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A NON-REMOVABLE SET FOR ANALYTIC FUNCTIONS
SATISFYING A ZYGMUND CONDITION

BY

NGUYEN XUAN UY

I. Introduction

A complex-valued function f defined on the complex plane C satisfies a
Lipschitz condition of order a, 0 < a < 1, if there exists a constant C(f) such
that

[f(z + h)-f(z)[ _< C(f)lh["

for all complex z and h. This condition is obviously stronger than

If(z + h) + f(z h) 2f(z)l < C(f )lhl"

which does not necessarily imply the continuity of f. When a 1, the latter
condition is usually called the Zygmund condition. We shall denote the classes
of bounded continuous functions which satisfy the above conditions respec-
tively by Lip and A. If 0 < a < 1, it is well known (see [5, Chap. V, Section
4]) that Lip and A, are identical but Lip1 A1.

We shall call a compact subset E of C, a removable set for analytic
functions of class Lip,, resp. A,, provided that every function in Lip,, resp.
A,, which is analytic in C \ E has analytic extension to the entire plane.
DolZenko [1] proved that E is removable for analytic functions of class Lip,,
0 < a < 1, if and only if E has (1 + a)-dimensional measure zero. In [6] we
showed that this result is also true for the case a 1. Thus the removable sets
for analytic functions of class A must also have zero dx dy-measure.

In this paper we shall construct a compact set E of zero dx dy-measure and a
probability Borel measure/, supported on E, such that its Cauchy transform

-z
belongs to A1. Since (z) -1/z + at o,/2 cannot be entire.
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Throughout this paper we will denote the Lebesgue measure in the plane by
m, and for convenience, we denote by C certain absolute constants, not
necessarily the same in different occurrences.

2. Construction of E and It

We start with the unit square

Q= {z x + ix2: O < xl<land0<x2<1)
of the complex plane. For n 1, 2, 3,... let fin be the grid of closed octadic
squares of size 8 -n which are contained in Q. The members of fin will be
denoted by Qn) where j 1,2,..., (64) n.
We divide the squares of each grid into two types, called red and green

squares, as follows.
The red squares of ffl will consist of 32 squares, where 28 of them are those

squares that intersect the boundary 3Q. The remaining 4 squares are chosen
arbitrarily in the interior of Q.
Now suppose n > 2. For each Qj-I) ff-l, we choose 32 squares of ft.

which are contained in Q,-1), in such a way that 28 of them intersect
8Qn-1). As above, the other 4 squares are arbitrarily chosen in the interior of
Q-1). The red squares of ft, are those chosen in this way, and the rest are
green; red squares are labeled Rn), green squares G)).
Now we define a sequence { p, ) (n 1, 2,... ) of Rademacher functions as

follows:

1 if z int G)) for some j,

(1) q%(z)-- -1 if z intR) forsomej,

0 otherwise.

Then, by induction, we derive a sequence of functions { fn } as follows. We set

1 + pl(z) if z Q,(2a) fl(z)
0 otherwise.

has been defined, then

(2b) f+l(z ) (f(z)0 + P’+l(z) ifotherwise.f(z)> 0,

If f

It is clear that each f assumes only nonnegative integral values, f < n + 1,
and f is constant on the interior of any octadic squares of size 8 -n.
Furthermore, since

fo(jn)q)n+l dm O,
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we obtain

and

(4)

for all k 1, 2, 3, Therefore the sequence (f,) converges to a unique
probability Borel measure in the weak-star topology.

THEOREM 1. Let t be the limit of the sequence (fn) in the weak-star
topology and E be the support of . Then m(E O.

Proof For n 1, 2, 3,... define

S,,(z) 1 + opt(z) + q:(z) + +q%(z), zQ.

it is well known that S, 0 infinitely often almost everywhere (see [2, Chap.
XIV]). The support E omits the interior of any square Qn such that S, 0.
Hence m(E)= O.

3. Density property of

For each square I let 8(1)= tt(I)/m(I). If I is an octadic square of size
8-", it is easy to see that this ratio is equal to the common value of fn in int I.
Thus,

(5) 16(I) -/$(I’)1 -< 2

for any two adjacent octadic square of the same size.
Property (5) is essential in proving the following theorem.

THEOREM 2. Let

and

S= (z a + pei" Po < p < po + O,O < p < r)

S" (z= a + pei" qo + O < q < qo + 20,0 < p < r)

be two adjacent sectors of the same center and size. Then there exists an absolute
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constant C such that

(6) II*(S) I*(S’)I < Cm(S).

Proof. The proof we give here is based on a method used by Kahane in [4].
First we assume that the angle 0 is not too small, say 0 > r/4, so that the

length of the arc on OS is comparable with radius r. Under this assumption we
see that

(7) -rrr < m(S) < 1/2rr 2.

An octadic square contained in int S will be called maximal if any expanded
octadic square crosses the boundary OS. Let p be the smallest integer such that
there exists an octadic square of size 8 -’ contained in intS. For each
j p, p + 1, p + 2,... let (0}, k 1,2,..., nj, be the collection of those
maximal squares of size 8 -j contained in int S. Then

intS= U oa

and with a little computation we can show that

(8) rn o < Cr8 -.
Now let oa* be an octadic square of size 8 -’+ which intersects S. There are

at most N such squares, where N is independent of S. Since each oa is
contained in some o*, it follows from (5) that

[/(oa) -/(o*)[ < 2N + j-p + 1

and that

II,(S) m(S)8(oa*)l
oo nj

j=p

o nj

< E Y’ m(oa/)(2N +j-p + 1)
j=p k--1

< 2Nm(S) + Cr E 8-2(J-P + 1)
j=p
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by (8). Therefore we obtain

I/x(S) m(S)8(0*)l < 2Nm(S) + Cr8 -p E J8-j
j=l

< 2Nm(S) + Cr 2

< Cm(S)
by (7).

If we choose * which intersects both S and S’, then

I/x(S)- (S’)I < I/z(S)- m(s)8(o*)l + I/(S’)- m(S’)8(o*)l < Cm(S).

This proves the theorem in case > r/4.
We now consider the case when O < r/4. We use circles centered at a to

divide S into truncated sectors Sj., j 1, 2, 3,... which have the property that
the lengths of all sides of Sj. are comparable with r8. Note that the perimeter of
each S. is O(rO). Let Sj.’ be the corresponding sectors in S’. Then by an
argument as above we can show that

[l(Sj) -/x(Sf)l < Cm(Sj)

for each j 1, 2, 3,... It follows that

j--1

<_ C 2 m(S)

< Cm(S).

Remark. In view of (5) and the technique used in proving Theorem 2, we
note that there exists an absolute constant C such that

(9) I/(I) -/(I’)1 < Cm(I)

for any two adjacent squares of the same size. Then it follows from (9) that

(10t /x(I) C/21og1

for every closed square of size < 0. Then/2 is defined and continuous on the
entire complex plane with modulus of continuity 0 satisfying

(11(111 0(i) O log
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for small 8 > 0. See [3, chapter 3, Section 4].

4. The Zygmund condition

In this section we shall show that/2 satisfies a Zygmund condition. For this
purpose, we define

+(z, y) (Py, )Cz)
for all z and y > 0, where

YPy(z)=
(x? + x + y9)3/2’

z= x + ix 2,

is the Poisson Kernel, modulo a constant, of the upper half space. It is well
known (see [5, Chapter V, Section 4]) that/2 satisfies a Zygmund condition if
and only if there exists a constant A such that

A0’- (z y) <
Oy

for all z and y > 0. Since is harmonic, this condition is equivalent to

82(I
OzO(z’Y)

A

Thus, in view of the equality

it is sufficient to prove the conditions

(12a)

(12b)

ely
-x * tx ( z, Y )

--x * lx ( z, Y )

A

A

We shall give a proof of (12a). The proof of (12b) is technically the same.
We assume without loss of generality that z 0. If (r, ) are the polar

coordinates of (x1, x 2), then

SPy -2xly 2rycos 0

OX1 (X21 + X + y2)5/2 (r 2 + y2)5/2"
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For y fixed, the function (r) ry/(r 2 + y2)5/2 is increasing when 0 _< r _<
y/2 and decreasing when r >_ y/2. The maximum value of tp is M p(y/2)

C/y and

2 Cff ( x? + <_
y’

where

qo(r) (tp(y/2)(r) if 0 < r <_ y/2,
otherwise.

Let n be a positive integer and consider the points Mj2 -n, j 1,2,...,2n

1 in the range of tp. Let aj, b. be the inverse images by f of Mj2 with

b > a, and define

1 if0_< r_< a,%.(r)
0 otherwise,

1 ifO < r < bj,j (r)
0 otherwise,

2n-

%=M2-" E (flj-otj).
j=l

We can verify easily that

0 <_ op(r)- %(r) <_ M/2", r>O.

Next, let 0k cos-X(k/2"), k 1,2,...,2" and define

1v (0)
0

if Ok 0 r/2,
otherwise,

2

2-n Yk"

With a little computation we can show that

0 _< cos 0

Now, consider the sectors

((x,x2)" 0 < r < aj, Ok < 0 < r/2),
((XI, X2)" 0 <__ r < bj, Ok < 0 < r/2}.
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Then, if we consider tp.k, as a function of (xx, X2), it follows that

M2-.(X,.- X,.) + M4-oE (x,
j j,k

Furthermore, by (13) we obtain

(14)

M2-"E [m(Bj,2. ) + m(Aj,2.)] + M4-Y’ [m(Bj, k) + m(Aj, k) < C/y.
j j,k

We now extend tpk to the entire plane, in such a way that the resulting
extension is odd in x and even in x2. Then we apply Theorem 2 to each pair
of correspondent sectors whose adjacent side lies on the x2-axis. It follows
from (14) that

fn.a <_ C/y.

Finally,

C

and (12a) is proved.
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