A NON-REMOVABLE SET FOR ANALYTIC FUNCTIONS SATISFYING A ZYGMUND CONDITION

BY
Nguyen Xuan Uy

1. Introduction

A complex-valued function f defined on the complex plane \mathbf{C} satisfies a Lipschitz condition of order $\alpha, 0<\alpha \leq 1$, if there exists a constant $C(f)$ such that

$$
|f(z+h)-f(z)| \leq C(f)|h|^{\alpha}
$$

for all complex z and h. This condition is obviously stronger than

$$
|f(z+h)+f(z-h)-2 f(z)| \leq C(f)|h|^{\alpha}
$$

which does not necessarily imply the continuity of f. When $\alpha=1$, the latter condition is usually called the Zygmund condition. We shall denote the classes of bounded continuous functions which satisfy the above conditions respectively by $\operatorname{Lip}_{\alpha}$ and Λ_{α}. If $0<\alpha<1$, it is well known (see [5, Chap. V, Section 4]) that $\operatorname{Lip}_{\alpha}$ and Λ_{α} are identical but $\operatorname{Lip}_{1} \varsubsetneqq \Lambda_{1}$.

We shall call a compact subset E of \mathbf{C}, a removable set for analytic functions of class $\operatorname{Lip}_{\alpha}$, resp. Λ_{α}, provided that every function in $\operatorname{Lip}_{\alpha}$, resp. Λ_{α}, which is analytic in $\mathbf{C} \backslash E$ has analytic extension to the entire plane. Dolženko [1] proved that E is removable for analytic functions of class $\operatorname{Lip}_{\alpha}$, $0<\alpha<1$, if and only if E has $(1+\alpha)$-dimensional measure zero. In [6] we showed that this result is also true for the case $\alpha=1$. Thus the removable sets for analytic functions of class Λ_{1} must also have zero $d x d y$-measure.

In this paper we shall construct a compact set E of zero $d x d y$-measure and a probability Borel measure μ, supported on E, such that its Cauchy transform

$$
\hat{\mu}(z)=\int \frac{d \mu(\zeta)}{\zeta-z}
$$

belongs to Λ_{1}. Since $\hat{\mu}(z)=-1 / z+\cdots$ at $\infty, \hat{\mu}$ cannot be entire.

Throughout this paper we will denote the Lebesgue measure in the plane by m, and for convenience, we denote by C certain absolute constants, not necessarily the same in different occurrences.

2. Construction of E and μ

We start with the unit square

$$
Q=\left\{z=x_{1}+i x_{2}: 0 \leq x_{1} \leq 1 \text { and } 0 \leq x_{2} \leq 1\right\}
$$

of the complex plane. For $n=1,2,3, \ldots$ let \mathscr{G}_{n} be the grid of closed octadic squares of size 8^{-n} which are contained in Q. The members of \mathscr{G}_{n} will be denoted by $Q_{j}^{(n)}$ where $j=1,2, \ldots,(64)^{n}$.

We divide the squares of each grid into two types, called red and green squares, as follows.

The red squares of \mathscr{G}_{1} will consist of 32 squares, where 28 of them are those squares that intersect the boundary ∂Q. The remaining 4 squares are chosen arbitrarily in the interior of Q.

Now suppose $n \geq 2$. For each $Q_{j}^{(n-1)} \in \mathscr{G}_{n-1}$, we choose 32 squares of \mathscr{G}_{n} which are contained in $Q_{j}^{(n-1)}$, in such a way that 28 of them intersect $\partial Q_{j}^{(n-1)}$. As above, the other 4 squares are arbitrarily chosen in the interior of $Q_{j}^{(n-1)}$. The red squares of \mathscr{G}_{n} are those chosen in this way, and the rest are green; red squares are labeled $R_{j}^{(n)}$, green squares $G_{j}^{(n)}$.

Now we define a sequence $\left\{\varphi_{n}\right\}(n=1,2, \ldots)$ of Rademacher functions as follows:

$$
\varphi_{n}(z)=\left\{\begin{align*}
1 & \text { if } z \in \operatorname{int} G_{j}^{(n)} \text { for some } j \tag{1}\\
-1 & \text { if } z \in \operatorname{int} R_{j}^{(n)} \text { for some } j \\
0 & \text { otherwise. }
\end{align*}\right.
$$

Then, by induction, we derive a sequence of functions $\left\{f_{n}\right\}$ as follows. We set

$$
f_{1}(z)= \begin{cases}1+\varphi_{1}(z) & \text { if } z \in Q \tag{2a}\\ 0 & \text { otherwise }\end{cases}
$$

If f_{n} has been defined, then

$$
f_{n+1}(z)= \begin{cases}f_{n}(z)+\varphi_{n+1}(z) & \text { if } f_{n}(z)>0 \tag{2b}\\ 0 & \text { otherwise }\end{cases}
$$

It is clear that each f_{n} assumes only nonnegative integral values, $f_{n} \leq n+1$, and f_{n} is constant on the interior of any octadic squares of size 8^{-n}. Furthermore, since

$$
\iint_{Q_{j}^{(n)}} \varphi_{n+1} d m=0
$$

we obtain

$$
\begin{equation*}
\iint f_{n} d m=1, \quad n=1,2,3, \ldots \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\iint_{Q_{j}^{(n)}} f_{n+k} d m=\iint_{Q_{j}^{(n)}} f_{n} d m \tag{4}
\end{equation*}
$$

for all $k=1,2,3, \ldots$ Therefore the sequence $\left\{f_{n}\right\}$ converges to a unique probability Borel measure in the weak-star topology.

Theorem 1. Let μ be the limit of the sequence $\left\{f_{n}\right\}$ in the weak-star topology and E be the support of μ. Then $m(E)=0$.

Proof. For $n=1,2,3, \ldots$ define

$$
S_{n}(z)=1+\varphi_{1}(z)+\varphi_{2}(z)+\cdots+\varphi_{n}(z), \quad z \in Q
$$

it is well known that $S_{n}=0$ infinitely often almost everywhere (see [2, Chap. XIV]). The support E omits the interior of any square Q_{n} such that $S_{n}=0$. Hence $m(E)=0$.

3. Density property of $\boldsymbol{\mu}$

For each square I let $\delta(I)=\mu(I) / m(I)$. If I is an octadic square of size 8^{-n}, it is easy to see that this ratio is equal to the common value of f_{n} in int I. Thus,

$$
\begin{equation*}
\left|\delta(I)-\delta\left(I^{\prime}\right)\right| \leq 2 \tag{5}
\end{equation*}
$$

for any two adjacent octadic square of the same size.
Property (5) is essential in proving the following theorem.
Theorem 2. Let

$$
S=\left\{z=a+\rho e^{i \varphi}: \varphi_{0} \leq \varphi \leq \varphi_{0}+\theta, 0 \leq \rho \leq r\right\}
$$

and

$$
S^{\prime}=\left\{z=a+\rho e^{i \varphi}: \varphi_{0}+\theta \leq \varphi \leq \varphi_{0}+2 \theta, 0 \leq \rho \leq r\right\}
$$

be two adjacent sectors of the same center and size. Then there exists an absolute
constant C such that

$$
\begin{equation*}
\left|\mu(S)-\mu\left(S^{\prime}\right)\right| \leq C m(S) \tag{6}
\end{equation*}
$$

Proof. The proof we give here is based on a method used by Kahane in [4]. First we assume that the angle θ is not too small, say $\theta \geq \pi / 4$, so that the length of the arc on ∂S is comparable with radius r. Under this assumption we see that

$$
\begin{equation*}
\frac{1}{8} \pi r^{2} \leq m(S) \leq \frac{1}{2} \pi r^{2} \tag{7}
\end{equation*}
$$

An octadic square contained in int S will be called maximal if any expanded octadic square crosses the boundary ∂S. Let p be the smallest integer such that there exists an octadic square of size 8^{-p} contained in int S. For each $j=p, p+1, p+2, \ldots$ let $\left\{\omega_{k}^{j}\right\}, k=1,2, \ldots, n_{j}$, be the collection of those maximal squares of size 8^{-j} contained in int S. Then

$$
\operatorname{int} S=\bigcup_{j=p}^{\infty}\left(\bigcup_{k=1}^{n_{j}} \omega_{k}^{j}\right)
$$

and with a little computation we can show that

$$
\begin{equation*}
m\left(\bigcup_{k=1}^{n_{j}} \omega_{k}^{j}\right) \leq C r 8^{-j} \tag{8}
\end{equation*}
$$

Now let ω^{*} be an octadic square of size 8^{-p+1} which intersects S. There are at most N such squares, where N is independent of S. Since each ω_{k}^{j} is contained in some ω^{*}, it follows from (5) that

$$
\left|\delta\left(\omega_{k}^{j}\right)-\delta\left(\omega^{*}\right)\right| \leq 2 N+j-p+1
$$

and that

$$
\begin{aligned}
\left|\mu(S)-m(S) \delta\left(\omega^{*}\right)\right| & =\left|\sum_{j=p}^{\infty} \sum_{k=1}^{n_{j}} m\left(\omega_{k}^{j}\right)\left(\delta\left(\omega_{k}^{j}\right)-\delta\left(\omega^{*}\right)\right)\right| \\
& \leq \sum_{j=p}^{\infty} \sum_{k=1}^{n_{j}} m\left(\omega_{k}^{j}\right)(2 N+j-p+1) \\
& \leq 2 N m(S)+C r \sum_{j=p}^{\infty} 8^{-j}(j-p+1)
\end{aligned}
$$

by (8). Therefore we obtain

$$
\begin{aligned}
\left|\mu(S)-m(S) \delta\left(\omega^{*}\right)\right| & \leq 2 N m(S)+C r 8^{-p} \sum_{j=1}^{\infty} j 8^{-j} \\
& \leq 2 N m(S)+C r^{2} \\
& \leq C m(S)
\end{aligned}
$$

by (7).
If we choose ω^{*} which intersects both S and S^{\prime}, then
$\left|\mu(S)-\mu\left(S^{\prime}\right)\right| \leq\left|\mu(S)-m(s) \delta\left(\omega^{*}\right)\right|+\left|\mu\left(S^{\prime}\right)-m\left(S^{\prime}\right) \delta\left(\omega^{*}\right)\right| \leq C m(S)$.
This proves the theorem in case $\theta \geq \pi / 4$.
We now consider the case when $\theta \leq \pi / 4$. We use circles centered at a to divide S into truncated sectors $S_{j}, j=1,2,3, \ldots$ which have the property that the lengths of all sides of S_{j} are comparable with $r \theta$. Note that the perimeter of each S_{j} is $O(r \theta)$. Let S_{j}^{\prime} be the corresponding sectors in S^{\prime}. Then by an argument as above we can show that

$$
\left|\mu\left(S_{j}\right)-\mu\left(S_{j}^{\prime}\right)\right| \leq C m\left(S_{j}\right)
$$

for each $j=1,2,3, \ldots$ It follows that

$$
\begin{aligned}
\left|\mu(S)-\mu\left(S^{\prime}\right)\right| & \leq \sum_{j=1}^{\infty}\left|\mu\left(S_{j}\right)-\mu\left(S_{j}^{\prime}\right)\right| \\
& \leq C \sum_{j=1}^{\infty} m\left(S_{j}\right) \\
& \leq \operatorname{Cm}(S)
\end{aligned}
$$

Remark. In view of (5) and the technique used in proving Theorem 2, we note that there exists an absolute constant C such that

$$
\begin{equation*}
\left|\mu(I)-\mu\left(I^{\prime}\right)\right| \leq C m(I) \tag{9}
\end{equation*}
$$

for any two adjacent squares of the same size. Then it follows from (9) that

$$
\begin{equation*}
\mu(I) \leq C t^{2} \log \frac{1}{t} \tag{10}
\end{equation*}
$$

for every closed square of size $t \leq t_{0}$. Then $\hat{\mu}$ is defined and continuous on the entire complex plane with modulus of continuity ω satisfying

$$
\begin{equation*}
\omega(\delta)=O\left(\delta \log \frac{1}{\delta}\right) \tag{11}
\end{equation*}
$$

for small $\delta>0$. See [3, chapter 3, Section 4].

4. The Zygmund condition

In this section we shall show that $\hat{\mu}$ satisfies a Zygmund condition. For this purpose, we define

$$
\Phi(z, y)=\left(P_{y} * \hat{\mu}\right)(z)
$$

for all z and $y>0$, where

$$
P_{y}(z)=\frac{y}{\left(x_{1}^{2}+x_{2}^{2}+y^{2}\right)^{3 / 2}}, \quad z=x_{1}+i x_{2}
$$

is the Poisson Kernel, modulo a constant, of the upper half space. It is well known (see [5, Chapter V, Section 4]) that $\hat{\mu}$ satisfies a Zygmund condition if and only if there exists a constant A such that

$$
\left|\frac{\partial^{2} \Phi}{\partial y^{2}}(z, y)\right| \leq \frac{A}{y}
$$

for all z and $y>0$. Since Φ is harmonic, this condition is equivalent to

$$
\left|\frac{\partial^{2} \Phi}{\partial z \partial \bar{z}}(z, y)\right| \leq \frac{A}{y}
$$

Thus, in view of the equality

$$
\frac{\partial \Phi}{\partial \bar{z}}=-\pi\left(P_{y} * \mu\right)
$$

it is sufficient to prove the conditions

$$
\begin{align*}
& \left|\frac{\partial P_{y}}{\partial x_{1}} * \mu(z, y)\right| \leq \frac{A}{y}, \tag{12a}\\
& \left|\frac{\partial P_{y}}{\partial x_{2}} * \mu(z, y)\right| \leq \frac{A}{y} . \tag{12b}
\end{align*}
$$

We shall give a proof of (12a). The proof of (12b) is technically the same.
We assume without loss of generality that $z=0$. If (r, θ) are the polar coordinates of $\left(x_{1}, x_{2}\right)$, then

$$
\frac{\partial P_{y}}{\partial x_{1}}=\frac{-2 x_{1} y}{\left(x_{1}^{2}+x_{2}^{2}+y^{2}\right)^{5 / 2}}=\frac{-2 r y \cos \theta}{\left(r^{2}+y^{2}\right)^{5 / 2}}
$$

For y fixed, the function $\varphi(r)=r y /\left(r^{2}+y^{2}\right)^{5 / 2}$ is increasing when $0 \leq r \leq$ $y / 2$ and decreasing when $r \geq y / 2$. The maximum value of φ is $M=\varphi(y / 2)$ $=C / y^{3}$ and

$$
\begin{equation*}
\iint \tilde{\varphi}\left(\sqrt{x_{1}^{2}+x_{2}^{2}}\right) d x_{1} d x_{2} \leq \frac{C}{y} \tag{13}
\end{equation*}
$$

where

$$
\tilde{\varphi}(r)= \begin{cases}\varphi(y / 2) & \text { if } 0 \leq r \leq y / 2 \\ \varphi(r) & \text { otherwise }\end{cases}
$$

Let n be a positive integer and consider the points $M j 2^{-n}, j=1,2, \ldots, 2^{n}$ -1 in the range of φ. Let a_{j}, b_{j} be the inverse images by f of $M j 2^{-n}$ with $b_{j}>a_{j}$, and define

$$
\begin{aligned}
\alpha_{j}(r) & = \begin{cases}1 & \text { if } 0 \leq r \leq a_{j}, \\
0 & \text { otherwise },\end{cases} \\
\beta_{j}(r) & = \begin{cases}1 & \text { if } 0 \leq r \leq b_{j}, \\
0 & \text { otherwise },\end{cases} \\
\varphi_{n} & =M 2^{-n} \sum_{j=1}^{2^{n}-1}\left(\beta_{j}-\alpha_{j}\right) .
\end{aligned}
$$

We can verify easily that

$$
0 \leq \varphi(r)-\varphi_{n}(r) \leq M / 2^{n}, \quad r \geq 0 .
$$

Next, let $\theta_{k}=\cos ^{-1}\left(k / 2^{n}\right), k=1,2, \ldots, 2^{n}$ and define

$$
\begin{aligned}
\gamma_{k}(\theta) & = \begin{cases}1 & \text { if } \theta_{k} \leq \theta \leq \pi / 2 \\
0 & \text { otherwise }\end{cases} \\
\psi_{n} & =\gamma_{2^{n}}-2^{-n} \sum_{k=1}^{2^{n}} \gamma_{k}
\end{aligned}
$$

With a little computation we can show that

$$
0 \leq \cos \theta-\psi_{n}(\theta) \leq 1 / 2^{n}, \quad 0 \leq \theta \leq \pi / 2
$$

Now, consider the sectors

$$
\begin{aligned}
A_{j, k} & =\left\{\left(x_{1}, x_{2}\right): 0 \leq r \leq a_{j}, \theta_{k} \leq \theta \leq \pi / 2\right\} \\
B_{j, k} & =\left\{\left(x_{1}, x_{2}\right): 0 \leq r \leq b_{j}, \theta_{k} \leq \theta \leq \pi / 2\right\}
\end{aligned}
$$

Then, if we consider $\varphi_{n} \psi_{n}$ as a function of $\left(x_{1}, x_{2}\right)$, it follows that

$$
\varphi_{n} \psi_{n}=M 2^{-n} \sum_{j}\left(\chi_{B_{j, 2^{n}}}-\chi_{A_{j, 2^{n}}}\right)+M 4^{-n} \sum_{j, k}\left(\chi_{B_{j, k}}-\chi_{A_{j, k}}\right) .
$$

Furthermore, by (13) we obtain

$$
\begin{equation*}
M 2^{-n} \sum_{j}\left[m\left(B_{j, 2^{n}}\right)+m\left(A_{j, 2^{n}}\right)\right]+M 4^{-n} \sum_{j, k}\left[m\left(B_{j, k}\right)+m\left(A_{j, k}\right)\right] \leq C / y \tag{14}
\end{equation*}
$$

We now extend $\varphi_{n} \psi_{n}$ to the entire plane, in such a way that the resulting extension is odd in x_{1} and even in x_{2}. Then we apply Theorem 2 to each pair of correspondent sectors whose adjacent side lies on the x_{2}-axis. It follows from (14) that

$$
\left|\int \varphi_{n} \psi_{n} d \mu\right| \leq C / y
$$

Finally,

$$
\left|\frac{\partial P_{y}}{\partial x_{1}} * \mu(0, y)\right|=\lim _{n \rightarrow \infty}\left|\int \varphi_{n} \psi_{n} d \mu\right| \leq \frac{C}{y}
$$

and (12a) is proved.

References

1. E.M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970.
2. E.P. Dolzenko, On the removable singularities of analytic functions, Uspehi Mat. Nauk, vol. 18 (1963), pp. 135-142; English transl., Amer. Math. Soc. Transl., vol. 97 (1970), pp. 33-41.
3. J. Garnett, Analytic capacity and measures, Lecture Notes in Math., No. 297, Springer-Verlag, New York, 1972.
4. J.-P. Kahane, Trois notes sur les ensembles parfaits lineaires, Enseignement Math., vol. 15 (1969), pp. 185-192.
5. N.X. UY, Removable sets of analytic functions satisfying a Lipschitz condition, Ark for Mat., vol. 17 (1979), pp. 19-27.
6. W. Feller, An introduction to probability theory and its applications, vol. 1, 2nd edition, Wiley, New York, 1965.
