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CENTRAL LIMIT THEOREMS IN A
FINITELY ADDITIVE SETTING1

BY

S. RAMAKRISHNAN

1. Introduction

Let I be an arbitrary nonempty set. Let I* denote the set of all finite se-
quences of elements of I including the empty sequence and P(I) denote the set
of all finitely additive probabilities defined on all subsets of I. A strategy o on I
is a mapping on I* into P(I). The strategy o is called an independent strategy if
there exists a sequence [y,},l of elements of P(I) such that o(p) %/1
whenever p is an element of I* of length n, n _> O. (The empty sequence has
length zero.) In this case we shall denote o by

T X ’Y2 X X ’y. X

If % Ym for all n, rn >_ 1, then o will be called an i.i.d strategy. If

o(i,, i.)

for all n >_ 1 and all i,..., i E 1, then o will be called a Markov strategy with
stationary transitions. Let N stand for the set of positive integers and equip
H IN with the product of discrete topologies. Let be the a-field of subsets
of H generated by open sets. Following Dubins and Savage ([4] and [3]), and
Purves and Sudderth [9], it can be shown that every strategy a induces a finite-
ly additive probability on 8, unique subject to certain regularity conditions.
We shall conveniently denote this probability on by o again. To state the cen-
tral limit theorems in a finitely additive setting, we shall call a sequence YI
of real valued functions on H a sequence of coordinate mappings if Y(h)
depends only on the n-th coordinate of h for all h E H.

THEOREM 1A (Lindeberg theorem). Let o be an independent strategy on L
Let [Y.I, be a sequence of coordinate mappings on H such that

)do(h) 0 and 0 < S Y(h)d(h) < oo
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140 S. RAMAKRISHNAN

for all n. Let

Vn

for n E N and h H. If

&(h) Y(h) +... + Y(h), V +... + V.

(L) Y2(h)da(h)--.O as n-* oo for all t>0,

then

where

<_ x) --(x) for every real x,

e_y2/2dy.(x)
42r

THEOREM 1B (Feller theorem). Let a be an independent strategy on L Let
Y.I, be a sequence of coordinate mappings on Hsuch that

Y.(h)da(h) 0 and 0 < I Y(h)da(h) < oo

for all n. Let Sn, v be as in Theorem 1A./f

(i) a(h S"(h) x)--b(x)foreveryrealxwhereisasin Theorem 1A,

and,

(ii) max v -0 as n
k<n

then (L) holds.
A sequence Y} of coordinate mappings on His called an identicalsequence

of coordinate mappings if there exists a real valued function f such that
Y(h) f(hn) for all n N and h H, where h denotes the n-th coordinate
ofh.

THEOREM 2. Let o be an Li.d. strategy on L Let {Y,} be a sequence of iden-
tical coordinate mappings on Hsuch that

Y.(h)do(h) 0 and 0 < I Y(h)do(h) < oo

for all n. If v Y(h)do(h), and S. and are as in the previous theorems,
then

S. <_ x) O(x) for all real x.h’4--v
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The proofs of Theorems 1A, 1B and 2 are given in Section 2. The main
technique used is that of restricting the given strategy to a suitable measurable
strategy and using the corresponding known theorems in the countably addi-
tive case. This technique of reducing to the countably additive case has been
first mentioned in [9]. Later on this has been used by Chen 1] and Halevy and
Rao [6] to prove results on almost sure convergence in an independent strategic
setting.
For a strategy t and p E I*, the conditional strategy given p, denoted by

tr[p], is the strategy defined by tr[p](q) (pq) for all q E I* where pq is the
element of I* whose terms consist of the terms ofp followed by the terms of q.
If Z is a real valued function on H and tra measure on (H,), we shall use de
Finetti’s convention of denoting Z(h)dg(h) by tr(Z).

For the rest of the section let r be a Markov strategy with stationary transi-
tions. For j I, let t.t be the function on H defined by

n ifh jandh jfor 1 m <n,
G.l(h)

otherwise.

For a real valued functionfon I andj I, let Z.. denote the function onH
defined by

t, (h)

Zt..(h) f(h=), hH.

(The subscript 1 does not play any role now but will be helpful later.)
For i,j I we say that weakly leads to j (denoted by j), if

a[i](t.t < ) > 0.

An element I is called positive recurrent if m, a[ i](t, t) < . The set I
is said to be a positive recurrent class under a if (a) ij for MI i,j I and (b)
is positive recurrent for all L It follows from Corolly 5, Section 7 of [10]
that if I is a positive recurrent class under a, and a[i](Zt. 11.3 < m for some

I, then

aff](Zt..) independent ofj.

(In [10], o[j](Zt..) is denoted by (f). It is easy to see that

([fl) a[i](Z,, t.,) <
is equivalent to both (f+) and (f-) being finite, since (f[)=
(f+) (f+) + (f-), wheref andf- are the positive and negative parts of
f, respectively.)

THEOREM 3. Let be a Markov strategy with stationary transitions and let
I be a positive recurrent class under t. Supposef is a real valuedfunction on I
such that for some I,
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(a)

(b)

a[i](Zt, lfl.,) < oo, and

o < [i](z’-1.-M.) < oo, where M

Then for every j I,

otJl ( h"

a[i](Z..,)
mii

Sn(h) Mn
-(x) for every real x,

where Sn and d are as in the previous theorems and

a[i] (Z._,,.,)

The proof of this theorem is given in Section 3. The idea is to reduce it to the
i.i.d, strategic situation and use Theorem 2. In Section 4, we prove that B, is in-
dependent of and make some remarks regarding the assumptions made in
Theorem 3.

2. The independent and i.i.d case

We shall need the following theorem proved by Chen [1]. (The proof of a
special case is also available.in Purves and Sudderth [9].) Let {s.11 be a se-
quence of a-fields of subsets of L A strategy a on ! is said to be a measurable
strategy with respect to [s} if

(i) a(p) is countably additive when restricted to s, whenever p is an ele-
ment of I* of length (n 1), and

(ii) the map

is measurable with respect to set x x s, the product a-field, whenever

THEOREM. Let a be a strategy on [and [s/n} be a sequence of a-fields of
subsets ofL Suppose a is a measurable strategy with respect to 1.’1 t. Then
thefinitely additive probability a on Y is countably additive when restricted to
IIns, the product a-fieM ofsubsets ofH.

Let o be an independent strategy and lye} a sequence of coordinate map-
pings on ! such that Y,(h)da(h) 0 and 0 < Y(h)da(h) < oo for all n.
Then for each n N, we choose a positive integer M _> n such that

I Y(h)da(h) < 2.,....{h:l Y.(h)l >M.I

It is then easy to check that

I Ih:l r.(h)l M.I
Y"(h) lda(h) < and o[h Y.(h) - M.I < 2,;l/a..
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We now define a new sequence {Z.] of coordinate mappings as follows.

Z.(h) M. if Y.(h) <_ M.,

M. if Y.(h) >_

J. J Y,(h) < k + M.2./3,k+
M.2./3

if k+
M.2,/

_< j+ 1

k -M., -M,+ 1,...,M.- 1,

j 0,1,...,M.2"/3- 1.

For each n _> 1, Z. induces a finite partition on X and let ’, be the a-field
generated by this partition. Clearly the strategy a is measurable with respect to
[d.}. Therefore by the theorem stated above, a is eountably additive when re-
stricted to YI ..

Let

Y.do, v’. Z.d, .,s. v, +... + v.#. Z,da, v.
and s.2. vl +...+’2 v.2.. The following Lemmas 1 and 2 are straightforward
to verify, hence their proofs are omitted.

LEMCA 1. I#- < 1 / 2"/1 for all n 6 N.

,2LEMMA2. [V.--V, < 1/2"foralln > 1.

LEMMA 3. If Q is a strictly increasing real valuedfunction on N such that
Q(n) as n-, then for each e > O,

s.(h)- s’.(n)
Q(n)

where S’. Z +... + Z.for all n. (In other words, (S, S’,)/ Q(n) converges
in -probability to zero.)

Proof. Given , 6 > 0, we first choose a positive integer no such that

-’-o 2"/- < "]"

and then choose n > no such that

(i) Sn0
Q(n)

(ii)
Q(n)
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(iii) 1 < --, for all n n

Such a choice of nl is possible since I(S.o)l < oo, I(sZo)l < oo and
Q(n)! oo. We now observe that for n >_ nl,

S- S:
Q(n) Q(n)

Q(n) k=n0

Therefore, for n >_ n,,

> -_ + +
k=n0

This proves the lemma.

LEMMA 4. The condition (L) in Theorem 1A holds iff the condition (L’)
stated below holds.

(L’) lls* F.,k’-, IiIz-l>,,:l(Z- gk)da-O as n--oo for all t>O.

Proof. Suppose (L) holds. Plainly, because of (L), s--00 as n--oo.
Lemma 2 then implies that s/s’- as n- 00. It is therefore enough to show
that

1 I (Zk- #)da--O as n--"
ilZk_kl>tSnlSn

Let t > O. Given e > O, we choose a positive integer no such that for
n _> no, we have

(a) _-r <T’S,,

(b) ts:- t-s.> 1,

1 Yda < --.(c)
Sn k=l

It easily follows from (b) that if n no, then for _< k _< n,

Ilk(h) -/zk > ts:} C_. {I YI > -s. and Yl{h

Therefore for n >_ no,
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I (Z- u)d

_< _- 2Y + 22--2-S. Ilrkl > ,./21
do + 2M,o {I Y,,I >- M,I + 2# ]

(by definition of Z,,, and the inequality (a + b) -< 2a + 2b)

_< 2e/5 + e/5 + e/5 + e/5 e, by (a), (c) and the choice of Mk.

The if part is also proved similarly.

LEMMA 5. Let (,1 and (,] be two sequences of real valued measurable
functions on (H, 3, o) and [a.} a sequence ofreal numbers such that (i) a- 1,
(ii) ft, converges in o-probability to zero and (iii) t( _< x)-O(x) for all
real x. Then

o (a.rl. <- x) (x)

for all real x.

Proof.

and

For e > 0, note that for sufficiently large n,

o(. _< x- )- o(l.- -I -> ) -< o(a.t. -< x)

o(a.. <_ x) <_ o(li. < x + )+ o(l.-/.I ).

By taking lira inf in the first inequality and lira sup in the second and using
(ii), we get respectively,

4,(x- ) _< lira. inf o(a./. _< x) and lira. sup o(a.. <_ x) <_ (x + ).

Since is arbitrary, the assertion follows.

Proof of Theorem IA. If (L) holds, by Lemma 4, .so does (L’). Therefore
by the classical Lindeberg theorem (page 280, [8]),

o h" ’ _<x -(x)

for all real x. By Lemma 1,

k=l -0as n-oo.
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Therefore (by Lemma 5),

s; <
s:

By Lemma 3, S*./s’. S./s’. converges in g-probability to zero. An application
of Lemma 5 with . S*./s, . S/s’. and a s/s now completes the
proof of the theorem.

LEMMA 6.
,2

Max W--0 iff Max v --0.
1k. s 1k" s

The assertion is an easy consequence of Lemma 2 and we omit the proof.

Proof of Theorem lB. The condition (ii) in the hypothesis of the theorem
implies that s. oo and also that

,2

Max v, ..--0 as n--oo
l<kn S*n

(by Lemma 6).

By an application of Lemma 5 (similar to the one made in the proof of
Theorem 1A), condition (i) gives us

k=

s:
_< x --O(x) for allx.

It then follows from the classical theorem of Feller ([8], page 280) that (L’)
holds. Lemma 4 now completes the proof of the theorem.

Proof of Theorem 2. In view of Theorem 1A, it is enough to verify that

kl

Ydo-O as n-00, for all t > 0.

Since [Y.} is a sequence of identical coordinate mappings, this is equivalent to
verifying that

I Y2t--0asn-oo, for allt > 0.

Since v y2tdo < 00, the last mentioned condition is easily seen to hold.
Thus the theorem is proved.
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3. The Markov case

An incomplete stop rule t is a function on H into NU[o} such that if
t(h) n for some n E Nand h’ agrees with h through the first n coordinates,
then t(h’) n. For example, tj. 1, the time of first occurence of j, defined in
Section 1, is an incomplete stop rule. We begin this section by proving the
Strong Markov property.

PROPOSITION (Strong Markov property). Let a be a Markov strategy with
stationary transitions. Let t be an incomplete stop rule such that for some

I, h,,h, for all h [t < oo }. Let g be a Borel measurablefunction on H
such that o [i](g) is defined (may be infinite). Iff is afunction on H defined by

(1) f(h) t g(h,h+l, h,h+2, ) for h [t < oo}

0 otherwise,

then a(f) exists and a(f) a(t < oo)a[il(g), if a(t < oo) > O.

Proof. If g 1, where B, then f is clearly A where hA iff
t(h) < oo and

(In the terminology of [10], this is the same as saying A is conditionally de-
termined given t.) This case is now easily seen to be a restatement of Theorem
4, Section 3 of [10]. The result for a simple function g follows by linearity. If g
is a bounded measurable function, then we can get simple functions g, con-
verging uniformly to g. The assertion is seen to hold for g by just noting that
f,, defined by (1) corresponding to g, converges uniformly to f. If g is a non-
negative function,

a(f) sup (fAn) sup a(t < oo)a(gAn) a(t < oo)a(g).

The general case follows by taking positive and negative parts.
We next prove a couple of elementary but useful lemmas on finitely additive

integration.

LEMMA 2. Let P be afinitely additive probability defined on a a-field st of
subsets of a set X. Let be a nonnegative, measurable, extended real valued
function on X such that P( n)-O as n-oo. Then

Li,m dP P( >_ n).
l<n}

Proof.
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Lim I dP > kP(k <_ <k+ 1)

P(k <_ < k+l)

P(_> n).

The last step follows since P( >_ n)-O implies that P(// n)= ;,
P(k <_ li < k + l).

LEMMA 3. Let P be a finitely additive probability defined on a r-fieM s of
subsets of a set X. Let be a nonnegative, measurable, extended real valued
function on X such that P( > n)-O as n--o0. Then

dP Lim I dP.
I<nl

Proof. If I2,,,P(// >_ n)= oo, then by the previous lemma,
LimIl<,l dP oo and the result is trivially true. IfnP(/j -> n) < oo, then
nP( >_ n)-O as n--o. Therefore,

IdP=Li"ml EAndP=Lim" [I ,<,,,EdP+nP(E>n)]
Lim [ dP.

j It<n}

Remark. If dP is finite, the hypothesis of the lemma is clearly satisfied.

LMMA 4. Let r ,t N be an i.i.d, strategy on Xand {.} a sequence ofnon-
negative identical coordinate mappings on X such that r(.)l < ofor all n.
Let D be a subset ofX and let 0 be thefirst hitting time ofD defined by

k ifomD, <_ m < k,okED,
0(oo)

o if no such k exists.

Let p > O. Assume r(0) < o and r(O/) < o0. Then r(0’,.,) < o0.

Proof. There is no harm in assuming that ,, > 1 for all m. Since
r(-)l < o, and r(0) < o,, it is easily seen that

Given e > 0, we can first choose n such that r(O > n) < e/2 and then
choose n, such that r(, > n) < /2n.. Then
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r 1 > ng+tn, < r(0 > no)+ -(,,, > n,) < e.
m=l

Therefore by Lemma 3,

For 1 < m < n,

For m n,

7"(ml..3 7"(,I

Further observing that (0 n) [t(Dgl"-t(D) and using the finiteness of
(,), we have,

"r 0 p m r/P{(n 1)k, + k2} (0 n),

where kl, k2 are constants. The right side of the above expression is finite be-
cause

r(O) < oo and

This proves the lemma.
Let a be a Markov strategy under which I is a positive recurrent class (de-

fined in Section 1). For E I, we shall denote by t.. the incomplete stop rule
corresponding to the nth occurrence of i, and by G the set of h E H with
infinitely many coordinates equal to i. We state below some of the results from
[10] we shall be using.

THEOREM. For all i, j in thepositive recurrent class L [j ](G) 1. (This as-
sertion is a part of Theorem 9, Section 4 of [10].)

For an I, let Fbe the set of all nonempty finite sequences of elements of I
whose last coordinate is and none of the other coordinates is i, (F will be
called the set of/-blocks). Let fl F be equipped with the product of discrete
topologies and let Y’be the Borel a-field on ft. On G, we define a sequence {/3.}
of functions into F called the/-block variables as follows"

131(h) (hl,...,h,.,(h)), and ./(h) (h,.(h)/,...,h,../th)
for all h G and n N. Let I, be the mapping on G, in f defined by

,(h) (,(h), ,(h),...,...).
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It is easily checked that I, is 1-1, onto and a (topological) homeomorphism.
Let . be a measure on F defined by

(D) t[il(/]’(D)) for all D C__ F.

Let r be the i.i.d, strategy induced by , on ft.

BrOCKS THEOREM (Theorem 2, Section 5 of [10]). For each B
r(B) a[i](xI"t(B)) (i.e., xI, is a measure isomorphism of (H, ,j[i]) and
(t, , r)).
For g a real valued function on/, let

ti,n+l(h). g(hm) for h C G,,
m=tt, n(h)+l

0 for h (E G.

Since a[jl(G,) for all j E I, on a set of t[jl-measure one, Zn.e., is the
sum of g values in the nth/-block. Let g be a real valued function on I such that
for some E L a[i](]Zt.e., [’) < o, where p is a positive number. For a j :
and h H, let

n if the nth/-block contains the 2nd j in h,
O**(h)

oo it no such n exists.

LEMMA 5.

[il Z,.,., I" <

Proof. Let O(h) be the smallest n such that the nth/-block contains a j (if
such an n exists), and if no such n exists; and let 0*@) be the smallest n
such that the (n + 0)th/-block contains j (if such an n exists), and if no such
n exists. It is easy to see that

0**(h) < 0(h)+ 0*(h)

for all h H. Therefore the lemma would be proved if we showed that

p " P for allIt follows by a use of the elementary inequality
p > O, m and non-negative real numbers x,... ,x, that it is sufficient to
prove that
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We can use the strong Markov property to the incomplete stop rule t,.0 to
observe that

l( ’)I
kffiO+ kffi

Another use of the elementary inequality above shows that it suffices to prove
that

o[i] 0" Z.,., < .
k=l

Let D be the set of elements of F (where F is the set of/-blocks defined be-
fore the blocks theorem) in which no coordinate is j. Clearly for each n,

where 9, and fl are as defined earlier. So, by the Blocks theorem,

o[i]{O n (D"-* x D’x fl)

{(D)]--t x (D) (since u is i.i.d.)

[[i](t,.t < ts.a)l-t[i](ts., < t,.t), n

(by definition of ).

Lemma 3, Section 6 of [10] shows that for i,j in a positive recurrent class,

[i](b., < t,.,) > 0

(the hypothesis ij of Lemma 3, Section 6 of [10] is satisfied by definition of
positive recurrent class and t, t(1) in [10] are ts.t and t,.t respectively in our no-
tation). So 0 has a geometric distribution and hence [i](O0 < for all
p > 0. Since 9 is a measure isomorphism between (h,, [i ]) and (fl, , u), to
prove

is equivalent to proving

k-I

This follows from Lemma 4 (since o[i](O0 < 0o for all p > 0 is equivalent to
r[(0 6-t)] < 0o for all p > 0). This completes the proof of the lemma.
For h E G,, let f(n)(h) denote the number of coordinates equal to among

ht,...,hn,n >_ 1.

LEMMA 6. For every > 0 and j E I, there exists an integer k such that
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o [j](n t.et., > k) <

for all n E N. (If e(n) o, t. et, is taken to be zero.)

Proof. a[jl(n- t.e,, >- k)

t [j](n t.e., s)
k

o[jl[(n s)th coordinate is and (n s + 1)th through
,. nth coordinates are different from i]

o[jl(h h,-, i)o[il(t,., > s)

(Use the strong Markov property for each term-for the sth term
with t -= n- s)

o[i](t. > s) for allnEN.

The result now follows because ,.% o[i](t. > s) <_ o[i](t.) < , as the
state space is assumed to be positive recurrent. (Here we use the fact that for a
nonnegative integer valued random variable , the integral with respect to a
finitely additive probability P, IdP, is ,.P( > n). This is Lemma 1, See-
tion 6 of [10]. We could also use Lemma 2 and the remark after Lemma 3.)
From now onwards letf be a real valued function on I such that

Let

[ i](Zt. I/I.’) <

Y’(n)(h)

ti, l(h)

f(h) if t,.t(h) < n,

0 otherwise.

LEMIA 7. For all j L Y’ (n) / x/-h converges to zero in o[j]-probability.

ti,o** 0"*Proof. We first observe that X;,.,.2/ f(h)l -< X; _-, Z, :1.’" Therefore by
Lemma 5 applied with p ot z,,-_.,.:,tf(h,)])< oo. However, this,
by the strong Markov property (applied t t,2) is easily seen to be equal to
[j](Z. I/I, 3. Further

IY’(n) _< Z,, I/I,’

for all n. Hence the result would follow if we show that t [j](Zt, I/I.’ : k) tends
to zero as k--oo. This is true because t [j](Zt. I/I.3 <
For n N, let Y"(n) " f(h) h H.
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L.uuA 8. For allj L Y"(n)/ -n converges to zero in [j]-probability.

Proof. For any positive integers k and n, k n, let t’ be the incomplete
stop rule corresponding to the first occurrence of after the (n- k)th coor-
dinate, and t" be the incomplete stop rule corresponding to the (k + 1)st oc-
curence of after the (n k)th coordinate. On the set for which n t. et. < k,

Ig"(n) If(h,)l.

By the strong Markov property (applied to t’), we see that the
t[j]-distribution of t,/l If(hs) and the a[/]-distribution of k,IZ,. Izl. are the
same. Hence,

k

= >

We now apply Lemma 6, to complete the proof.
From now onwards we shall assume that f satisfies the hypotheses of

Theorem 3 (stated in Section 1). The next few lemmas are aimed at showing
that e,-,

a[j ,’2 < X (x) as n o
4B,n

for all real x and for all j, where M, B,, are defined earlier.

LEMMA 10. Let r be an independent strategy on X. Let {Y.] be a sequence
of coordinate mappings on XN such that .([Y, I) < oo for all n >_ 1. If
v[S/n -g] 1, where g is a real number and S F,k., Y, then given
> O, > O, there exists an integer No such that

r --# < eforalln > No > 1-.

Proof. Assume , /are given. We choose a sequence of positive integers
[M] such that Illrl>ull LId < 1/2k, k > 1. We then define Z exactly as
in Section 2 so that Z assumes only finitely many values and Y- Z
< 1 / 2, whenever Ykl < M, k > 1. Let

We first choose no such that

H
n’nO

[1- 21-7] > 1--.
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We then choose n, _> no (using the fact that r(IS.o]) < o0) such that

Sn0 > -- < "r Sno

and 1/n < e/8 for all n n. Since

r "-n-- < -g- for all sufficiently large n 1,

and

an

it follows that

{Ir -z l <

So
n

< ks n}

for all n n,

for all sufficiently large n I > 1 3....
By the theorem of Chen stated at the beginning of Section 2, there exists an in-
teger No such that

r -- <
8

We may assume No n. It is now easy to check that

r ---# < eforalln No > l-r/,

since

8 n -f’) {IY-ZI <-,nk n1
__C {1 S

_#n. < e foralln_>n,,

This completes the proof of the lemma.
Let F be the set of/-blocks as defined before and let fl, , fl,, 9 also be as

defined earlier before blocks theorem. Let j E I. Let 7t, 3’ be the finitely ad-
ditive probabilities defined on all subsets of F, defined by
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yt(D) a[jl(B;’(D)), /(D)= a[il({3;’(D)), D C_. F.

Let "1:, x "r[ be the independent strategy on F which associates ,, with the
empty sequence and y with every other finite sequence.

LEMMA 11. For every B E r, o[j](’-’(B)) y1 X "y(B).

Proof. For B E ., by the basic integration formula [9, page 265],

3/, x y(B) I y(Bx)dy,(x) where Bx {w xw B}.

By the blocks theorem, (since y’ is same as r defined earlier),

3/(Bx) o[ i](9-(Bx)), x F.

Therefore

3’, x 3,’(B) .I [ i1(-’ (Bx))dyt(x)

[ r[i](’I’-(B < ht,...,h,, >)d,[i](h)
J {ti, < o}

by the change of variable theorem where

B < h,,...,h,,, > {h’H:(h,,...,h,.,,h’)B].
Then, this equals tr[ i](9-t(B)), by Proposition 3, Section.3 of [10]. Hence the
lemma is proved.

Let m, tr[i](&t). Fix an such that 0 < < 1. Let St(n) be the integral
part of

$(n) the integral part of

and $*(n) the smallest integer larger than n/m,,.

I.A 12. For the given , there exists a positive integer no such that

a[j][h’tbl(n) < t(n)(h) < (n)for all n > no} > 1-.

Proof. Let 0 < < 1. On fl /m, let , be the length of the kth coor-
dinate, k _> 1. By Lemma 11 proved above and by Corollary 8, Section 7 of
[10], which asserts that

1}
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it follows that

1._ix__ w" m,

By Lemma 10, there exists a positive integer N(5) such that

W < 5 for all n z N(5)

We can arrange matters so that

(m,,+5) Nqi)+l < m,,+2&
N()

We then choose a positive integer N1 (5) such that
1a[j](e(N,()) N()) > 1--e.

To make this choice we may first choose integers m, m, such that

a[j](&, _< m,) 1- e and a[i](&,) <_ m,) >_ 1-
2N() 2N()

and then setNt() mt + (N(fi)- 1)m2. The choices ofmt, m2 exists because
of Theorem 7, Section 6 of [10] which asserts that oL/](&t) < 00 for alli,j in a
positive recurrent class. The above choice of Nt(6) satisfies our requirement
since {(Nt()) _> N(6)}

D It., -< mr} fq Iml + (k-2)m2+ _< t., m, + (k-1)m,,
for all2 <_ k <_

consequently, o[Jlle(N,((5) _> N()}

>_ o[j][It,. <_ m,} [rot + (k- 2)m, + _< t,.k -< mt + (k- 1)m,
for all 2 _< k _< N()}]

>_ o[jl(t., < m,)lo[il(&., <_ m,)}m’)-’
(by the strong Markov property)

Since for h G,,

it follows that

e(n) e(n) e(n)

n
(n) < 2di for all n _> Nt(di) } _> e.
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This implies that

a[j] h m. 1- 2 ) <e(n)< n /l+ 2i )m. 2t5 m. m. 2t5

for alln > N,() I > 1-e.

If we now choose 0 < dio < small enough such that

260 <
m.- 2i5o 2

and take no to be the larger of N(5o) and 2m,/15, then it is easily seen that no
satisfies the assertion in the lemma.

LEMMA 13 (Kolmogorov’s inequality). If r is an independent strategy and
Yk] a sequence ofcoordinate mappings such that z(Yk) 0for all k >_ and
r(Y) < oo for all k, then for 15 > O, and all n,

r(max IS, > 15) -< r( Y,) /152.

Proof. The same reasoning as in the countably additive theory goes
through and hence we omit the details (see [8|, page 235 for a proof in the
countably additive case).

LEMMA 14. For allj E I and all real x,

a[j]
E Zm,f_M,i

h m=2 X b(x) as n--.

Proof. Let 0 < 15 < and $,(n), $2(n) and $*(n) be as defined before. By
Lemma 12, there exists no such that no > 2m,,/15 and $1(n) < $*(n) < $2(n)
for n > no, and

a[j](C) _> 1-15 where C [h $1(n) < e(n) < ,(n)for all n >_ no].

If h E C, then for all n _> no,

*(n)

Zm,f-M,i-- Zm,f-M,i
m--2 m=2

_< 2 Max
1 (n)+l k<2(n)

k

Now by Kolmogorov’s inequality,
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oIj]{2 Max
l(n)+t <k <q2 (n)

4142(n)- $t(n)lv
e2v$*(n)

_< 10.

(where v, a[ il(Z,./-M.,))

Therefore

o[jl {
Consequently,

e(n)

v,4*(n) -., v,4*(n) -.

converges to zero in o[j l-probability. By the strong Markov property,

orj]
v,4(n) .. z.._., <_ x

which converges to I,(x) by Theorem 2. It only remains to observe that

lira v,x/$*(n) 1,
/B,n

to complete the proof of the lemma, using Lemma 5 of Section 2.

Proof of Theorem 3. If S.(h) f(h,) +... +f(h.) for n 1,

S. Mn Y’ (n) + Z..,-,, + Y"(n)- M(n t,,.., + t,,,) if t,,, n.

Y"(n)- Mn if t.t > n

Since o[j](t,.t k)--O, the assertion follows by using Lemmas 6,7,8 and 14
and Lemma 6 of Section 2.

4. Remarks
In the countably additive case, the Central Limit Theorem for positive

recurrent Markov chains holds for f such that
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(a) o[i](Z..,) < oo and

(b) 0 < o[i](Zt,y_,,) < oo (see [21).

The following example shows that these assumptions are not sufficient in the
finitely additive case.
Example. Let I be the set of all integers. Let o be the Markov strategy with

transitions defined by o(0)= . p.. . + ./2 where p. are (strictly)
positive numbers adding up to 1/2 and .. p.. 1/4,/5. is the point mass at
n, and . is a diffuse probability on I such that - (N) 1 and .(even num-
bers) ,(odd numbers); (clearly, by choice, o(0)(even numbers) o(0)(odd
numbers)), o(n) _., for n _> 1 and o(n) 5o for n _< -1. Let f be the
function on I defined by

2n if n > O,
f(2n)

2n-1 ifn_< -1,

2n+l ifn > O,
f(2n+l)

2n ifn < -1.

It is easily checked that I is a positive recurrent class under o. Further
Z..o 1 on a set of o[O]-measure 1/2 (all sequences which are extensions
of <2n, -2n, 0>) and Z..o 1 on a set of o[O]-measure 1/2 (all sequences
which are extensions of < 2n + 1, 2n 1,0 >). Consequently

However

a[O](Z,..o) 0 and a[O](Z.o) I.

<X > o(O)[k" k > xx/ 3n + 1 + n]

> -- for all n > 1 and all real x.

Therefore the CLT does not hold for f.
The rest of the section is devoted to showing that B is independent of i.

LEMMA 1. Iff is a function such that o[i](IZ..,l") < oo, then

o[j](lZ,./.l’) < o,

for all j I where p > O.

Proof. Let j i. By lemma 5 of Section 3, o[i] I.,.Z.,,,, I" < . Let

r(h) h), Y(h) h,) and
ks1 kstj,
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t,O** h

By the strong Markov property *[i](I Y[9 ,[J](Iz,..l). So the lemma
is equivalent to proving that if [i](IY + Y + Y 19 is finite then

*[i1(I Y[) <
We shall first show that t[i]( Yt + Y,_I ) < oo. First, it is not possible that

[i](I Y ] ->/c) for all k _> 1,

since then t[i][IY _> 2]Yt + Y ] + k] 1 for all k > 1. (To see the last
assertion we can apply the strong Markov property to the incomplete stop rule
tj..) This would imply

t[i](2 Yt + Y + YI _> k) 1 for all k

(since 2]Yt + Y + Y [Y [- 2 Y + Y21 ) and this is impossible since

[i](I Y + Y + YI) <
Let k be such that t[i](2,1YI < k) > 0. Let t[i]( Yt / YI) be infinite if
possible. We can then choose an integer No such that

* ,[i1(2 Y + Y +[i](JY + YI _> n) > ,[i](2IY] < k)’
k+

The last step uses the fact that a random variable has a finite integral with
respect to a finitely additive probability P iff X;t P(II > n) < oo. An easy
way to see this is to observe that [] ]] _< ]] _< [] 1] + 1, where [] 1] is the
integral part of I1, and note that

n"l

We then have

o[i](21Y + Y + YI) < [i](I Y + y,.]o _> n). [i](21YI
n=k+

[i]{I Y, + Yl _> n, 2IYI
n’k+

(by the strong Markov property)
NO

< t[i][2l rt + Y2 + Y[o > n}.
n--1

This is a contradiction by Lemma 2 of Section 3. Therefore
< o.A similar argument as above shows that o[i]([Y2 [.) < oo. This com-
pletes the proof.
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LEMMA 2. If 0 < B, < oo for some i, then 0 < B < oo for all j E I.

Proof. By the previous lemma applied to f-M with p 2, it follows
that B < oo for alljEI. If B 0 for some j, it is easily seen that
(S. Mn)/x/-n converges to zero in tr[j]-probability, which would contradict
Theorem 3. This proves the lemma.

PROPOSITION 3. Let I be a positive recurrent class under t. Then B is inde-
pendent of i, where B, is as defined before.

Proof. If B, is infinite for some i, then it is so for all i, because of Lemma
1. If B, 0 for some i, B cannot be positive for anyj because of Lemma 2. If
0 < B < oo for allj I, by Theorem 3 it follows that B, B for all i,j I.
This proves the proposition.
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