuting conjugates of C define M(b) (’]c,se N,
where M(b)= G. Over all such sets let 5* be one of largest cardinality such
that there exists O G with Co commuting with all members of 5a* and
Co _</ /(5g*); since C _</ G, such 5a* is always available. Replacing 6e* by
a G-conjugate if necessary we may assume C commutes with all elements of S/’*
and C _</_< M(*). Set M M(5*).

If z is an involution in Cm, m M define

O(z) <Chlh M and ]Ch NM(Cm)I is even>.
By the maximality of * and (6.6.9), whenever ICh NM(C")I is even, for
some h M- Ncm),

[Ch, Cm]= l and Ch

_
: NM(Cm).

Thus O(z)< Nu(cm). Since C/O(C) is an elementary abelian 2-group, by
(6.6.12) so is O(z)/O(O(z)). Finally, since cm<l O(z), by construction of M,
O(z) M.

(6.6.13) If zl C, z2 Ch, h M and zl, z2 are commuting involutions,
O(z) 0().

By symmetry it suffices to show O(z2) O(za)" this is clear if C C so we may
assume h N. By (6.6.9), [C, C] 1, so C

_
O(z 2). Since Sylow Z-subgroups of

0(z2) are abelian and CM(Z)=_ NM(C), the latter group contains a Sylow 2-
subgroup of 0(z2). Finally, since m(E) >_ 2, O(O(z2)) F1,/(O(0(z2))) -- NM(C),whence 0(z2)

_
NM(C) which yields the inclusion 0(z2)

_
O(z).

Let D be the involutions in M-conjugates of C. Note that by (6.6.7), D
satisfies property (+)" for d, e e D, either Z((d, e))= I or Z((d, e)) c D qb.
Let be the graph whose vertices are the elements of D and (d, e) an edge if
and only if de ed 1.

(6.6.14) is disconnected.

For if @ is connected, by (6.6.13), for all z, z2 D, 0(z)= 0(z2), and so

O(z)
_
M, a contradiction.

Let H (D), H/S(H). By (6.6.14) and Theorem 4.1 of [28] of the follow-
ing holds"

(i) H=I;
(ii) H is a Bender group;

(iii) L2(q) t Y’k, q 2 > 2, k 3 or 4;
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(iv) ’ :p " and is a class of odd transpositions in .
Let E T Syl2(H) and note that if Ch T q: 1, Ch

_
O(z), for all z E*.

Suppose H is non-solvable but E S(H) q: 1. In this situation, by Frattini’s
argument,

Nn(T c S(H))=
covers B and for z E* S(H), O(z) 0(zx), for all z D H. Thus H
normalizes O(z), so O(z)_ S(H) contrary to E S(H). If n is non-solvable,
therefore, E S(H) 1. This means cases (iii) and (iv)cannot hold for in ea6h
of these H contains no fourgroup all of whose involutions are in D, whereas

#

_
and m(E)= m() > 2.

Since the centralizer ofeach involution in a simple Bender group is a 2-group
and m(E) > 2, in either case (i) or (ii), O(C) S(H). As above, T normalizes
O(z), for each z E* so by properties of solvable groups

O(C) c_ O(O(z)) c_. O(TS(H)) c_ O(H).
Let H/O(H) so by (6.6.7) we obtain"

(6.6.15) / is a set of odd transpositions in

Suppose/ is not a single class in//so by properties of odd transpositions
Li =/t w Li2 where [Lit, Li2] 1 for some non-empty subsets / of Li. If
/# G Li t, let Dt denote the preimage set of involutions in H i.e. Dt E#<t>.
Also, since D E#u, there exists h M such that D2 E’#<’>. It follows
from (6.6.9) that [Dr, D2] 1 which contradicts being disconnected. Thus
/# /t and similarly/* g/2. Now n Ft,r(n)_ N(C), contrary to
being disconnected. This argument proves/5 is a single class in//. In particular,
[/= [/’ so H is not solvable. Since E c $(H)= 1, it follows that

(6.6.16) - L2(q), Sz(q), Ua(q), q I 1.
Now replace H by a suitable subgroup Ho containing O(H)E witho L2(q),
Sz(q) and/ c [/o is a single class in/ with//o (/5 //0). We lose no
generality in assuming H Ho, i.e. L2(q) or Sz(q). By Lemma 2.6 and
(6.6.12) applied to tff,

(6.6.17) // L2(q)or Sz(q).

Let be an element of//of order q 1 normalizing E. As noted, O(H) N
so every element of the coset h" is in N. Since Eis inverted by e, for some e E,
x H we may pick h H in the coset gwith h inverted byf= d’. Clearlyf N
else H (O(H), E, h, f)

_
N, contrary to C being solvable.

First note that if a E # and Vo [V, a], Vo c V 0: for otherwise there
exists v Cvo(f) with v 4:0 and C(v)_ (a, f, L); by (6.4.6) Co(v)_ N, a
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contradiction. For any a E#, a fso..dim V dim [V, f]; thus if U is any
subspace of V with U c U y 0, dim U < dim V. Since V,,

_
Cv(L) but by

(6.6.8), a does not centralize Cv(L), V c Cv(L) and so Cv(L) Cv(L)s O.
Let

A N(Cv(L) Cv(L))
_

(L, f, h).
If C c A is even, by (6.6.6), A_ N, again a contradiction. Next suppose
Cc A contains a fourgroUp F which we may assume contains f. Since
F Cx

_
H, by properties of L2(q), Sz(q), (F, h) covers//. Thus (F, h) con-

tains Eo with Eo O(H)= EO(H). But since O(H) N, Eo O’(EO(H))= C,
contrary to. [C c A] being odd. This proves (f) Syl(C’ c- A). It follows
from (6.6.7) that fA is a class of odd transpositions in A. By [2], fa F1 w
F w w F, where F is a non.empty class of odd transpositions in (F) and
[Fi, Fj] 1, for all :/: j. Without loss of generality we assumef F and set
A (F1); note that as f inverts h A, h A 1.

(6.6.18) L

If L=[L,h], then L_(fa); since Al(fa), L_A1 as claimed. If
[L, h] 1, since L permutes {F 1, F,}, L normalizes A 1. Suppose L 9 A 1.

Because
O(H)_A and AIA,

we have [O(H), f] X
_
A 1. Since O(H)

_
N either IX, L] L or [X, L] 1.

Because L Ax, X centralizes L. Since O(H)_ N’, X
_
O(C’) and since

X O(G)-- 1,
(L, Lx, f) c_C_ Nt(X) G.

By (6.6.6), N(X) N’. Thus L acts on Cv(E’) and V/Cv(E’). If L centralizes
Cv(E’), by orders Cv(E’)= Cv(L)so by (6.6.6)applied to

N,(Cv(L))
we obtain L E’ or [L, E’] 1, a contradiction. If, however, L does not centra-
lize Cv(E’), [L, L*] centralizes Cv(E’) and V/Cv(E’) and so is a 2-group. This
forces [L, E’] 1 again contrary to L being in standard form. Thus L_ A

Let A2 A((f), n A’2. By [2], A2/S(A2)is isomorphic to one of:

(1)
(2) Sp2,(r), U,(r), O (r), Sz(r), r even;
(3) O(r), r 3 or 5;
(4) F22 F23 F24;

(5) L2(r) t Z,, r even.

Now because G is not a Bender group, by Theorem 2 of [3], there exists
g G N such that C c N is even, whence, by (6.6.9), C normalizes L. If
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L normalizes/2, since C
_
Co(Ca)

_
Na, by (6.6.6),/2 normalizes L, a contra-

diction. Since L N and C 02’(C) it follows from (6.6.6) that C centra-
lizes Cv(L), whence Ca

_
A. Since Ca normalizes L and permutes {F 1, F,},

C normalizes B.
Suppose XO(Ca) with X=pl, Nc,(X)l even and [X,L]=I. As

X c O(G) 1, N6(X) c G so by (6.6.6), L normalizes/2 which we have. seen to
be impossible. By Lemma 5.34 of [27] there exists KI x K2 Ca with
K D2,,, for some odd primes p.

If LS(B)/S(B)_ E(B/S(B)) and B/S(B) L2(r t A, then L L2(r 1), for

some rl r; in this situation Ca has a normal subgroup X with O(Ca): X < 3
and IX, L] 1. By the preceding paragraph, X 1 and so the statements
O(C)[ _< 3, m(E)>_ 2 and O2(C)= 1 are incompatible. Thus in case (5),

From this it follows that B [B, d], d e K’, 1, 2.
Note that O(B)= F,e,(O(B))_ N, so

[O(B), Cq_ O(B) X.

Since IX, L] c_ L c O(B)c_. Z(L), IX, L] 1 by the 3 subgroups lemma,
whence X 1 by previous results. Thus B [B, Ca] centralizes O(B). Let d be
an involution in K i, so Co,_tn(d c_ Na. Therefore

o(K )I O (S)
so, by the P x Q lemma, O(K2) centralizes O2(B), whence so does
[B, O(K2)] B. This argument proves S(B)c_ Z(B). Indeed, if 02(B) 1, as L
centralizes O2(B), by (6.6.6), L A, contrary tof g. Thus S(B)= O(B) as
well. By Lemma 2.9 applied to B/O(B), C has a normal subgroup X with

[O(C*): X < 3 and IX, B] _c O(B).
Again IX, L] 1 so X 1 and the properties m(C)>_ 2, O(C)[ _< 3 and
02(C)= 1 are incompatible. This contradiction completes the proof of
Theorem 6.6.

Proof of Theorem G. Let J1, J2 be distinct blocks with J1 J2 and let

V O(J2), 72 J2/O2(J2).
By definition of "--," there is a 2-group S normalizing J2 such that J is a
component of C(S); moreover, as t3(J).,[O2(J2), J], - has a unique non-
trivial irreducible constituent in V. Let J2 S J2 S/C,s(V) so 3’2 is a central
(odd order) quotient of 72. If j e J2 and [g, j’] I, then [S, j]

_
Cj2(V)

_
02, 2,(J2) so it follows that Cj,(S) covers Cj2(g). Theorem G is now immediate
from Theorem 6.4.
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ProofofTheorem E and F. Let J :*(G), for some finite group G of charac-
teristic 2 type, S Syl2(Co(J/O2(J))), so by assumption J

_
<_ N6(S). Let

(G) {K[K is an f2(2S)-block, g < < N(T), T Syl2(C6(K/O2(K)))},
so the relation "" extends mutatis mutantis to :(G) t(G).

(EF.1) If K 6 ’*(G) (G), either g
_
N, for every maximal 2-local

N
_
K or K is a block of L2(2)-type and K - L 6 (G).

To prove this let g
_
Y
_
KT, T Syl2(C(K/O2(K))), with Y maximal sub-

ject to Y _/_ N, for some maximal 2-local N containing Y. Let Q 02(Y); we
first show K <2 N(Q). This is true by assumption if Q T so consider when
Q= T. Then Q*=Nr(Q)Q so as Y=QK, by maximality of Y,
K < < N(Q) as claimed. Let H O2(N). If QH Q, then Q Non(Q and
Non(Q

_
C(K/O2(K)), so by maximality of Y, K _<a

_
N, contrary to assump-

tion. Thus QH Q and since H =/: Q, H Q. Since G is of characteristic 2 type
U(K)

_
H. Since KH/H is a component of Csm(Q/H), by the L-balance

Theorem [3.1 of 23], KH/H
_

L(N/H). Let

H
_
X
_
N with X/H ((KH/H)u/m)

so X/H is a product of 2-components of N/H and Q normalizes X. Since
H
_

Q, KH has a unique non-central 2-chief factor, whence XQ has a unique
non-central 2-chief factor, 1/. Let an overbar denote passage to XQ/Cxe(v).
Since G is of characteristic 2 type every non-trivial odd order element ofN acts
faithfully on H, so X/H. Thus is a component ofCx). By Lemma 6.2,

centralizes O() so (()) is semisimple. If is an fl (2m)-block, by
Theorem 6.5, K, whence K X)

_ _
N, a contradiction. Assume there-

fore K is quasisimple. By Theorem 6.6, X(R)) is either a block or an
f2 (2m)-block and K X). Next, over all such N

_
Y with Y _< _< N pick N

to maximize first X()[ and, subject to this, to maximize

Let L Xt) and P SyI2(CIc(L/O2(L))) with P normalized by Q. Let M be a
maximal 2-local subgroup of G containing N(P), so Y

_
M. Since initially N

was arbitrary, there exists Lt, a block or f(2m)-block of M, with K
_
L a.

Since L
_
M we must have L_ L so by maximality of ILl, L L t. Since

P
_
02(N(P))_ CM(L/O2(L)),

by maximality of P I, P SyI2(C(L/O,_(L))). Thus L
_ _

No(P)implies

L (O) (O).

Since is quasisimple, by hypothesis K *(O) and since K L and K q: L,
L (G). It follows therefore by Theorem 6.6 that the second conclusions of
(EF.1) holds in this situation.
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By (EF.1) to prove both Theorems E and F it suffices to show"

(EF.2) If K *(G)w t(G) and K
_

N, for every maximal 2-local
N
_

K, then K is contained in a unique maximal 2-local subgroup.

To prove this let Ka, K, be a maximal set of commuting conjugates of K
with K Kt and set

D (Kx, K,), M No(O2(D)).
By the hypothesis of (EF.2), M is a maximal 2-local subgroup and M No(D).
Suppose N is any maximal 2-local containing K. Let

Do (Kg]Kg_ N, 9 G).

By hypothesis Do _< N. Let L be a block of Do; we show L {K1, K,}: this
is clear if L K so assume [L, K] 1. Then No(O2(K))=_ Do, O and by
hypothesis Do, D < < No(O2(K)) so by Lemma 2.1 distinct blocks in (D, Do)
commute; by maximality of D, L {K2, K,} as claimed. Thus Do < D so
D No(Do) N, whence D

_
Do by definition. Thus N No(D) M, as

needed to complete the proof.

Proofof Theorem D. Let J be a block in some maximal 2-local subgroup M
of G with G of characteristic 2 type, let Q O2(M), Q_ F with F/Q
F*(M/Q) and note that as Q F*(M), U(J)_ Q so J _< F.

(D.1) There is a maximal 2-local M1 ofG with No(J)
_
M1 andJ < < M1.

Assume this is not the case so, in particular, No(J) M. Let N be a maximal
2-local containing No(J), P 02(N) and jt= {J1, J2, J,}, r _> 2, J J1.
For Po N,(Q), Po - M so [Po, F]

_
F c P

_
Q; thus PoQ/Q centralizes

F/Q so by properties of F*, Po - Q. This proves P
_
Q so P c Q. Since Ji acts

non-trivially on P, U(Ji)
_
P so JP/P is a component of CN/e(Q/P). As in the

preceding proof by Theorem 6.6, there exist K, blocks or f(2m)-blocks of N
with J,- K,, 1 < < r. Moreover, either J, K, or K,/O2(Ki) A,, n(2m)
or Z. U,(3). From this it follows that [K, K] 1, for all i=pj. Now let
m e M such that J jm,, 1 2, 3,..., r. Since jm-1 4: J, [jm-1, Kl] 1
whence [J, K]"] 1, 2, r. Thus K]’ N(J)

_
N. Since Ji K Km’

and K _< _< N, K K", 2,..., r. Suppose (K1,..., K,) N so there
exists n N, j e {1, r} such that [K, K] 1, 1 < < r. In this situation

r r7 =- J,)) _< m.
Furthermore, since K < < N

_
F, by properties of F*, K is a block of M. Let

K* (K =_

so K*_F_N. Since for each K either K=J or K is of known
type and since [K*, J1] 1 by inspection [K*, KI]= 1. Thus
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K1 -NG(K*)_ M and since J1 M, K1 J1. But now we may take
M N, contrary to assumption. This argument proves

(K1, K,.) <N.

Since NG(J 1) - N and Na(J 1) normalizes K 1, (K 1, K,) (K) is nor-
malized by M, contrary to M :p N. This establishes (D.1).
Without loss of generality Na(J) M so as an immediate consequence of

(D.1) for R Syl2(Cu(J/O2(J))) we obtain

(D.2) R Syl(C(3/O(J))).

It remains to prove J _<1 N(R). Let g Na(R); we prove J
_
M. If U(J)

is abelian,

U(J) =_ Z(R) =_ Z(Q) and [J, Z(Qp] =_ u(J) =_ Z(R) Z(Rp
_
Z(Qp,

whence

J
_
N(Z(Q)) M.

If U(J)is non-abelian, since R centralizes U(J)’ and [U(J), R]
_

U(J)’, R’
centralizes U(J). Thus [J, R’] U(J) C(U(J))

_
Z(J)and so [J, R’] 1 by

the 3-subgroups lemma. Since U(J)_ Q, Q’ 1 and [J, Q’*]
_

[J, R’] 1,
whence

J
_
NG(Q")= M.

In both cases J M* and, since J < < M,

J
_
< M* N(R) <I N(R).

Na(R)

This completes the proof of Theorem D.
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