ON THE COHOMOLOGY OF THE LIE ALGEBRA OF FORMAL VECTOR FIELDS PRESERVING A FLAG

BY

K. SITHANANTHAM

1. Let

$$\mathscr{A}_{n,r} = \left\{ \sum_{i=1}^{r} f_i(x_1, \ldots, x_r) \frac{\partial}{\partial x_i} + \sum_{i=r+1}^{n} f_i(x_1, \ldots, x_n) \frac{\partial}{\partial x_1} \right\}$$

 f_i -formal power series in the variables concerned.

and

$$\mathcal{A}_r = \left\{ \sum_{i=1}^r f_i(x_1, \dots, x_r) \frac{\partial}{\partial x_i} \middle| f_i \text{-formal power series in } x_1, \dots, x_r \right\}$$

The cohomology groups of \mathscr{A}_r were studied by Gelfand and Fuks [4]. In this paper we prove that $\mathscr{A}_{n,r}$ is r-connected: $H^i(\mathscr{A}_{n,r}\mathbb{R}) = 0$ for $0 < i \le r$.

In this context Professor A. Haefliger asked the author whether

$$H^i(\mathscr{A}_{n,r}, \mathbf{R}) \simeq H^i(\mathscr{A}_r, \mathbf{R})$$
 for $i \leq 2n$ (canonically).

Here we prove this isomorphism for $i \le n - r$ only (Theorem 3.6). The method of this paper is not powerful enough to answer Haefliger's question for i > n - r.

The method of proof is essentially that employed by M. Jacques Vey [10] in proving a vanishing theorem for the cohomology of the formal Poisson algebra.

We describe below how the cohomology groups of $\mathcal{A}_{n,r}$ (\mathcal{A}_r) are related to the characteristic classes of a flag of foliations (a foliation). For more details see [3] and [1].

Let M^m be a smooth manifold of dimension m. A flag of smooth foliations of codimensions r, n ($r \le n$) is a pair of foliations \mathscr{F}_r , \mathscr{F}_n on M of codimensions r, n respectively such that the leaves of \mathscr{F}_n are contained in the leaves of \mathscr{F}_r . Let v_r be the normal bundle of \mathscr{F}_r and let

$$v_{n-r} = \frac{\text{normal bundle of } \mathscr{F}_n}{\text{normal bundle of } \mathscr{F}_r}$$

Received March 22, 1982.

Let $E(\mathcal{F}_n, \mathcal{F}_r)$ be the principal $Gl(r) \times Gl(n-r)$ bundle associated to $v_r \oplus v_{n-r}$; let $E(\mathcal{F}_r)$ be the principal Gl(r) bundle associated to v_r . The inclusion

$$i: v_r \rightarrow v_r \oplus v_{n-1}$$

and the projection

$$\pi: \nu_r \oplus \nu_{n-r} \rightarrow \nu_r$$

induce

$$i': E(\mathscr{F}_r) \to E(\mathscr{F}_n, \mathscr{F}_r)$$
 and $\pi': E(\mathscr{F}_n, \mathscr{F}_r) \to E(\mathscr{F}_r)$

such that $\pi' \circ i' = \mathrm{id}_{E(\mathscr{F}_r)}$. Hence i', π' induce on the cohomology level maps i^* and π^* satisfying

Similarly there is a canonical inclusion $i_1: \mathscr{A}_r \to \mathscr{A}_{n,r}$ and a projection $\pi_1: \mathscr{A}_{n,r} \to \mathscr{A}_r$ such that $\pi_1 \circ i_1 = \mathrm{id}_{\mathscr{A}_r}$. Hence on the cohomology level, we have $\pi_1^* \colon H^*(\mathscr{A}_r, \mathbb{R}) \to H^*(\mathscr{A}_{n,r}, \mathbb{R})$ which is injective and $i_1^* \colon H^*(\mathscr{A}_{n,r}, \mathbb{R}) \to H^*(\mathscr{A}_r, \mathbb{R})$ which is surjective.

Given a smooth foliation \mathcal{F}_r , of codimension r on M^m , there is a homomorphism

$$j_{\mathscr{F}_r}: H^*(\mathscr{A}_r, \mathbb{R}) \to H^*(E(\mathscr{F}_r), \mathbb{R})$$

whose image depends on the integrable homotopy class of \mathscr{F}_r . The elements of the image of $j_{\mathscr{F}_r}$ are called characteristic classes of \mathscr{F}_r . For this reason one may view $H^*(\mathscr{A}_r, \mathbf{R})$ as universal characteristic classes of codimension r foliations.

In a similar way, given a smooth flag on M^m , one can construct a homomorphism

$$j_{(\mathscr{F}_n,\mathscr{F}_r)}: H^*(\mathscr{A}_{n,r}, \mathbb{R}) \to H^*(E(\mathscr{F}_n, \mathscr{F}_r), \mathbb{R}).$$

Given a flag $(\mathcal{F}_n, \mathcal{F}_r)$ of foliations, we have the following commutative diagram:

$$H^{k}(\mathscr{A}_{n,r}, \mathbf{R}) \xrightarrow{i_{1}*} H^{k}(\mathscr{A}_{r,r}, \mathbf{R})$$

$$\downarrow^{j}_{(\mathscr{F}_{n},\mathscr{F}_{r})} \qquad \qquad \downarrow^{j}_{\mathscr{F}_{r}}$$

$$H^{k}(E(\mathscr{F}_{n}, \mathscr{F}_{r}), \mathbf{R}) \xrightarrow{i} H^{k}(E(\mathscr{F}_{r}), \mathbf{R}).$$

The i_1^* associates to a characteristic class of a flag of foliations, the corresponding characteristic class of the bigger foliation. Thus the elements of the kernel of i_1^* are precisely those additional characteristic classes one gets by subfoliating a codimension r foliation. The geometric implication of the canonical isomorphism $H^k(A_{n,r}, \mathbf{R}) \simeq H^k(A_r, \mathbf{R})$ $(k \le n - r)$ is that these additional characteristic classes can appear only in $H^k(\mathcal{A}_{n,r}, \mathbf{R})$, k > n - r.

The author wishes to thank his adviser Dr. D. Sundararaman for his kind help and encouragement; and Prof. Andre Haeflinger for his valuable suggestions, encouragement, and specifically for the proof of Lemma 3.2. Thanks are also due to the referee for his comments.

2. Let S denote the polynomial algebra in n indeterminates x_1, \ldots, x_n over **R**. Let $\Lambda = \bigoplus_{p=0}^n \Lambda^p$ denote the exterior algebra with generators e_1, \ldots, e_n over **R** with deg $e_i = 1$. Let M be a module over S. We have the following complex:

$$(2.1) Cs(M): \cdots \to \Lambda^{p} \otimes M \to \Lambda^{p-1} \otimes M \to \cdots \to M \to 0$$

where d is defined by

$$d((e_{i_1} \wedge \cdots \wedge e_{i_p}) \otimes m) = \sum (-1)^{t+1} (e_{i_1} \wedge \cdots \wedge e_{i_t} \wedge \cdots \wedge e_{i_p}) \otimes x_{i_t} m.$$

We have $d^2 = 0$ and the homology of this complex is denoted by $H^S(M)$.

Consider the map $\varepsilon: S \to \mathbb{R}$ defined by $\varepsilon(x_i) = 0$. Then \mathbb{R} becomes a S module and we consider the complex

(2.2)
$$\rightarrow \Lambda^p \otimes S \rightarrow \Lambda^{p-1} \otimes S \rightarrow \cdots \rightarrow S \stackrel{\epsilon}{\rightarrow} \mathbf{R} \rightarrow 0$$
. It is a free S-module resolution for \mathbf{R} and is known as Koszul resolution. For more details on this see [7].

3. Let L be a topological Lie algebra and L^* its topological dual: $L^* = \{f : L \to \mathbb{R} \mid f \text{ is continuous and linear}\}$. Let $T \subset L$ be a finite dimensional abelian subalgebra. Then T acts on L and L^* via adjoint representation and this extends to an action of the universal enveloping algebra of T which is S(T), the symmetric algebra of T.

PROPOSITION 3.1. Let L, T be as above. Assume that L* is a free S(T) module. Then we have

$$H^i(L, \mathbf{R}) = 0$$
 for $0 < i \le \dim T$.

Proof. We need the following lemma.

LEMMA 3.2. Under the assumptions of the proposition, $C^{i}(L, \mathbf{R}) = \Lambda^{i}(L^{*})$ is a projective S(T) module.

Let $C = \bigoplus_{i>0} \Lambda^i(L^*)$. Consider the double complex

$$A = (\Lambda T \bigoplus_{\mathbf{R}} S(T)) \bigoplus_{S(T)} C, \quad A^{p,q} = (\Lambda^{-p} T \bigoplus_{\mathbf{R}} S(T)) \bigoplus_{S(T)} C^{q}$$

There are two differentials d' and d'' on A:

$$d': A^{p,q} \to A^{p+1,q}, \quad d'': A^{p,q} \to A^{p,q+1};$$

d' is induced by the boundary operator of the Koszul resolution and d'' by the coboundary operator of the complex C. One can check that d' d'' + d'' d' = 0. H(A) denotes the cohomology of A with respect to the total differential d = d' + d''.

This double complex is zero outside the strip $-n \le i \le 0$, $j \ge 0$ where $n = \dim T$. Hence the associated spectral sequences converge.

Consider the first filtration of A, given by $F^pA = \bigoplus_{i \geq p} A^{i,q}$. The E_0 term of the corresponding spectral sequence is given by

$$E_0^p = \frac{F^p A}{F^{p+1} A} \simeq A^{p^*} = \bigoplus_q A^{p,q};$$

the differential d_0 on E_0 is the differential d'' on A. Hence

$$E_1^p = H(E_0^p) = H_{d'}(A^{p^*}).$$

Consider

$$A^{p,q} = (\Lambda^{-p}T \otimes_{\mathbf{R}} S(T) \otimes_{S(T)} C^q) \simeq \Lambda^{-p}T \otimes_{\mathbf{R}} C^q.$$

As the differential in the complex C does not involve any action of L on T (and hence on $\Lambda^{-p}T$) we have

$$H_{d'}(A^{p^*}) = H(\Lambda^{-p}T \otimes C) = \Lambda^{-p}T \otimes H(C).$$

The differential d_1 on E_1 is that on the Koszul complex, and as the action of S(T) on H(C) is trivial we have

$$E_2 = \Lambda T \otimes_{\mathbf{R}} H(C)$$

That is, $E_2^{p,q} = \Lambda^{-p}T \otimes H^q(C)$.

Similarly considering the second filtration, the E_0 term of the associated spectral sequence is given by

$$E_0^q = (\Lambda T \otimes_{\mathbf{R}} S(T)) \otimes_{S(T)} C^q$$

The differential d_0 on E_0 is induced by that of the Koszul complex $\Lambda T \otimes S(T)$. As the Koszul complex is a free S(T) module resolution for \mathbf{R} and C^q is a projective S(T) module we have

$$E_1^q = \mathbf{R} \otimes_{S(T)} C^q$$
.

This spectral sequence collapses and $E_2 = H(\mathbf{R} \otimes_{S(T)} C)$. Therefore for the first spectral sequence,

$$E_2^{p,q} \to H^{p+q}(\mathbf{R} \otimes_{S(T)} C).$$

Let r be the first integer such that $H^r(C) \neq 0$. Then

$$E_2^{-n,r} = H^r(C) \neq 0$$
 and $E_2^{-n-i,r+i} = E_2^{-n+i,r-1} = 0$.

This implies that $E_2^{p,q} \simeq E_{\alpha}^{p,q}$ whenever p + q = -n + r. Hence

$$E_2^{-n,r} = H^r(C) \simeq H^{-n+r}(\mathbf{R} \bigotimes_{S(T)} C).$$

But $H^i(\mathbf{R} \otimes C) = 0$ for $i \leq 0$. Therefore -n + r > 0. This proves the proposition.

Proof of Lemma 3.2. As L^* is S(T) free, we can write $L^* = S(T) \otimes V$. As $\Lambda^k(L^*)$ is the direct summand of $\bigotimes^k (L^*)$, it is enough to prove that $\bigotimes^k (L^*)$ is S(T) free. We know that $\bigotimes^k (L^*)$ is $\bigotimes^k S(T)$ free because $\bigotimes^k (L^*) = \bigotimes^k (S(T)) \otimes \bigotimes^k V$. Therefore it is sufficient to prove that $\bigotimes^k (S(T))$ is S(T) free.

S(T) acts on $\bigotimes^k (L^*)$ through the map $\alpha: S(T) \to \bigotimes^k S(T)$ where

$$x_i \rightarrow x_i \otimes 1 \otimes \cdots \otimes 1 + 1 \otimes x_i \otimes \cdots \otimes 1 + \cdots + 1 \otimes \cdots \otimes x_i$$

$$S(T) = \mathbf{R}[t_1, \dots, t_n]$$
 and $\bigotimes^k S(T) = \mathbf{R}[t_j^i], i \le n, j \le k,$

and the action α sends $t_i \to \sum t_i^j$. Using new indeterminates s_j^i we have the isomorphism $\phi \colon \mathbf{R}[s_j^i] \to \mathbf{R}[t_j^i]$ where $s_i^1 \to \sum t_i^j$ and $s_i^j \to t_i^j$, j > 1. $\mathbf{R}[s_j^i]$ is a free $\mathbf{R}[t_i]$ module through the action $\phi^{-1} \circ \alpha$ because $\phi^{-1} \circ \alpha(t_i) = s_i^j$. Therefore $\mathbf{R}[t_i^i]$ is a free $\mathbf{R}[t_i]$ module.

We next prove that the assumption of Proposition 3.1 is satisfied for $L = a_{n,r}$ and $T = \{\sum_{i=1}^{r} \alpha_i \partial/\partial x_i | a_i \in \mathbb{R}\}.$

LEMMA 3.3. Let $L = \mathcal{A}_{n,r}$ and $T = \{\sum_{i=1}^r \alpha_i \partial/\partial x_i | \alpha_i \in \mathbb{R}\}$. Then L^* is free over S(T).

Proof. For $i \le r$ let $\alpha = (\alpha_1, ..., \alpha_r)$ be a multiindex and for $r + 1 \le i \le n$ let $\beta = (\beta_1, ..., \beta_n)$ be a multiindex.

Define ∂_{α}^{i} , $\partial_{\beta}^{j} \in L^{*}$ by

$$\partial_{\alpha}^{i}\left(\sum f_{i} \frac{\partial}{\partial x_{1}}\right) = \frac{1}{\alpha !} \frac{\partial^{|\alpha|} f_{i}}{\partial^{\alpha_{1}}, \ldots, \partial^{\alpha_{r}}} \bigg|_{0},$$

$$\partial_{\beta}^{j}\left(\sum f_{i} \frac{\partial}{\partial x_{i}}\right) = \frac{1}{\beta!} \frac{\partial^{|\beta|} f_{j}}{\partial^{\beta_{1}}, \dots, \partial^{\beta_{n}}} \Big|_{0}$$

It is known [2] that $\{\partial_{\alpha}^{i}, \partial_{\beta}^{j} | 1 \le i \le r, r+1 \le j \le n\}$ generates L^{*} .

If θ denotes the adjoint representation of L on L* then

$$\theta\left(\frac{\partial}{\partial x_k}\right)\partial_{\alpha}^i = -(\alpha_k + 1) \,\partial_{(\alpha_1, \dots, \alpha_k + 1, \dots, \alpha_r)} \quad \text{if } k \le r$$

$$= 0 \qquad \qquad \text{if } k > r$$

and

$$\theta\left(\frac{\partial}{\partial x_k}\right)\partial_{\beta}^j = -(\beta_k + 1) \,\,\partial_{(\beta_1,\ldots,\beta_k+1,\ldots,\beta_n)}^j.$$

The following algebraic fact is well known (for example, see [8]).

Let M be a graded module over $\mathbf{R}[x_1, ..., x_n]$. The following are equivalent:

- (i) M is free over R[x₁,..., x_n].
 (ii) x_i is a nonzero divisor of

$$\frac{M}{(x_1,\ldots,x_{i-1})M}$$

for $1 \le i \le n$.

By virtue of this fact it suffices to prove that if $k \le r$ and

$$\partial \left(\frac{\partial}{\partial x_k}\right) \partial_{\alpha}^i = -(\alpha_k + 1) \ \partial_{(\alpha_1, \dots, \alpha_{k+1}, \dots, \alpha_r)} \in \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_k}\right) L^*$$

then

$$\partial_{\alpha}^{i} \in \left(\frac{\partial}{\partial x_{1}}, \dots, \frac{\partial}{\partial x_{k-1}}\right) L^{*}.$$

This implies that $\alpha_i > 0$ for $i \le k - 1$; say $\alpha_1 > 0$. Then

$$\partial_{\alpha}^{i} = \frac{-1}{\alpha_{1}} \theta \left(\frac{\partial}{\partial x_{1}} \right) \partial_{(\alpha_{1} - 1, \dots, \alpha_{r})}.$$

Hence

$$\partial_{\alpha}^{i} \in \left(\frac{\partial}{\partial x_{1}}, \dots, \frac{\partial}{\partial x_{k-1}}\right) L^{*}$$

Now we use Proposition 3.1 to get:

THEOREM 3.4. $H^{i}(\mathcal{A}_{n,r}, \mathbf{R}) = 0$ for $i \leq r$. Consider

$$\Pi = \left\{ \sum_{r+1}^{n} f_i(x_1, \ldots, x_n) \frac{\partial}{\partial x_i} \right\} \subset \mathscr{A}_{n,r}$$

and

$$T = \left\{ \sum_{i=r+1}^{n} \alpha_{i} \, \partial/\partial x_{i} \, | \, \alpha_{i} \in \mathbf{R} \right\}.$$

then T is abelian and Π^* is generated by

$$\{\partial_{\beta}^{i} | r+1 \leq i \leq n \text{ and } \beta = (\beta_{1}, \ldots, \beta_{n})\}$$

As above, one can show that Π^* is S(T) free. Therefore we have the following result.

THEOREM 3.5. $H^{i}(\Pi, \mathbf{R}) = 0$ for $0 < i \le n - r$. From this we deduce the required theorem:

THEOREM 3.6. $H^{i}(\mathscr{A}_{n,r}, \mathbf{R}) \simeq H^{i}(\mathscr{A}_{r}, \mathbf{R})$ for $i \leq n - r$.

Proof. Consider the Hochschild-Serre spectral sequence [6] for $\mathcal{A}_{n,r}$ relative to the ideal Π . The E_2 term is given by

$$E_2^{p,q} = H^q(\mathscr{A}_r, H^p(\Pi, \mathbb{R})).$$

Thus $E_2^{0,q} = H^q(\mathscr{A}_r, \mathbf{R})$ and $E_2^{p,q} = 0$ for $0 < q \le n - r$.

As the Hochschild-Serre spectral sequence converges to $H^*(\mathscr{A}_{n,r}, \mathbb{R})$, we have

$$H^{i}(\mathscr{A}_{n,r}, \mathbf{R}) \simeq H^{i}(\mathscr{A}_{r}, \mathbf{R}), \quad i \leq n - r,$$
 Q.E.D.

Remark. Let $r \le n$. Let $\Gamma_{n,r}$ be the topological groupoid of germs of local diffeomorphisms of \mathbb{R}^n of the form

$$f(x, y) = (g(x), h(x, y))$$

where $(x, y) = (x_1, \ldots, x_r, y_1, \ldots, y_{n-r}) \in \mathbf{R}^r \times \mathbf{R}^{n-r}$, g is a local diffeomorphism of \mathbf{R}^r and h is a smooth map from an open set of \mathbf{R}^n to \mathbf{R}^{n-r} . Let Γ_r be the topological groupoid of germs of local diffeomorphisms of \mathbf{R}^r . Let $B\Gamma_{n,r}$, $B\Gamma_r$ denote the Haefliger's classifying spaces for $\Gamma_{n,r}$, Γ_r respectively [5]; $B\Gamma_{n,r}$, $B\Gamma_r$ classify $\Gamma_{n,r}$ foliations (flags of foliations) and codimension r foliations, respectively.

There is a canonical morphism from $\Gamma_{n,r}$ to $\Gamma_r \times Gl_{n-r}$ given by

$$f = (g, h) \rightarrow (g, d_y(h))$$

This induces a map π on the classifying space level:

$$\pi: B\Gamma_{n,r} \to B\Gamma_r \times BGl_{n-r}$$

The author has proved in his thesis [9] that π is *n*-connected.

REFERENCES

- I. N. Bernshtein and I. I. Rosenfel'd, Characteristic classes of foliations, Funktsional. Anal. i Prilozhen., vol. 6 (1972), pp. 68-69.
- 2. R. Bott, Notes on Gel'Fand Fuchs cohomology and characteristic classes, Proc. of the Eleventh Annual Holiday symposium at New Mexico State University, 1973.
- 3. B. L. Feigin, Characteristic classes of Flags of Foliations, Funktsional. Anal. i Prilozhen., vol. 9 (1975), pp. 49-56.
- I. M. GEL'FAND and D. B. FUKS, Cohomology of the Lie algebra of formal vector fields, Izv. Akad. Nauk Ser. Mat., vol. 34 (1970), pp. 322-337.
- 5. A. Haefliger, Feuilletages sur les variétés ouvertes, Topology, vol. 9 (1970), pp. 183-194.
- G. HOCHSCHILD and J. P. SERRE, Cohomology of Lie algebras, Ann. of Math., vol. 57 (1953), pp. 591-693.
- 7. J. L. Koszul, Sur un type d'algebras différentielle en rapport avec la transgression, Colleque de Topologie Brussels, 1950, pp. 73-81.
- 8. J. P. Serre, Algebre locale, Multiplicités, Springer-Verlag, Lecture Notes in Mathematics, no. 11, Springer-Verlag, New York, 1965.
- K. SITHANANTHAM, Los espacios classificantes para banderas de foliaciones, Doctoral Thesis, August, 1982, CIEA del IPN, Mexico.
- M. J. VEY, Sur la cohomologie des champs de vecteures symplectiques formels, C. R. Acad. Sci. Paris, Ser A-B, vol. 280 (1975), pp. A 805-A 807.

CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS, IPN MÉXICO D. F., MÉXICO ESCUELA DE FISICO MATEMATICAS

CUIDAD UNIVERSITARIA, UNIVERSIDAD AUTONOMA DE PUEBLA PUEBLA, MÉXICO