# SOME QUESTIONS OF EDJVET AND PRIDE ABOUT INFINITE GROUPS 

BY<br>Peter M. Neumann<br>Dedicated to the memory of Bill Boone

## 1. The height of Pride

In his paper [9] Stephen Pride describes a pre-order $\leqslant$ on the class of groups. In effect, as modified slightly in [2] the definition is that $H \preccurlyeq G$ if there exist:
(*)
(i) a subgroup $G_{0}$ of finite index in $G$ and a normal subgroup $G_{1}$ of $G_{0}$;
(ii) a subgroup $H_{0}$ of finite index in $H$ and a finite normal subgroup $H_{1}$ of $H_{0}$;
(iii) an isomorphism $G_{0} / G_{1} \rightarrow H_{0} / H_{1}$.

If $H \preccurlyeq G$ and $G \preccurlyeq H$ then we write $G \sim H$, and we use [ $G$ ] to denote the equivalence class consisting of all such groups $H$. The relation $\leqslant$ induces a partial order, also denoted $\preccurlyeq$, on the collection of all equivalence classes, with the class [\{1\}] of all finite groups as its unique least member. The ideal Id[ $G$ ] is defined to be the partially ordered set consisting of all equivalence classes $[H] \preccurlyeq[G]$. A group $G$ is said to be atomic if Id[G] consists of [\{1\}] and [G]; it is said to be of height $h$, and we write $\mathrm{ht}[G]=h$, if $\operatorname{Id}[G]$ is of height $h$ as partially ordered set. In the papers [2], [9] a number of questions about these concepts are raised. These, and one or two others, are stated in §2 below. Answers are given in §§3-8. In a final section (§9) I prove some small results relating the pre-order $\leqslant$ and the property max-N. The fact that a finitely generated atomic group satisfies max- N is typical of these.

Acknowledgements. I offer warm thanks to Martin Edjvet, Stephen Pride and John S. Wilson for suggestions that have improved this paper.

Received April 23, 1985.

## 2. The questions

Question A. Does there exist a countable group that is SQ-universal but of finite height?

This is part of Problem 8 on page 333 of [9]. Hurley [5, pp. 207, 212] announces an affirmative answer, indeed, the existence of a countable atomic group that is SQ-universal, but his construction does not appear to have been published. I shall give such an example in $\S 3$ below.

Question B. Does there exist a finitely generated group that is SQ-universal but of finite height?

This is another part of Problem 8 of [9], and it occurs also as Problem 4 in [5]. In $\S 4$ I shall produce a finitely generated group of height 3 that is SQ-universal. On the other hand, finitely generated atomic groups satisfy max-N (see §9 below) and therefore cannot be SQ-universal. I do not know whether or not there exist finitely generated SQ-universal groups of height 2 . Probably not -but I have no real evidence.

Question $\mathrm{C}_{1}$. Do there exist finitely generated just infinite groups not satisfying max-SN?

A group is said to be just infinite if all its non-trivial normal subgroups are of finite index. The question is Problem 5 on page 323 of [9] and Problem 4' of [2]. It arises in connection with:

Question $\mathrm{C}_{2}$. Is every finitely generated atomic group finite-by- $\mathscr{D}_{2}$-by-finite?
Here $\mathscr{D}_{2}$ is the class of groups in which every non-trivial subnormal subgroup has finite index. The question is put in the form of a conjecture on page 12 of [2]. In §5 I construct a group that supplies a positive answer to Question $\mathrm{C}_{1}$ and a negative answer to Question $\mathrm{C}_{2}$.

Question D. If $G$ has finite height, are all maximal chains in $\operatorname{Id}[G]$ of the same length?

This is Problem 1 of [2]. A counterexample is given in §6 below.
Question E. Let $G$ be a countable group with normal subgroups $K_{1}, K_{2}$ such that $K_{1} \cap K_{2}=\{1\}$. Is it true that if $G / K_{1}$ and $G / K_{2}$ both have finite height then $G$ has finite height (bounded by a function of $\operatorname{ht}\left[G / K_{1}\right]$ and $\mathrm{ht}\left[\mathrm{G} / K_{2}\right]$ )?

The question was suggested by Theorem 4.5 of [9]. It has a negative answer that will be given in $\S 7$ below.

Question F. If $G$ is a finitely generated group of finite height, must $\operatorname{Id}[G]$ be finite?

This is Problem 5 of [2]. A counterexample is produced in $\S 8$ below.

## 3. Answer A

Example A. A countable group $A$ that is SQ-universal but atomic.
Construction. Let $P$ be a countable perfect group that is SQ-universal. For definiteness let us take $P$ to be the triangle group with presentation

$$
\left\langle a, b \mid a^{2}=b^{3}=(a b)^{7}=1\right\rangle
$$

or, with an eye to future developments, the free product $\operatorname{Alt}(5) * \operatorname{Alt}(5)$ (see [8] for a proof of SQ-universality of these groups). Let $A:=\mathrm{wr}^{\omega} P$ as defined by P. Hall [3] (except that, as in [7], I use wr to denote the restricted wreath product and reserve Wr for unrestricted wreath products). We think of $A$ as a direct limit as follows. Define $A_{0}:=P$ and thereafter $A_{i+1}:=A_{i}$ wr $P$, with $A_{i}$ embedded in $A_{i+1}$ as the first factor of the base group; then $A=\cup A_{i}$. Let $P_{i}$ be the top group in $A_{i}$ (with $P_{0}:=A_{0}$ ). Then

$$
A_{i}=\left\langle P_{0}, P_{1}, P_{2}, \ldots, P_{i}\right\rangle
$$

and if

$$
B_{i}:=\left\langle P_{i+1}, P_{i+2}, P_{i+3}, \ldots\right\rangle=\mathrm{wr}^{(\omega-\{0,1, \ldots, i\})} P \cong A
$$

then $A=A_{i}$ wr $B_{i}$ where here the wreath product is a permutational one. Let $K_{i}$ denote the base group in this wreath product. It is the normal closure of $A_{i}$ in $A$ and is isomorphic to a (restricted) direct power of $A_{i}$.

It should be clear that $A$ is countable. Also, $A$ is sQ-universal because if $X$ is any countable group then there is a normal subgroup $Q$ of $P$ such that $X$ is embeddable into $P / Q$, and so $X$ is embeddable into $P / Q$ wr $B_{0}$, which is a homomorphic image of $P_{0}$ wr $B_{0}$, that is, of $A$. It only remains to show that $A$ is atomic.

If $x \in A_{i+1}-K_{i}$ then, since $A_{i}$ is perfect and $A_{i+1}=A_{i} \mathrm{wr} P$, the normal closure of $x$ in $A_{i+1}$ contains the whole of the base group of this wreath product (see, for example, [7, Lemma 8.2]), and so the normal closure of $x$ in $A$ contains the whole of $K_{i}$. Consequently, if $N$ is a proper normal subgroup of
$A$ then $K_{i} \leq N \leq K_{i+1}$ for some value of $i$. Now if $H \preccurlyeq A$ then there exist subgroups $H_{0}, H_{1}$ of $H$ as in (*) such that $H_{0} / H_{1}$ is isomorphic to a quotient group of a subgroup of finite index in $A$. It follows, since $A$ has no proper subgroups of finite index, that either $H_{0} / H_{1}=\{1\}$, in which case $[H]=[\{1\}]$, or $H_{0} / H_{1} \cong A / N$ for some proper normal subgroup $N$ of $A$, in which case $H_{0} / H_{1}$ has a quotient group isomorphic to $A / K_{i+1}$ for some $i$ and, since $A / K_{i+1} \cong A$, we then have $[H]=[A]$. Thus $A$ is atomic.

## 4. Answer B

Example B. A finitely generated group that is SQ-universal and of height 3.
Construction. The first ingredient is the free product $P:=\operatorname{Alt}(5) * \operatorname{Alt}(5)$ which we use to manufacture the group $A:=\mathrm{wr}^{\omega} P$ as in $\S 3$. The remaining ingredients are:
a finitely generated infinite simple group $S$;
an infinite subset $\Sigma$ of $S$ such that $|\Sigma \cap \Sigma x| \leq 1$ for all $x \in S-\{1\} ;$
an enumeration $\Sigma=\left\{\sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots\right\}$ of $\Sigma$;
an automorphism $\alpha$ of $S$ such that $\sigma_{i} \alpha=\sigma_{i+1}$ for all $i \geq 0$.
This is not too much to ask: if we embed the group with presentation

$$
\left\langle s, t \mid t^{-1} s t=s^{2}\right\rangle
$$

into a finitely generated simple group $S$ (using, for example, the methods of P. Hall [4]) then we can take $\Sigma$ to be $\left\{s, s^{2}, s^{4}, s^{8}, \ldots\right\}$ and $\alpha$ to be the inner automorphism consisting of conjugation by $t$.

Now let $W:=A \mathrm{WrS}$, the unrestricted standard wreath product. Elements of the base group in $W$, the cartesian power $A^{S}$, will be written as sequences $\left(x_{\sigma}\right)_{\sigma \in S}$. Let $P_{i}$ be the subgroup of $A$ given that name in $\S 3$ and let $Q_{i}, R_{i}$ be its two free factors Alt(5). Choose generators $a_{i}, b_{i}$ of $Q_{i}$ and $c_{i}, d_{i}$ of $R_{i}$ such that

$$
a_{i}^{2}=b_{i}^{3}=\left(a_{i} b_{i}\right)^{5}=1 \quad \text { and } \quad c_{i}^{2}=d_{i}^{3}=\left(c_{i} d_{i}\right)^{5}=1
$$

Let $u, v \in A^{S}$ be the elements $\left(u_{\sigma}\right)_{\sigma \in S},\left(v_{\sigma}\right)_{\sigma \in S}$ defined by

$$
\begin{aligned}
& u_{\sigma}:= \begin{cases}1 & \text { if } \sigma \notin \Sigma \\
a_{i} & \text { if } \sigma=\sigma_{2 i} \\
c_{i} & \text { if } \sigma=\sigma_{2 i+1}\end{cases} \\
& v_{\sigma}:= \begin{cases}1 & \text { if } \sigma \notin \Sigma \\
b_{i} & \text { if } \sigma=\sigma_{2 i} \\
d_{i} & \text { if } \sigma=\sigma_{2 i+1}\end{cases}
\end{aligned}
$$

The group $B$ that we want is the subgroup $\langle u, v, S\rangle$ of $W$. Obviously $B$ is finitely generated. What has to be proved is that $B$ is SQ-universal and of height 3.

Let $M:=B \cap A^{S}$, so that $B / M \cong S$, and let $L:=A^{(S)}$, the restricted direct power of $A$ consisting of all sequences of finite support in $A^{S}$. The crux of the matter is the fact that $L \leq B$ and $B / L \cong \operatorname{Alt}(5)$ wr $S$ with base group $M / L$.

The idea of the proof that $L \leq B$ is exactly that of [6, pp. 469, 470]. First we observe that $M$ is a subcartesian power, that is, its projection to each factor in $A^{S}$ is surjective. Therefore if

$$
A^{*}:=\left\{\left(w_{\sigma}\right)_{\sigma \in S} \mid w_{\sigma}=1 \text { if } \sigma \neq 1\right\}
$$

the "first coordinate subgroup" in $A^{S}$, then $M \cap A^{*} \unlhd A^{*}$. Consider the commutator

$$
\left[s_{1} u s_{1}^{-1}, s_{2} u s_{2}^{-1}\right]
$$

where $s_{1}, s_{2} \in S$ and $s_{1} \neq s_{2}$. It is the sequence $\left(w_{\sigma}\right)_{\sigma \in S}$ where $w_{\sigma}=\left[u_{\sigma s_{1}}, u_{\sigma s_{2}}\right]$. If $w_{\sigma} \neq 1$ then $u_{\sigma s_{1}} \neq 1$ and $u_{\sigma s_{2}} \neq 1$, and so $\sigma s_{1} \in \Sigma$ and $\sigma s_{2} \in \Sigma$, that is, $\sigma \in \Sigma s_{1}^{-1} \cap \Sigma s_{2}^{-1}$. But $\Sigma s_{1}^{-1} \cap \Sigma s_{2}^{-1}=\left(\Sigma \cap \Sigma s_{2}^{-1} s_{1}\right) s_{1}^{-1}$, and this is either empty or a singleton. Therefore $\left(w_{\sigma}\right)_{\sigma \in S}$ has at most one non-identity component and (by definition) is a member of one of the "coordinate subgroups" of $A^{S}$. If we take $s_{1}$ to be $\sigma_{2 i}$ and $s_{2}$ to be $\sigma_{2 i+1}$ we find that [ $\left.\sigma_{2 i} u \sigma_{2 i}^{-1}, \sigma_{2 i+1} u \sigma_{2 i+1}^{-1}\right]$ is the sequence $\left(w_{\sigma}^{(i)}\right)_{\sigma \in S}$ such that

$$
w_{\sigma}^{(i)}= \begin{cases}{\left[a_{i}, c_{i}\right]} & \text { if } \sigma=1 \\ 1 & \text { if } \sigma \neq 1\end{cases}
$$

and so $\left[\sigma_{2 i} u \sigma_{2 i}^{-1}, \sigma_{2 i+1} u \sigma_{2 i+1}^{-1}\right] \in A^{*} \cap M$. Obviously $A^{*} \cong A$, and we observed in §3 that any proper normal subgroup of $A$ is contained in the subgroup $K_{r}$ for some $r$. Since $w_{1}^{(r+1)} \notin K_{r}$ we must have $A^{*} \cap M=A^{*}$. Thus $A^{*} \leq M$ and, as $L$ is generated by the conjugates $s^{-1} A^{*} s$ for $s \in S$, also $L \leq M$. The fact that $B / L \cong \operatorname{Alt}(5) \mathrm{wr} S$ now follows easily. For, since $u^{2}=v^{3}=(u v)^{5}=1$ we have $\langle u, v\rangle \cong \operatorname{Alt}(5)$; moreover, if $s \in S-\{1\}$ then $s^{-1} u s$ and $s^{-1} v s$ commute with both $u$ and $v$ modulo $L$; and of course the conjugates $s^{-1}\langle u, v\rangle s$ for $s \in S$ are independent modulo $L$.

In $\S 3$ we defined normal subgroups $K_{i}$ of $A$ and we saw that every proper normal subgroup of $A$ lies between $K_{i}$ and $K_{i+1}$ for some $i$. It follows easily that if $N$ is a proper normal subgroup of $B$ then $N=M$ or $N=L$ or $K_{i}^{(S)} \leq N \leq K_{i+1}^{(S)}$ for some $i$. We need to prove that $B / K_{i+1}^{(S)} \cong B$. Now $B / K_{i+1}^{(S)} \cong\left\langle u^{\prime}, v^{\prime}, S\right\rangle$, where $u^{\prime}$ and $v^{\prime}$ are obtained from $u, v$ respectively by replacing the $\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots, \sigma_{2 i+2}, \sigma_{2 i+3}$ coordinates by 1 . And the map

$$
u \mapsto u^{\prime}, \quad v \mapsto v^{\prime}, \quad s \mapsto s \alpha^{2 i+4} \quad \text { if } s \in S
$$

gives an isomorphism $B \rightarrow\left\langle u^{\prime}, v^{\prime}, S\right\rangle$. Thus if $K_{i}^{(S)} \leq N \leq K_{i+1}^{(S)}$ then $B / N$ has a quotient group isomorphic to $B$. It follows easily that $\operatorname{Id}[B]$ consists of $[\{1\}],[S],[\operatorname{Alt}(5) \mathrm{wr} S]$ and $[B]$, and hence that $\mathrm{ht}[B]=3$.

Now let $X$ be any countable group. Since $A$ is sQ-universal there is a normal subgroup $N$ of $A$ such that $X$ is embeddable into $A / N$. The homomorphism of $A$ onto $A / N$ induces a homomorphism of $W$ onto $(A / N) \mathrm{Wr} S$ that maps $L$ to the direct power $(A / N)^{(S)}$ and so $X$ is embeddable into the image of $B$. Thus $B$ is SQ-universal, as required.

## 5. Answers $C_{1}$ and $C_{2}$

Before describing the relevant construction here we prove a result that sets the scene. Throughout this section $S$ will be a non-abelian finite simple group and $\Sigma$ a faithful transitive $S$-space. In due course we take $\Sigma$ to be $\{1,2,3,4,5,6\}$ and $S$ to be $\operatorname{Alt}(\Sigma)$.

Theorem 5.1. Let $G$ be a group such that:
(i) $G$ is perfect;
(ii) $G$ is residually finite;
(iii) $G \cong G \operatorname{wr}_{\Sigma} S$.

Then also:
(iv) every non-trivial normal subgroup has finite index in $G$ (that is, $G$ is just infinite);
(v) every subnormal subgroup is isomorphic to a finite direct power of $G$;
(vi) nevertheless, $G$ does not satisfy max-sN;
(vii) $G$ is atomic.

Proof. We have $G=G_{1} \mathrm{wr}_{\Sigma} S$, where $G_{1} \cong G$. Consequently $G=$ $G_{n} \mathrm{wr}_{\Delta_{n}} W_{n}$, where $G_{n} \cong G$,

$$
W_{n}:=S \mathrm{wr}_{\Sigma} S \mathrm{wr}_{\Sigma} \cdots \mathrm{wr}_{\Sigma} S \text { ( } n \text { factors) }
$$

and

$$
\Delta_{n}:=\Sigma \times \Sigma \times \cdots \times \Sigma(n \text { factors })
$$

Let $K_{n}$ be the base group in this wreath product, so that $K_{n} \cong G^{\Delta_{n}}$, and $G / K_{n} \cong W_{n}$. Put $K_{0}:=G$.

Lemma 5.2. If $N \unlhd G$ and $N \neq\{1\}$ then $N=K_{n}$ for some $n$.
Proof. First we prove that $K_{0}, K_{1}, K_{2}, \ldots$ are the only normal subgroups of finite index. Let $X$ be a finite group and $f: G \rightarrow X$ a homomorphism. If $m$ is large enough there must be two distinct coordinate subgroups $G_{m i}, G_{m j}$ (direct factors isomorphic to $G$ ) of $K_{m}$ that have the same image under $f$.

Since $G_{m i}, G_{m j}$ centralise each other it follows that their common image is abelian and since $G$ is perfect that image must be $\{1\}$; then, since $K_{m}$ is the normal closure of $G_{m i}$, also $K_{m} \leq \operatorname{Ker}(f)$. Therefore $\operatorname{Im}(f)$ is a homomorphic image of $G / K_{m}$, that is, of $W_{m}$. In $W_{m}$, however, the base group $S^{\Delta_{m-1}}$ is a minimal (non-trivial) normal subgroup (because it is a direct power of the non-abelian simple group $S$ and its simple direct factors are permuted transitively under conjugation in $W_{m}$ ) and its centraliser is trivial. Therefore it is the unique minimal normal subgroup. That is, $K_{m-1} / K_{m}$ is the unique minimal normal subgroup of $W_{m}$, and it follows by induction that $K_{0}, K_{1}, \ldots, K_{m-1}, K_{m}$ are the only normal subgroups of $G$ that contain $K_{m}$. Thus $\operatorname{Ker}(f)=K_{n}$ for some $n$.

Now let $N$ be any non-trivial normal subgroup of $G$. Since $G$ is residually finite we must have $\cap K_{m}=\{1\}$ and so there exists $n$ such that $N \leq K_{n}$ and $N \nless K_{n+1}$. If $x \in N-K_{n+1}$ then, as one sees by a very small modification of the argument used to prove Lemma 8.2 of [7], the normal closure of $x$ in $G$ contains $K_{n+1}$. Thus $K_{n+1}<N \leq K_{n}$ and, as we have already seen, it follows that $N=K_{n}$, as required.

This deals with assertion (iv) of Theorem 5.1. Now every non-trivial normal subgroup of $G$ is isomorphic to a finite direct power of $G$ and so to prove (v) we need to show that a normal subgroup of a finite direct power of $G$ is itself isomorphic to a finite direct power of $G$. But if $X_{1}, X_{2}, \ldots, X_{k}$ are groups all of whose normal subgroups are perfect, and if $N \unlhd X_{1} \times X_{2} \times \cdots \times X_{k}$ then, as is very easy to prove, $N=Y_{1} \times Y_{2} \times \cdots \times Y_{k}$ where $Y_{i} \unlhd X_{i}$ for $1 \leq i \leq k$.

To prove (vi) we proceed as follows. Suppose, as inductive hypothesis, that $G$ has a subnormal subgroup $X_{n} \times Y_{n}$ with $Y_{n} \cong G$. This is certainly true for $n=0$ with $X_{0}:=\{1\}, \quad Y_{0}:=G$. Now $Y_{n} \cong G \mathrm{wr}_{\Sigma} S$ and we can take $X_{n+1}:=X_{n} \times Z_{1}, Y_{n+1}:=Z_{2}$, where $Z_{1}, Z_{2}$ are two of the direct factors in the base group of the wreath product. Then $X_{n+1} \times Y_{n+1}$ is subnormal in $G$, so induction supplies a properly increasing sequence $X_{0}<X_{1}<X_{2}<\cdots$ of subnormal subgroups of $G$.

Suppose now that $H \preccurlyeq G$. There exist subgroups $H_{0}, H_{1}$ as in (*), such that $H_{0} / H_{1}$ is a homomorphic image of a subgroup $G^{*}$ of finite index in $G$. Moreover, we can take $G^{*}$ to be normal in $G$. Then $G^{*}$ is a finite direct power of $G$ and, by what has already been shown, it follows that $H_{0} / H_{1}$ is a direct product of finitely many groups, each of which is finite or isomorphic to $G$. Therefore either $H$ is finite or $G \preccurlyeq H$, and so $\operatorname{Id}[G]$ consists of [ $\{1\}]$ and $[G]$, that is, $G$ is atomic. This completes the proof of Theorem 5.1.

Assertions (iv) and (vi) applied to the following example give a positive answer to Question $\mathrm{C}_{1}$, and (vii) gives a negative answer to Question $\mathrm{C}_{2}$.

Example C. A finitely generated group $C$ that is perfect, residually finite and isomorphic to $C \mathrm{wr}_{\Sigma} S$.

Construction. We take $\Sigma:=\{1,2,3,4,5,6\}$ and $S:=\operatorname{Alt}(\Sigma)$. Define $\Delta_{n}:=\Sigma^{n}$ ( $n$-fold cartesian power) and $W_{n}:=\mathrm{wr}^{n} S$ with its natural action as a permutation group on $\Delta_{n}$. Embed $W_{n-1}$ into $W_{n}$ as the top group in the representation $W_{n}=S \mathrm{wr}_{\Delta_{n-1}} W_{n-1}$, and take $S_{n}$ to be one of the direct factors (coordinate subgroups) of the base group. Now define $W$ to be the direct limit $U W_{n}$-so that $W$ is, in fact, P. Hall's wreath power $\mathrm{wr}^{-\mathrm{N}} S$. If $V_{n}:=\left\langle S_{n+1}, S_{n+2}, \ldots\right\rangle$ then $V_{n} \cong W$ and $W=V_{n} \mathrm{wr}_{\Delta_{n}} W_{n}$. And if $L_{n}$ is the normal closure of $V_{n}$ in $W$, that is, the base group in this wreath product, then $L_{n} \cong V_{n}^{\Delta_{n}} \cong W^{\Delta_{n}}$. It is not hard to see directly that $W, L_{1}, L_{2}, L_{3}, \ldots$ are the only non-trivial normal subgroups of $W$-although this also follows from Lemma 5.2.

There is a natural surjective homomorphism $W_{n} \rightarrow W_{n-1}$ for each $n$, and we define $\bar{W}$ to be the inverse limit $\lim W_{n}$. Elements of $W_{n}$ can be expressed uniquely in the form $t_{n} t_{n-1} \cdots t_{2} t_{1}$, where $t_{i}$ is in the base group of $W_{i}$ (we take the 'base group' of $W_{1}$ to be $W_{1}$ itself); then elements of $\bar{W}$ may be uniquely described by left-infinite sequences $\cdots t_{n} t_{n-1} \cdots t_{2} t_{1}$, where $t_{i}$ is in the base group of $W_{i}$. Each factor $t_{i}$ may in turn be written as a product $\prod_{\delta \in \Delta_{i-1}} s_{i}(\delta)$, where $s_{i}(\delta) \in S$, this expression being unique up to the order of its factors (we take $\Delta_{0}$ to be a singleton set so that $t_{1}$ is simply a member of $S$ ). The rule for multiplication in $\bar{W}$ is determined by that in the finite wreath products. Since it is quite complicated, and since we shall need only very special cases, I do not write it down explicitly. The group $W$ may be seen as that subgroup of $\bar{W}$ that consists of sequences in which $t_{i}=1$ for all except finitely many values of $i$. In fact, $\bar{W}$ is the completion of $W$ with respect to the topology that has the groups $L_{n}$ as a base for the neighbourhoods of 1. If $\bar{V}_{1}$ is the closure of $V_{1}$ in $\bar{W}$ then $\bar{W}=\bar{V}_{1} \operatorname{wr}_{\Sigma} S$ and $\bar{V}_{1} \cong \bar{W}$. We can describe $\bar{V}_{1}$ explicitly as the set of all sequences

$$
\cdots t_{n} t_{n-1} \cdots t_{2} t_{1}
$$

in which $t_{1}=1$ and for all $i>1, s_{i}\left(\sigma_{i-1}, \ldots, \sigma_{2}, \sigma_{1}\right)=1$ if $\sigma_{1} \neq 1$. And we can define an isomorphism $\bar{W} \rightarrow \bar{V}_{1}$ explicitly:

$$
\cdots t_{n} t_{n-1} \cdots t_{2} t_{1} \mapsto \cdots v_{n} v_{n-1} \cdots v_{2} v_{1}
$$

where

$$
v_{1}=1, \quad v_{i}=\prod_{\Delta_{i-1}} u_{i}\left(\sigma_{i-1}, \ldots, \sigma_{2}, \sigma_{1}\right)
$$

and

$$
u_{i}\left(\sigma_{i-1}, \ldots, \sigma_{2}, \sigma_{1}\right)= \begin{cases}1 & \text { if } \sigma_{1} \neq 1 \\ s_{i-1}\left(\sigma_{i-1}, \ldots, \sigma_{2}\right) & \text { if } \sigma_{1}=1\end{cases}
$$

Similarly, if $\bar{V}_{n}$ is the closure of $V_{n}$ then $\bar{V}_{n} \cong \bar{W}$ and $\bar{W}=\bar{V}_{n} \operatorname{wr}_{\Delta_{n}} W_{n}$. If $\bar{L}_{n}$ is the closure of $L_{n}$ then $\bar{L}_{n}$ is the base group in this wreath product and $\bar{L}_{n}$ consists of those sequences $\cdots t_{i} t_{i-1} \cdots t_{2} t_{1}$ such that $t_{i}=1$ if $i \leq n$. Since $\bar{L}_{n}$ has finite index in $\bar{W}$ and $\cap_{n} \bar{L}_{n}=\{1\}, \bar{W}$ is residually finite.

Calculation in $\bar{W}$ may be simplified if we represent it as a permutation group. There is a natural surjective map $\Delta_{n} \rightarrow \Delta_{n-1}$ that is compatible with the actions of $W_{n}$ on $\Delta_{n}$ and $W_{n-1}$ on $\Delta_{n-1}$ and with our surjective homomorphism $W_{n} \rightarrow W_{n-1}$. It follows that there is a natural action of $\lim W_{n}$ on $\lim \Delta_{n}$; that is, if we define $\bar{\Delta}:=\Sigma^{-\mathrm{N}}=\lim \Delta_{n}$, there is a natural action of $\bar{W}$ on $\Delta$. Elements of $\bar{\Delta}$ may be thought of as left-infinite sequences

$$
\left(\ldots, \sigma_{n}, \sigma_{n-1}, \ldots, \sigma_{2}, \sigma_{1}\right),
$$

where $\sigma_{i} \in \Sigma$ for all $i$. The action of $\bar{W}$ on $\bar{\Delta}$ is the following:

$$
\left(\ldots, \sigma_{n}, \sigma_{n-1}, \ldots, \sigma_{2}, \sigma_{1}\right) \cdots t_{n} t_{n-1} \cdots t_{2} t_{1}=\left(\ldots, \rho_{n}, \rho_{n-1}, \ldots, \rho_{2}, \rho_{1}\right),
$$

where, if $t_{i}=\Pi_{\delta \in \Delta_{i-1}} s_{i}(\delta)$ as before, then

$$
\rho_{i}=\sigma_{i} s_{i}\left(\sigma_{i-1}, \ldots, \sigma_{2}, \sigma_{1}\right) .
$$

The set $\bar{\Delta}_{1}$ of all sequences $\left(\ldots, \sigma_{n}, \sigma_{n-1}, \ldots, \sigma_{2}, 1\right)$ is a block of imprimitivity for $\bar{W}$ in $\bar{\Delta}$. Its stabiliser is $\bar{V}_{1}$. The map $\bar{\Delta} \rightarrow \bar{\Delta}_{1}$ given by

$$
\left(\ldots, \sigma_{n}, \sigma_{n-1}, \ldots, \sigma_{2}, \sigma_{1}\right) \mapsto\left(\ldots, \sigma_{n-1}, \sigma_{n-2}, \ldots, \sigma_{1}, 1\right)
$$

induces the isomorphism $\bar{W} \rightarrow \bar{V}_{1}$ described above; and the natural bijection $\bar{\Delta} \rightarrow \bar{\Delta}_{1} \times \Sigma$ induces our isomorphism $\bar{W} \rightarrow \bar{V}_{1} \mathrm{wr}_{\Sigma} S$.

We are now ready to define the group $C$. For each permutation $t \in \operatorname{Alt}(\Sigma)$ and each element $\tau \in \Sigma$ define

$$
w(t, \tau):=\ldots t_{\tau \tau \tau} t_{\tau \tau} t_{\tau} t \in \bar{W} .
$$

By this I mean that the $i$-th component of $w(t, \tau)$ is the element $t$ in that coordinate subgroup of the base group of $W_{i}$ that is indexed by $(\tau, \ldots, \tau, \tau)$ in $\Delta_{i-1}$ : that is,

$$
t_{\tau \ldots \tau \tau}=\prod_{\Delta_{i-1}} s_{i}\left(\sigma_{i-1}, \ldots, \sigma_{2}, \sigma_{1}\right),
$$

where

$$
s_{i}\left(\sigma_{i-1}, \ldots, \sigma_{2}, \sigma_{1}\right):= \begin{cases}1 & \text { if }\left(\sigma_{i-1}, \ldots, \sigma_{2}, \sigma_{1}\right) \neq(\tau, \ldots, \tau, \tau) \\ t & \text { if }\left(\sigma_{i-1}, \ldots, \sigma_{2}, \sigma_{1}\right)=(\tau, \ldots, \tau, \tau) .\end{cases}
$$

Now define

$$
C:=\langle w(t, \tau) \mid t \in \operatorname{Alt}(\Sigma), \tau \in \operatorname{fix}(t)\rangle
$$

Certainly $C$ is finitely generated: the given generating set has 360 members but very much smaller ones will suffice. Consider for the moment a fixed element $\sigma$ of $\Sigma$ and all generators $w(t, \sigma)$ with $\sigma \in \operatorname{fix}(t)$. It is easy to see that

$$
w\left(t_{1}, \sigma\right) w\left(t_{2}, \sigma\right)=w\left(t_{1} t_{2}, \sigma\right)
$$

and so these $w(t, \sigma)$ form a subgroup of $\bar{W}$ that is isomorphic to $\operatorname{Alt}(5)$. Thus $C$ is generated by six subgroups isomorphic to $\operatorname{Alt}(5)$ and therefore $C$ is perfect. Since $\bar{W}$ is residually finite, also $C$ is residually finite, and all we still have to prove is that $C \cong C \mathrm{wr}_{\Sigma} S$.

Define $w^{*}(t, \tau):=\ldots t_{\tau \tau \tau} t_{\tau \tau} t_{\tau}$, so that $w(t, \tau)=w^{*}(t, \tau) t$. If $s, t$ are permutations in $\operatorname{Alt}(\Sigma)$ that fix both 5 and 6 then, as is easy to see, $w(s, 5)^{*}$ and $w(t, 6)^{*}$ commute with each other and with both $s$ and $t$. Computing commutators we therefore have that

$$
[w(s, 5), w(t, 6)]=[s, t] \in W_{1} \leq \bar{W}
$$

If we take $s, t$ to be the 3 -cycles (123), (134) respectively then we find that $(12)(34) \in C$. Similarly all other double transpositions lie in $C$ and so $W_{1} \leq C$. Consequently $C=\left(C \cap I_{1}\right) . W_{1}$. Now let $\tau$ be any element of $\Sigma$ and $t$ any permutation in $\operatorname{Alt}(\Sigma)$ fixing $\tau$. Choose $s \in \operatorname{Alt}(\Sigma)$ that maps $\tau$ to 1 . Then

$$
s^{-1} w^{*}(t, \tau) s=\cdots t_{\tau \tau 1} t_{\tau 1} t_{1}
$$

and this is the element corresponding to $w(t, \tau)$ in our isomorphism of $\bar{W}$ to $\bar{V}_{1}$. Since $C$ is generated by the members of $W_{1}$ together with the elements $w^{*}(t, \tau)$ (with $\tau \in \operatorname{fix}(t)$ ) it is generated by $W_{1}$ together with these conjugates $s^{-1} w^{*}(t, \tau) s$. Clearly the latter generate a copy $C_{1}$ of $C$ inside $\bar{V}_{1}$. Therefore $C=C_{1} \operatorname{wr}_{\Sigma} S$ with $C_{1} \cong C$ : thus $C$ is a finitely generated group satisfying conditions (i), (ii), (iii) of Theorem 5.1, as required.

Comment 5.3. Let $\Delta$ be the $C$-orbit in $\bar{\Delta}$ that contains the sequence $(\ldots, 1,1, \ldots, 1,1)$ and let $\Delta_{1} \times\{1\}$ be the $C_{1}$-orbit of this sequence. If $t \in W_{1}$ maps 1 to $\tau$ then

$$
(\ldots, 1,1, \ldots, 1,1) t=(\ldots, 1,1, \ldots, 1, \tau)
$$

and the $t^{-1} C_{1} t$-orbit of this sequence is $\Delta_{1} \times\{\tau\}$. Consequently the obvious bijection $\Delta \rightarrow \Delta_{1} \times \Sigma$ induces our isomorphism

$$
C \rightarrow C_{1} \operatorname{wr}_{\Sigma} \operatorname{Alt}(\Sigma)
$$

and the obvious bijection $\Delta \rightarrow \Delta_{1}$ induces our isomorphism $C \rightarrow C_{1}$. We shall need the permutation representation of $C$ on $\Delta$ as an ingredient in our next construction.

Comment 5.4. The construction of $C$ can be varied in many ways. Here is one. Let $S_{1}, S_{2}, S_{3}, \ldots$ be non-abelian finite simple groups acting faithfully and transitively on sets $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \ldots$. Suppose that for some integer $d$ every group $S_{i}$ can be generated by $d$ subgroups, each of which is isomorphic to $\operatorname{Alt}(5)$ and each of which fixes at least two members of $\Sigma_{i}$ (if $\left(S_{i}, \Sigma_{i}\right)$ is $\operatorname{Alt}\left(n_{i}\right)$ in its natural action then this can be achieved with $d=3$ provided that $n_{i} \geq 7$ for all $i$ ). Define $\Delta_{1}:=\Sigma_{1}, W_{1}:=S_{1}$, and thereafter

$$
\Delta_{n}:=\Sigma_{n} \times \Delta_{n-1}, \quad W_{n}:=S_{n} \mathrm{wr}_{\Delta_{n-1}} W_{n-1} .
$$

As before we can find a finitely generated subgroup $C$ of the inverse limit $\bar{W}:=\varliminf_{n} W_{n}$ which has the property that all non-trivial normal subgroups have finite index in $C$. But if the sequence $\left(S_{1}, \Sigma_{1}\right),\left(S_{2}, \Sigma_{2}\right),\left(S_{3}, \Sigma_{3}\right), \ldots$ is not periodic then the proper subnormal subgroups are direct products of groups of the same kind of structure as $C$, but none of which is isomorphic to $C$. Under these circumstances $C$ is a finitely generated just infinite group of infinite height.

## 6. Answer D

Example D. A group $D$ of height 4 such that $\operatorname{Id}[D]$ has a maximal chain of length 3.

Construction. We begin with the group $C$ of $\S 5$ and with two faithful transitive $C$-spaces. The first is the $C$-space $\Delta$ described in Comment 5.3, the second $\Gamma$ is the coset space ( $C: W$ ). A subgroup of finite index in $C$ contains the normal subgroup $K_{n}$, the kernel of the homomorphism of $C$ onto $W_{n}$, for some $n$, and $W . K_{n}=C$. Therefore every subgroup of finite index in $C$ is transitive on $\Gamma$.

Let $S$ be a non-abelian simple group and define $X:=S \mathrm{wr}_{\Gamma} C, Y:=S \mathrm{wr}_{\Delta} C$, $Z:=X \times C$ and $D:=X \times Y$. I shall prove that the partially ordered set $\operatorname{Id}[D]$ is


A subgroup of finite index in $D$ contains a subgroup $X_{0} \times Y_{0}$ where $X_{0}$ is normal and of finite index in $X$, and $Y_{0}$ is normal and of finite index in $Y$. Since the base groups $S^{(\Gamma)}, S^{(\Delta)}$ (restricted direct powers of $S$ ) are the unique minimal normal subgroups of $X$ and $Y$ respectively, we have $S^{(\Gamma)} \leq X_{0}$, $S^{(\Delta)} \leq Y_{0}$ and

$$
X_{0}=S \mathrm{wr}_{\Gamma} K_{m}, \quad Y_{0}=S \mathrm{wr}_{\Delta} K_{n}
$$

for some $m, n$. Since $K_{m}$ is transitive on $\Gamma, S^{(\Gamma)}$ is the unique minimal normal subgroup of $X_{0}$. Since $K_{n}$ has $6^{n}$ (as it happens) orbits on $\Delta$, on each of which it acts like $C$ on $\Delta, Y_{0} \cong Y^{6^{n}}$. Every normal subgroup of $X_{0}$ and of $Y_{0}$ is perfect, so a normal subgroup of $X_{0} \times Y_{0}$ is of the form $X_{1} \times Y_{1}$ where $X_{1} \leq X_{0}$ and $Y_{1} \leq Y_{0}$. If $X_{1} \neq\{1\}$ then $X_{0} / X_{1}$ is isomorphic to a quotient group of $X_{0} / S^{(\Gamma)}$, that is of $K_{m}$, and therefore $X_{0} / X_{1} \cong C^{k} \times Q$ for some $k$ and some finite group $Q$; similarly, $Y_{0} / Y_{1} \cong Y^{k} \times C^{l} \times R$ for some integers $k, l$ and some finite group $R$. Clearly therefore $Y \preccurlyeq Y^{k} \times C^{l} \preccurlyeq Y$ and so $Y \sim Y \times C \sim Y^{k}$ for any positive integer $k$. It follows immediately that $\operatorname{Id}[D]$ consists of $[\{1\}],[C],[X],[Y],[X \times C],[D]$, and that it is ordered as shown in the diagram.

## 7. Answer E

Example E. A group $E$ of infinite height that is a subdirect product of two atomic groups.

Construction. Let $S$ be a non-abelian finite simple group, let $R$ be the countable restricted direct power $S^{\left(\aleph_{0}\right)}$, let $R_{1}:=R$ and $R_{2}:=R$ wr $R$. We define $Q$ to be the wreath power $\mathrm{wr}^{\omega} R$ and $\Omega$ to be the set on which it naturally acts, that is, since $R$ is to be thought of as acting on itself regularly (by right multiplication), $\Omega$ is the countable restricted direct power $R^{(\omega)}$ (see [3]). Define $E:=\left(R_{1} \times R_{2}\right) \mathrm{wr}_{\Omega} Q$.

If $K_{1}:=R_{1}^{(\Omega)}$ and $K_{2}:=R_{2}^{(\Omega)}$, so that $K_{1} \times K_{2}$ is the base group in the wreath product, then

$$
E / K_{1} \cong R_{2} \mathrm{wr}_{\Omega} Q \cong Q \quad \text { and } \quad E / K_{2} \cong R_{1} \mathrm{wr}_{\Omega} Q \cong Q
$$

and so $E$ is a subdirect product in $Q \times Q$. But $Q$ is atomic (compare §3). So $E$ is a subdirect product of two atomic groups.

On the other hand $E$ has quotient groups of the form

$$
E_{m, n} \cong\left(S^{m} \times\left(S^{n} \mathrm{wr} R\right)\right) \mathrm{wr}_{\Omega} Q
$$

If $m=0$ or $n=0$ then $E_{m, n} \sim Q$, but if $m \neq 0$ and $n \neq 0$ then it is easy to see that $E_{m, n} \preccurlyeq E_{m^{\prime}, n^{\prime}}$ if and only if $m \leq m^{\prime}$ and $n \leq n^{\prime}$. Thus $E$ has infinite height.

## 8. Answer $\mathbf{F}$

Recall that a soluble minimax group is a group $G$ with a subnormal series $\{1\}=G_{0} \leq G_{1} \leq \cdots \leq G_{n}=G$ in which every factor $G_{i} / G_{i-1}$ either is cyclic or is a quasi-cyclic group $Z_{p^{\infty}}$ for some prime number $p$. The number of infinite factors in such a series is an invariant $m(G)$, the minimax length. As preparation for our final example we require:

Lemma 8.1. If $G$ is a soluble minimax group then
(i) $\mathrm{ht}[G] \leq m(G)$,
and
(ii) [G] consists of only countably many isomorphism classes of groups.

Proof. We use induction on $m(G)$ to prove (i). Let $H$ be a group that is strictly smaller than $G$ in Pride's sense. There exist $G_{0}, G_{1}, H_{0}$ and $H_{1}$ as in (*) and an isomorphism $G_{0} / G_{1} \rightarrow H_{0} / H_{1}$, and $G_{1}$ must be infinite. Therefore $m\left(G_{0} / G_{1}\right)<m(G)$ and, by inductive hypothesis, $\mathrm{ht}\left[G_{0} / G_{1}\right] \leq m\left(G_{0} / G_{1}\right)$. Consequently

$$
\operatorname{ht}[H]=\operatorname{ht}\left[G_{0} / G_{1}\right] \leq m(G)-1,
$$

and so

$$
\operatorname{ht}[G]=1+\sup \{\operatorname{ht}[H] \mid H \prec G\} \leq m(G)
$$

as required.
To prove (ii) we first show that if $G_{1} \unlhd G_{0} \leq G,\left|G: G_{0}\right|$ is finite and $G_{1}$ is infinite, then $G_{0} / G_{1} \prec G$. Let $Y:=G_{0} / G_{1}$ and suppose, if possible, that $Y \sim G$. Then there exist subgroups $Y_{0}, Y_{1}$ of $Y$ with $\left|Y: Y_{0}\right|$ finite and $Y_{1} \unlhd Y$, and there exist subgroups $X_{0}, X_{1}$ of $G$ with $\left|G: X_{0}\right|$ finite, $X_{1} \unlhd X_{0}$ and $X_{1}$ finite, such that $Y_{0} / Y_{1} \cong X_{0} / X_{1}$. But

$$
m\left(X_{0} / X_{1}\right)=m(G)=m\left(G_{0}\right)=m(Y)+m\left(G_{1}\right)>m(Y) \geq m\left(Y_{0} / Y_{1}\right)
$$

This contradiction shows that $G_{0} / G_{1} \prec G$.
Now if $H \sim G$ then there exist $G_{0}, G_{1} \leq G$ and $H_{0}, H_{1} \leq H$ as in (*). We may suppose moreover that $H_{0} \unlhd H$. Since

$$
G_{0} / G_{1} \sim H_{0} / H_{1} \sim H \sim G
$$

we must have that $G_{1}$ is finite. Therefore there are only countably many possibilities for the group $G_{0} / G_{1}$, that is, for $H_{0} / H_{1}$ up to isomorphism. Using the Lyndon-Hochschild-Serre spectral sequence one may show that if $X$ is a soluble minimax group and $Y$ is a finite $\mathbf{Z} X$-module then all cohomology groups $H^{n}(X, Y)$ are finite (see [10]). From the finiteness of the second
cohomology groups it follows easily that there are only countably many extensions of a finite group by a given soluble minimax group: thus there are only countably many possibilities for $H_{0}$. And it is easy to see that there are only countably many extensions of a given countable group by a finite group. Thus there are (up to isomorphism) only countably many possibilities for $H$.

Example F. A finitely generated group $F$ such that $\mathrm{ht}[F]=9$ and $\operatorname{Id}[F]$ has $2^{N_{0}}$ members.

Construction. Let $N$ be the group that is generated by elements $u_{n}, v_{n}, w_{n}, y_{n}, z_{n}(n \geq 0)$ subject to the relations (for all relevant $m, n$ ):

$$
\begin{aligned}
& y_{n}, z_{n} \text { are central; } \\
& u_{n+1}^{2}=u_{n} ; v_{n+1}^{2}=v_{n} ; w_{n+1}^{2}=w_{n} ; y_{n+1}^{2}=y_{n} ; z_{n+1}^{2}=z_{n} ; \\
& y_{0}=z_{0}=1 ; \\
& {\left[v_{m}, w_{n}\right]=1 ;\left[u_{m}, v_{n}\right]=y_{m+n} ;\left[u_{m}, w_{n}\right]=z_{m+n} .}
\end{aligned}
$$

This group is nilpotent of class 2 , its centre $Z(N)$ is isomorphic to $Z_{2^{\infty}} \times Z_{2^{\infty}}$ generated by the elements $y_{n}, z_{n}$, and $N / Z(N)$ is a direct product of three copies of $2^{-\infty} Z$. There is an automorphism that fixes all $y_{n}$ and $z_{n}$, and maps $u_{n}$ to $u_{n}^{2}, v_{n}$ to $v_{n+1}, w_{n}$ to $w_{n+1}$ for all $n$. We take $F$ to be the semi-direct product of $N$ with an infinite cyclic group inducing this automorphism: thus

$$
F:=\left\langle N, x \mid x u_{n} x^{-1}=u_{n+1}, x^{-1} v_{n} x=v_{n+1}, x^{-1} w_{n} x=w_{n+1}\right\rangle .
$$

Clearly $F$ is generated by $\left\{x, u_{1}, v_{1}, w_{1}\right\}$, so $F$ is a finitely generated group. Also, $F$ is a soluble minimax group built from four infinite cyclic groups and five copies of $Z_{2^{\infty}}$, so $m(F)=9$ and therefore, by Lemma 8.1(i), ht $[F] \leq 9$. In fact it is quite easy to see that $\mathrm{ht}[F]=9$. Now

$$
Z(F)=\left\langle y_{n}, z_{n}(n \geq 0)\right\rangle \cong Z_{2^{\infty}} \times Z_{2^{\infty}}
$$

Thus $Z(F)$ has $2^{N_{0}}$ subgroups (see [1]), that is, $F$ has $2^{N_{0}}$ normal subgroups. Since $F$ is finitely generated there are only countably many homomorphisms of $F$ to a given countable group and so $F$ must have $2^{N_{0}}$ non-isomorphic quotient groups. From Lemma 8.1(ii) it follows that these must fall into $2^{\Gamma_{0}}$ equivalence classes, and so $\operatorname{Id}[F]$ has $2^{x_{0}}$ members, as claimed.

## 9. Finitely generated atomic groups

The constructions that I have described in this paper mostly seem to have slightly negative consequences for Pride's theory. Therefore it is a pleasure to report some small positive results.

Lemma 9.1. If $G$ satisfies max-N and $H \preccurlyeq G$ then $H$ satisfies max-N.

Proof. Given that $H \preccurlyeq G$ there exist subgroups $G_{0}, G_{1}$ of $G$ and $H_{0}, H_{1}$ of $H$ as in (*). By a theorem of John S. Wilson [11], $G_{0}$ satisfies max-N. Then $G_{0} / G_{1}$ and therefore also $H_{0} / H_{1}$ satisfies max-n. Since $H_{1}$ is finite $H_{0}$ satisfies max- N and now by Wilson's theorem again $H$ satisfies max-N.

Theorem 9.2. A finitely generated atomic group satisfies max-n.

Proof. Let $G$ be a finitely generated atomic group. Since $G$ is finitely generated and infinite it has a just-infinite quotient group $H$. Then $H \preccurlyeq G$ and since $G$ is atomic $H \sim G$, whence $G \preccurlyeq H$. It follows from Lemma 9.1 with the roles of $G$ and $H$ reversed that $G$ satisfies max-n, as required.

There is a slightly more general version of this theorem.

Theorem 9.3. Let $G$ be a finitely generated group of height $n$. If there are $n$ inequivalent atomic groups $H_{1}, \ldots, H_{n}$ such that $H_{i} \preccurlyeq G$ for all $i$ then $G$ satisfies $\max -\mathrm{N}$.

Proof. By Theorem 2 of [2], $H_{1} \times \cdots \times H_{n} \leqslant G$, by Theorem 1(ii) of [2], $\operatorname{ht}\left[H_{1} \times \cdots \times H_{n}\right]=n$, and so $G \sim H_{1} \times \cdots \times H_{n}$. It follows that this direct product is finitely generated, so each group $H_{i}$ is finitely generated and, by Theorem 9.2, satisfies max-n. Then $H_{1} \times \cdots \times H_{n}$ satisfies max-n and so $G$ satisfies max-N.

## References

1. Gerhard Behrendt and Peter M. Neumann, On the number of normal subgroups of an infinite group, J. London Math. Soc. (2), vol. 23 (1981), pp. 429-432.
2. M. Edjvet and Stephen J. Pride, 'The concept of "largeness" in group theory II' in Groups-Korea 1983 (Proceedings edited by A.C. Kim and B.H. Neumann), Lecture Notes in Mathematics, Vol. 1098, Springer-Verlag 1985, pp. 29-54.
3. P. Hall, Wreath powers and characteristically simple groups, Proc. Cambridge Philos. Soc., vol. 58 (1962), pp. 170-184.
4. $\qquad$ , On the embedding of a group in a join of given groups, J. Australian Math. Soc., vol. 17 (1974), pp. 434-495.
5. Bernard M. Hurley, 'Small cancellation theory over groups equipped with an integer-valued length function' in Word problems, II: the Oxford book (Proceedings edited by S.I. Adjan, W.W. Boone and G. Higman), North Holland 1980, pp. 157-214.
6. B.H. Neumann and Hanna Neumann, Embedding theorems for groups, J. London Math. Soc., vol. 34 (1959), pp. 465-479.
7. Peter M. Neumann, On the structure of standard wreath products of groups, Math. Zeitschrift, vol. 84 (1964), 343-373.
8. $\qquad$ , The SQ-universality of some finitely presented groups, J. Australian Math. Soc., vol. 16 (1973), pp. 1-6.
9. Stephen J. Pride, 'The concept of "largeness" in group theory' in Word problems, II: the Oxford book (Proceedings edited by S.I. Adjan, W.W. Boone and G. Higman), North Holland 1980, pp. 299-335.
10. Derek J.S. Robinson, On the cohomology of soluble groups of finite rank, J. Pure Appl. Algebra, vol. 6 (1975), pp. 155-164.
11. John S. Wilson, Some properties of groups inherited by normal subgroups of finite index, Math. Zeitschrift, vol. 114 (1970), pp. 19-21.

The Queen's College,<br>Oxford, England

