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I. The height of Pride

In his paper [9] Stephen Pride describes a pre-order .-< on the class of
groups. In effect, as modified slightly in [2] the definition is that H .-< G if there
exist:

(i) a subgroup Go of finite index in G
and a normal subgroup G of Go;
(ii) a subgroup Ho of finite index in H
and a finite normal subgroup H of H0;
(iii) an isomorphism Go/G Ho/H1.

If H G and G H then we write G-- H, and we use [G] to denote the
equivalence class consisting of all such groups H. The relation induces a
partial order, also denoted , on the collection of all equivalence classes, with
the class [(1}] of all finite groups as its unique least member. The ideal Id[G] is
defined to be the partially ordered set consisting of all equivalence classes
[H] [G]. A group G is said to be atomic if Id[G] consists of [(1}] and [G]; it
is said to be of height h, and we write ht[G] h, if Id[G] is of height h as
partially ordered set. In the papers [2], [9] a number of questions about these
concepts are raised. These, and one or two others, are stated in 2 below.
Answers are given in {}{}3-8. In a final section ({}9) I prove some small results
relating the pre-order and the property max-hr. The fact that a finitely
generated atomic group satisfies max-r is typical of these.
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2. The questions

Question A.
finite height?

Does there exist a countable group that is SQ-universal but of

This is part of Problem 8 on page 333 of [9]. Hurley [5, pp. 207, 212]
announces an affirmative answer, indeed, the existence of a countable atomic
group that is SQ-universal, but his construction does not appear to have been
published. I shall give such an example in 3 below.

Question B. Does there exist a finitely generated group that is SQ-universal
but of finite height?

This is another part of Problem 8 of [9], and it occurs also as Problem 4 in
[5]. In 4 I shall produce a finitely generated group of height 3 that is
SQ-universal. On the other hand, finitely generated atomic groups satisfy max-N
(see 9 below) and therefore cannot be SQ-universal. I do not know whether or
not there exist finitely generated SQ-universal groups of height 2. Probably not
rebut I have no real evidence.

Question C1. Do there exist finitely generated just infinite groups not
satisfying max-sN?

A group is said to be just infinite if all its non-trivial normal subgroups are
of finite index. The question is Problem-5 on page 323 of [9] and Problem 4’ of
[2]. It arises in connection with:

Question C2. Is every finitely generated atomic group finite-by- 2-by-finite?

Here )2 is the class of groups in which every non-trivial subnormal
subgroup has finite index. The question is put in the form of a conjecture on
page 12 of [2]. In 5 I construct a group that supplies a positive answer to
Question C1 and a negative answer to Question C2.

Question D.
same length?

If G has finite height, are all maximal chains in Id[G] of the

This is Problem I of [2]. A counterexample is given in 6 below.

Question E. Let G be a countable group with normal subgroups Kx, K2
such that K N K2 {1}. Is it true that if G/K and G/K2 both have finite
height then G has finite height (bounded by a function of ht[G/K1] and
ht[G/K2])?
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The question was suggested by Theorem 4.5 of [9]. It has a negative answer
that will be given in {}7 below.

Question F.
be finite?

If G is a finitely generated group of finite height, must Id[G]

This is Problem 5 of [2]. A counterexample is produced in {}8 below.

3. Answer A

Example A. A countable group A that is SQ-universal but atomic.

Construction. Let P be a countable perfect group that is SQ-universal. For
definiteness let us take P to be the triangle group with presentation

(a, bla2= b3= (ab)7=1)
or, with an eye to future developments, the free product Alt(5). Alt(5) (see [8]
for a proof of SQ-universality of these groups). Let A .’= wr’P as defined by
P. Hall [3] (except that, as in [7], I use wr to denote the restricted wreath
product and reserve Wr for unrestricted wreath products). We think of A as a
direct limit as follows. Define Ao :-- P and thereafter Ai+ := Aiwr P, with Ai
embedded in Ai+ as the first factor of the base group; then A uAi. Let P
be the top group in A (with P0 := A0)-Then

and if

then A A wrB where here the wreath product is a permutational one. Let
K; denote the base group in this wreath product. It is the normal closure of A
in A and is isomorphic to a (restricted) direct power of A.

It should be clear that A is countable. Also, A is SQ-universal because if X is
any countable group then there is a normal subgroup Q of P such that X is
embeddable into P/Q, and so X is embeddable into P/Q wr B0, which is a
homomorphic image of P0 wr B0, that is, of A. It only remains to show that A
is atomic.

If x A,./ K then, since A is perfect and A/ Awr P, the normal
closure of x in Ai+ contains the whole of the base group of this wreath
product (see, for example, [7, Lemma 8.2]), and so the normal closure of x in
A contains the whole of Ki. Consequently, if N is a proper normal subgroup of
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A then K < N < Ki+l for some value of i. Now if H A then there exist
subgroups H0, H of H as in (,) such that Ho/H is isomorphic to a quotient
group of a subgroup of finite index in A. It follows, since A has no proper
subgroups of finite index, that either Ho/H { 1 }, in which case [H] [( 1 }],
or Ho/H --- A/N for some proper normal subgroup N of A, in which case
Ho/H has a quotient group isomorphic to A/K+I for some and, since
A/Ki+ A, we then have [H] [A]. Thus A is atomic.

4. Answer B

Example B. A finitely generated group that is SQ-universal and of height 3.

Construction. The first ingredient is the free product P Alt(5),Alt(5)
which we use to manufacture the group A .’= wraP as in 3. The remaining
ingredients are:

a finitely generated infinite simple group S;
an infinite subset Y of S such that lY N Yxl < 1 for all x S {1};
an enumeration (o0, 01, o,... } of ;
an automorphism a of S such that oa oi+ for all > 0.

This is not too much to ask: if we embed the group with presentation

(s, tlt-st s 2)
into a finitely generated simple group S (using, for example, the methods of
P. Hall [4]) then we can take E to be { s, s 2, s 4, ss,... } and a to be the inner
aut0morphism consisting of conjugation by t.
Now let W := A Wr S, the unrestricted standard wreath product. Elements

of the base group in W, the cartesian power As, will be written as sequences
(xo) a s. Let P be the subgroup of A given that name in 3 and let Q, R be
its two free factors Alt(5). Choose generators ai, b of Q and c, d of R such
that

a2i b3i (aibi)s= l and c/2=d/3= (cidi)5=1.

Let u, v As be the elements (uo)os,(Vo)o s defined by

U

1 ifo
a if O O2i
c if O O2i+1

1 ifoE

vo := bi if o (12i

d if o 02i+1.
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The group B that we want is the subgroup (u, v, S) of W. Obviously B is
finitely generated. What has to be proved is that B is so-universal and of
height 3.

Let M := B (3 As, so that B/M -- S, and let L := A(s), the restricted direct
power of A consisting of all sequences of finite support in As. The crux of the
matter is the fact that L < B and B/L =- Alt(5)wr S with base group M/L.
The idea of the proof that L < B is exactly that of [6, pp. 469, 470]. First we

observe that M is a subcartesian power, that is, its projection to each factor in
As is surjective. Therefore if

A* := {(wo)oslw 1 if o : 1},

the "first coordinate subgroup" in As, then M n A*__< A*. Consider the
commutator

[SlUS{ 1, S2USI]

where s1, s2 S and s s2. Itis the sequence (wo)o s where wo [uow uos2].
If wo : 1 then u 4:1 and uos : 1, and so os , and os2

, that is,
o Xs- (3 Xs 1. But Xs{ t F,s ( XslSl)S 1, and this is either
empty or a singleton. Therefore (wo)o s has at most one non-identity compo-
nent and (by definition) is a member of one of the "coordinate subgroups" of
As. If we take s to be o2i and s2 to be oi+l we find that[o2iuoi
is the sequence (w0) o s such that

w(oi ( [ai, ci] if o 1
1 if : 1,

and so o2iuo2- 1, A* A*02i+ luo1+ 1] M. Obviously =- A, and we observed
in 3 that any proper normal subgroup of A is contained in the subgroup K
for some r. Since wr+l) q K we must have A* t M A*. Thus A* < M
and, as L is generated by the conjugates s-1A*s for s S, also L < M. The
fact that B/L =- Alt(5)wrS now follows easily. For, since u2= v (uv) 1
we have u, v)--Alt(5); moreover, if s S- (1} then s-lus and s-Xvs
commute with both u and v modulo L; and of course the conjugates
s- (u, v) s for s S are independent modulo L.

In 3 we defined normal subgroups K of A and we saw that every proper
normal subgroup of A lies between g and Ki+ for some i. It follows easily
that if N is a proper normal subgroup of B then N M or N L or

Ks) _< N -< KS)+l for some i. We need to prove that B/KiS+I B. Now
B/K]S+I = u’, v’, S), where u’ and v’ are obtained from u, v respectively by
replacing the o0, 01, 02, 03,..., o2+2, 2+ coordinates by 1. And the map

U Ut, V Vt, S S2i+4 if s S
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gives an isomorphism B (u’, v’, S). Thus if K(s) < N < K(S+I then B/N
has a quotient group isomorphic to B. It follows easily that Id[B] consists of
[(1}], [S], [Alt(5)wrS] and [B], and hence that ht[B] 3.
Now let X be any countable group. Since A is SQ-universal there is a normal

subgroup N of A such that X is embeddable into A/N. The homomorphism of
A onto A/N induces a homomorphism of W onto (A/N)WrS that maps L
to the direct power (A/N)(s) and so X is embeddable into the image of B.
Thus B is SQ-universal, as required.

5. Answers C and C2

Before describing the relevant construction here we prove a result that sets
the scene. Throughout this section S will be a non-abelian finite simple group
and 5’. a faithful transitive S-space. In due course we take to be { 1, 2, 3, 4, 5, 6}
and S to be Alt(Y.).

THEOREM 5.1. Let G be a group such that:
(i) G is perfect;
(ii) G is residually finite;
(iii) G--- GwrxS.

Then also:
(iv) every non-trivial normal subgroup has finite index in G (that is, G is just

infinite);
(v) every subnormal subgroup is isomorphic to a finite direct power of G;
(vi) nevertheless, G does not satisfy max-sq;
(vii) G is atomic.

Proof We have G G wrS, where G1-= G. Consequently
G. wra.W., where G. -= G,

W. := S wrz S wr wrz S (n factors)
and

A. := E Y. (n factors).

Let K, be the base group in this wreath product, so that
G/K, W,. Put K0

:= G. -- Ga., and

LEMMA 5.2. If N "q G and N q: (1 } then N K, for some n.

Proof First we prove that K0, K, K2,... are the only normal subgroups
of finite index. Let X be a finite group and f: G X a homomorphism. If rn
is large enough there must be two distinct coordinate subgroups G,,,
(direct factors isomorphic to G) of K,, that have the same image under f.
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Since Gmi Gmj centralise each other it follows that their common image is
abelian and since G is perfect that image must be {1 }; then, since K is the
normal closure of Gmi, also K < Ker(f). Therefore Im(f) is a homomorphic
image of G/Km, that is, of Wm. In Wm, however, the base group Sam-1 is a
minimal (non-trivial) normal subgroup (because it is a direct power of the
non-abelian simple group S and its simple direct factors are permuted transi-
tively under conjugation in Win) and its centraliser is trivial. Therefore it is the
unique minimal normal subgroup. That is, Km_/Km is the unique minimal
normal subgroup of Wm, and it follows by induction that
Ko, K1,..., Km-1, Km are the only normal subgroups of G that contain Km.
Thus Ker(f) Kn for some n.
Now let N be any non-trivial normal subgroup of G. Since G is residually

finite we must have f’lK {1 } and so there exists n such that N < Kn and
N K,/ 1. If x N K+ then, as one sees by a very small modification of
the argument used to prove Lemma 8.2 of [7], the normal closure of x in G
contains K,+ 1. Thus K+ < N < Kn and, as we have already seen, it follows
that N K,, as required.

This deals with assertion (iv) of Theorem 5.1. Now every non-trivial normal
subgroup of G is isomorphic to a finite direct power of G and so to prove (v)
we need to show that a normal subgroup of a finite direct power of G is itself
isomorphic to a finite direct power of G. But if X, X2,..., Xk are groups all of
whose normal subgroups are perfect, and if N X X2 xXk then, as
is very easy to prove, N Y1 Y2 Yk where Y _< X for 1 _< < k.
To prove (vi) we proceed as follows. Suppose, as inductive hypothesis, that

G has a subnormal subgroup X Y with Y --- G. This is certainly true for
n=0 with X0:= (1}, Y0:=G. Now Yn GwrxS and we can take
X.+ ’= X, Z1, Y+ ’= Z2, where Z1, Z2 are two of the direct factors in the
base group of the wreath product. Then X/ Yn+ is subnormal in G, so
induction supplies a properly increasing sequence X0 < X1 < X2 < of
subnormal subgroups of G.
Suppose now that H G. There exist subgroups H0, H as in (,), such that

Ho/H is a homomorphic image of a subgroup G* of finite index in G.
Moreover, we can take G* to be normal in G. Then G* is a finite direct power
of G and, by what has already been shown, it follows that Ho/H is a direct
product of finitely many groups, each of which is finite or isomorphic to G.
Therefore either H is finite or G H, and so Id[G] consists of [( 1 }] and [G],
that is, G is atomic. This completes the proof of Theorem 5.1.

Assertions (iv) and (vi) applied to the following example give a positive
answer to Question C1, and (vii) gives a negative answer to Question C2.

Example C. A finitely generated group C that is perfect, residually finite
and isomorphic to C wrz S.



308 PETER M. NEUMANN

Construction. We take 2 ,= (1, 2, 3, 4, 5, 6} and S := Alt(2). Define

A := 2 (n-fold cartesian power) and W .’= wrS with its natural action as a
permutation group on A. Embed W_ into W as the top group in the
representation W S wr_xW_, and take S to be one of the direct factors
(coordinate subgroups) of the base group. Now define W to be the direct limit
UW--so that W is, in fact, P. Hall’s wreath power wr-N S. If
V := S/, S/2,... then V -= W and W V wrW. And if L is the
normal closure of V in W, that is, the base group in this wreath product, then
L --- Va --- W. It is not hard to see directly that W, L, L2, L3,... are the
only non-trivial normal subgroups of W--although this also follows from
Lemma 5.2.

There is a natural surjective homomorphism W, W_ for each n, and we
define W to be the inverse limit ___W. Elements of W, can be expressed
uniquely in the form t,t,_x t2t, where t is in the base group o__f W (we
take the ’base group’ of W to be W itself); then elements of W may be
uniquely described by left-infinite sequences tt_ t2t, where t is in
the base group of W. Each factor t may in turn be written as a product
FI a_s(8), where s(i) S, this expression being unique up to the order of
its factors (we take A0 to be a sing__leton set so that t is simply a member of S).
The rule for multiplication in W is determined by that in the finite wreath
products. Since it is quite complicated, and since we shall need only very
special cases, I do not write it down explicitly. The group W may be seen as
that subgroup of W that consists of sequences in which t 1 for all except
finitely many values of i. In fact, W is the completion of W with respect to the
topology that has the groups L, as a base for the neighbourhoods of 1. If V is
the closure of V in W then W V wr2 S and V -= W. We can describe V
explicitly as the set of all sequences

tntn_l t2t

in which 1 and for all i> 1, s(o_,..., (i2, O1)"- 1 if o #= 1. And we
can define an isomorphism W -, V explicitly:

tntn_ t2t 13nl3n_ 02/31

where

v, YI
Ai_I

and

1
Ui(Oi_l,..., 02 O1) Si_l(Oi_l,..., 02)

ifo :/= 1

if 0’ 1.
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Similarly, if V, is the closure_ of V, then V W and W V, wra.W.. If L,is
the closure of L, then L, is the base group in this wreath product and L,
consists_ of those sequen.._ces kti_x ttx such that 1 if < n. Since
L, has finite index in W and f’l,L, {1 }, W is residually finite.

Calculation in W may be simplified if we represent it as a permutation
group. There is a natural surjective map A, A,_ that is compatible with the
actions of W, on A, and W,_ on A,_ and with our surjective homomor-
phism W, W,_ x. It follows that there is a natural action of limW on limA.;
that is, if we define A ,= E-N limA,, there is a natural action of W on A.
Elements of A may be thought of as left-infinite sequences

(..., On, On-i,..., 0’2, 0"1)

where o E Y. for all i. The action of W on A is the following:

where, if I-Ia,_ls(i) as before, then

The set A of all sequences (..., %, %_ 1,.-., 02,1) is a block of imprimitivity
for W in A. Its stabiliser is V1. The map A A given by

induces the isomorphism W V described above; and the natural bijection
A A X E induces our isomorphism W Vx wr S.
We are now ready to define the group C. For each permutation Alt(Y)

and each element Y. define

w(t, ) := tttt W.

By this I mean that the i-th component of w(t, ) is the element in that
coordinate subgroup of the base group of W that is indexed by (,..., , ) in
A_" that is,

t,... YI Si(li-l,’’’, 02, 0’1),
Ai-1

where

Si(Oi_l,..., 02, {11) := { It if (oi_1,..., o_, Ol) (r,..., , )
if (o,_1,..., o_, Ol) (r,..., , r).
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Now define

C := (w(t, *)It Alt(X),, fix(t)).

Certainly C is finitely generated" the given generating set has 360 members but
very much smaller ones will suffice. Consider for the moment a fixed element o
of X and all generators w(t, ) with fix(t). It is easy to see that

w( 1, o )w( 2, e ) w( tltE, e )

and so these w(t, o) form a subgroup of W that is isomorphic to Alt(5). Thus
C is generatedby six subgroups isomorphic to Alt(5) and therefore C is
perfect. Since W is residually finite, also C is residually finite, and all we still
have to prove is that C -= C wrx S.

Define w*(t, ) ".= t,,t**t,, so that w(t, ) w*(t, ,)t. If s, are per-
mutations in Alt(Y.) that fix both 5 and 6 then, as is easy to see, w(s, 5)* and
w(t, 6)* commute with each other and with both s and t. Computing commu-
tators we therefore have that

[w(s, 5), w(t, 6)1 [s, t] W1 < .
If we take s, to be the 3-cycles (123), (134) respectively then we find that
(12)(34) C. Similarly all other double transpositions lie in C and so W1 < C.
Consequently C (C (3 I1).Wx. Now let z be any element of and any
permutation in Alt(E) fixing r. Choose s Alt(E) that maps to 1. Then

s-lw*(t, z)s t**lt,lt

and this is the element corresponding to w(t, )’in our isomorphism of W to
V1. Since C is generated by the members of W together with the elements
w*(t, ) (with fix(t)) it is generated by W together with these conjugates
s-w*(t, ,)s. Clearly the latter generate a copy C of C inside 1. Therefore
C C1 wrx S with Ct -= C: thus C is a finitely generated group satisfying
conditions (i), (ii), (iii) of Theorem 5.1, as required.

Comment 5.3. Let A be the C-orbit in A that contains the sequence
(..., 1,1,..., 1,1) and let m X (1} be the Cx-orbit of this sequence. If Wt
maps 1 to then

and the t-tCtt-orbit of this sequence is A X ( }. Consequently the obvious
bijection A ---, A X induces our isomorphism

C --, C wrx Alt(X),
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and the obvious bijection A - A induces our isomorphism C - C1. We shall
need the permutation representation of C on A as an ingredient in our next
construction.

Comment 5.4. The construction of C can be varied in many ways. Here is
one. Let S1, S2, $3,... be non-abelian finite simple groups acting faithfully
and transitively on sets 21, 2, 3, Suppose that for some integer d every
group S can be generated by d subgroups, each of which is isomorphic to
Alt(5) and each of which fixes at least two members of E (if (Si, ) is Alt(n)
in its natural action then this can be achieved with d 3 provided that n >_ 7
for all i). Define A := 1, W1 ’= $1, and thereafter

. n -1

As before we can find a finitely generated subgroup C of the inverse limit
W:=W which has the property that all non-trivial normal subgroups have
finite index in C. But if the sequence (S1, 1),($2, 2),($3, 3),.-- is not
periodic then the proper subnormal subgroups are direct products of groups of
the same kind of structure as C, but none of which is isomorphic to C. Under
these circumstances C is a finitely generated just infinite group of infinite
height.

6. Answer D

Example D.
length 3.

A group D of height 4 such that Id[D] has a maximal chain of

Construction. We begin with the group C of 5 and with two faithful
transitive C-spaces. The first is the C-space A described in Comment 5.3, the
second F is the coset space (C: W). A subgroup of finite index in C contains
the normal subgroup K, the kernel of the homomorphism of C onto I,V, for
some n, and WJ( C. Therefore every subgroup of finite index in C is
transitive on F.

Let S be a non-abelian simple group and define X S wrr C, Y := S wra C,
Z := X C and D .’= X Y. I shall prove that the partially ordered set Id[ D]
is

//[o1
[z]

IX]
\

[YI

/
[c]

[(1}].
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A subgroup of finite index in D contains a subgroup Xo Yo where Xo is
normal and of finite index in X, and Yo is normal and of finite index in Y.
Since the base groups Sr), sA) (restricted direct powers of S) are the unique
minimal normal subgroups of X and Y respectively, we have Sr _< Xo,
sA -< Yo and

Xo=SwrrK., Yo=SwraK.
for some m, n. Since Km is transitive on I’, Sr) is the unique minimal normal
subgroup of Xo. Since K, has 6" (as it happens) orbits on A, on each of which
it acts like C on A, Y0 = y6". Every normal subgroup of X0 and of Y0 is
perfect, so a normal subgroup of X0 Yo is of the form X Y1 where
X1 < Xo and Yx < Y0. If Xx, (1) then Xo/X is isomorphic to a quotient
group of Xo/Sr), that is of Kin, and therefore Xo/X Ck Q for some k
and some finite group Q; similarly, Yo/YI =- Y’ C R for some integers
k, and some finite group R. Clearly therefore Y yk Ct y and so
Y Y C yk for any positive integer k. It follows immediately that Id[D]
consists of [(1)],[C],[X],[Y],[X C],[D], and that it is ordered as shown in
the diagram.

7. Answer E

Example E.
atomic groups.

A group E of infinite height that is a subdirect product of two

Construction. Let S be a non-abelian finite simple group, let R be the
countable restricted direct power Ss0, let R := R and R 2

.’= R wr R. We
define Q to be the wreath power wr’R and fi to be the set on which it
naturally acts, that is, since R is to be thought of as acting on itself regularly
(by fight multiplication), fi is the countable restricted direct power R’) (see
[3]). Define E := (RI R 2) wrfl Q.

If K .’= R) and K2
:= R, so that K K2 is the base group in the

wreath product, then

E/K -= R2 wrn Q -= Q and ElK2 R wrn Q -= Q,

and so E is a subdirect product in Q Q. But Q is atomic (compare 3). So E
is a subdirect product of two atomic groups.
On the other hand E has quotient groups of the form

E,,,,,, =- (S" (S"wrR))wrnQ.

If m 0 or n 0 then E,,,., Q, but if m 4:0 and n 4:0 then it is easy to
see that Era., .-< Era, , if and only if m _< m’ and n _< n’. Thus E has infinite
height.
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8. Answer F

Recall that a soluble minimax group is a group G with a subnormal series
{1) Go< G1< < Gn= G in which every factor Gi/Gi_ either is
cyclic or is a quasi-cyclic group Z,oo for some prime number p. The number of
infinite factors in such a series is an invariant m(G), the minimax length. As
preparation for our final example we require:

LEMMA 8.1. If G is a soluble minimax group then
(i) ht[G] _< m(G),

and
(ii) [G] consists of only countably many isomorphism classes of groups.

Proofi We use induction on m(G) to prove (i). Let H be a group that is
strictly smaller than G in Pride’s sense. There exist Go, G1, H0 and H as in
(,) and an isomorphism Go/G ---} Ho/H1, and G must be infinite. Therefore
m(Go/G1) < m(G) and, by inductive hypothesis, ht[Go/Gx] <_ m(Go/G1).
Consequently

ht[H] ht[Go/G1] < m(G) 1,

and so

ht[G] 1 + sup{ht[H]lH-< G) <_ m(G),

as required.
To prove (ii) we first show that if G ,q Go < G, G" Gol is finite and G is

infinite, then Go/G -< G. Let Y := Go/G and suppose, if possible, that
Y G. Then there exist subgroups Yo, Y1 of Y with Y: Y01 finite and Y1 "q Y,
and there exist subgroups Xo, X of G with G: X01 finite, X Xo and X
finite, such that Yo/Y1 = Xo/X1. But

m(Xo/X1) m(G) m(Go) m(Y) + m(G1) > m(Y) > m(Yo/Y1).

This contradiction shows that Go/G -< G.
Now if H G then there exist Go, G < G and Ho, H < H as in (,). We

may suppose moreover that Ho

_
H. Since

Go/G1- Ho/Hl-H- G

we must have that G1 is finite. Therefore there are only countably many
possibilities for the group Go/G1, that is, for Ho/H up to isomorphism. Using
the Lyndon-Hochschild-Serre spectral sequence one may show that if X is a
soluble minimax group and Y is a finite ZX-module then all cohomology
groups H(X, Y) are finite (see [10]). From the finiteness of the second
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cohomology groups it follows easily that there are only countably many
extensions of a finite group by a given soluble minimax group: thus there are
only countably many possibilities for H0. And it is easy to see that there are
only countably many extensions of a given countable group by a finite group.
Thus there are (up to isomorphism) only countably many possibilities for H.

Example F. A finitely generated group F such that ht[F] 9 and Id[F]
has 2so members.

Construction. Let N be the group that is generated by elements
u, v, w, y, z (n > 0) subject to the relations (for all relevant m, n):

Yn, Zn are central;
Un2+l Un; Vn2+l Vn; Wn2+l-" Wn; yn2+l Yn; Zn2+l
y0=z0 1;
[Vm, Wn] 1; [Um, On] Ym+n; [Um, Wn] Zm+n"

Zn;

This group is nilpotent of class 2, its centre Z(N) is isomorphic to Z2 X Z2
generated by the elements yn, z, and N/Z(N) is a direct product of three
copies of 2-Z. There is an automorphism that fixes all y and z, and maps

2u to u, vn to v+, w to w+ for all n. We take F to be the semi-direct
product of N with an infinite cyclic group inducing this automorphism: thus

Clearly F is generated by {x, ux, v1, wl}, so F is a finitely generated group.
Also, F is a soluble minimax group built from four infinite cyclic groups and
five copies of Z2, so m(F) 9 and therefore, by Lemma 8.1(i), ht[F] < 9. In
fact it is quite easy to see that ht[F] 9. Now

Thus Z(F) has 20 subgroups (see [1]), that is, F has 20 normal subgroups.
Since F is finitely generated there are only countably many homomorphisms of
F to a given countable group and so F must have 20 non-isomorphic quotient
groups. From Lemma 8.1(ii) it follows that these must fall into 20 equivalence
classes, and so Id[F] has 20 members, as claimed.

9. Finitely generated atomic groups

The constructions that I have described in this paper mostly seem to have
slightly negative consequences for Pride’s theory. Therefore it is a pleasure to
report some small positive results.
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LEMMA 9.1. If G satisfies max-N and H .< G then H satisfies max-N.

Proof. Given that H .-< G there exist subgroups Go, G1 of G and H0, H1 of
H as in (,). By a theorem of John S. Wilson [11], GO satisfies max-N. Then
Go/G and therefore also Ho/H satisfies max-N. Since H is finite Ho satisfies
max-N and now by Wilson’s theorem again H satisfies max-N.

THEOREM 9.2. A finitely generated atomic group satisfies max-N.

Proof. Let G be a finitely generated atomic group. Since G is finitely
generated and infinite it has a just-infinite quotient group H. Then H .< G and
since G is atomic H G, whence G H. It follows from Lemma 9.1 with the
roles of G and H reversed that G satisfies max-N, as required.

There is a slightly more general version of this theorem.

THEOREM 9.3. Let G be a finitely generated group of height n. If there are n
inequitalent atomic groups H,..., H such that H G for all then G satisfies
max-N.

Proof. By Theorem 2 of [2], H Hn G, by Theorem l(ii) of [2],
ht[H Hn] n, and so G H1 H,. It follows that this direct
product is finitely generated, so each group H,. is finitely generated and, by
Theorem 9.2, satisfies max-N. Then H H, satisfies max-N and so G
satisfies max-N.

REFERENCES

1. GERHARD BEHRENDT and PETER M. NEUMANN, On the number of normal subgroups of an

infinite group, J. London Math. Soc. (2), vol. 23 (1981), pp. 429-432.
2. M. EDJVET and STEPHEN J. PRIDE, ’The concept of "largeness" in group theory II’ in

Groups-Korea 1983 (Proceedings edited by A.C. Kim and B.H. Neumann), Lecture
Notes in Mathematics, Vol. 1098, Springer-Verlag 1985, pp. 29-54.

3. P. HALL, Wreath powers and characteristically simple groups, Proc. Cambridge Philos. Soc., vol.
58 (1962), pp. 170-184.

4. On the embedding of a group in ajoin of gioen groups, J. Australian Math. Soc., vol. 17
(1974), pp. 434-495.

5. BERNARD M. HURLEY, ’Small cancellation theory over groups equipped with an integer-valued
length function’ in Word problems, II: the Oxford book (Proceedings edited by S.I.
Adjan, W.W. Boone and G. Higman), North Holland 1980, pp. 157-214.

6. B.H. NEUMANN and HANNA NEUMArN, Embedding theorems for groups, J. London Math. Soc.,
vol. 34 (1959), pp. 465-479.

7. PETER M. NEUMANN, On the structure of standard wreath products of groups, Math. Zeitschrift,
vol. 84 (1964), 343-373.



316 PETER M. NEUMANN

8. The SQ-universality of some finitely presented groups, J. Australian Math. Soc., vol. 16
(1973), pp. 1-6.

9. STEPHEN J. PRIDE, ’The concept of "largeness" in group theory’ in Word problems, II: the

Oxford book (Proceedings edited by S.I. Adjan, W.W. Boone and G. Higman), North
Holland 1980, pp. 299-335.

10. DEREK J.S. ROBINSON, On the cohomology of soluble groups of finite rank, J. Pure Appl.
Algebra, vol. 6 (1975), pp. 155-164.

11. JOHN S. WILSON, Some properties of groups inherited by normal subgroups offinite index, Math.
Zeitschrift, vol. 114 (1970), pp. 19-21.

THE QUEEN’S COLLEGE,
OXFORD, ENGLAND


