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TORSION FREE CANCELLATION OVER ORDERS
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In memory of Irving Reiner

Let A be an order over a Dedekind ring R. We say that torsion free
cancellation (hereafter abbreviated to TFC) holds for A if X, M = X, N
implies M -- N for lattices X, M, N over A; i.e. when X, M, N are finitely
generated A modules torsion free over R. In [30], Wiegand developed a theory
of torsion free cancellation over 1-dimensional commutative tings. Since the
question is also of great interest for non-commutative orders, it is natural to
ask whether Wiegand’s results have non-commutative analogs. I will show here
that this is indeed the case, at least when the quotient field of R is a global
field. The main difference between the commutative and non-commutative
case is due to the need to impose Eichler’s condition on appropriate endomor-
phism rings.

I will also present some partial results on the case A ZG with G a finite
group. The abelian case was discussed by Wiegand [30] who settled the
question except for two special groups, the cyclic groups G8 and C9 of orders 8
and 9. It turns out that TFC holds also in these two cases. For C9 this can be
deduced from Reiner’s classification of ZC,: lattices [22]. The case C8 requires
a bit more work and will be discussed in {}5. The final result for G abelian is
that TFC holds for ZG if and only if D(ZG) 0. However, I will show that
this is no longer true in the non-abelian case. Note that Heitmann [30] has
given an example of a commutative order with D(A) 0 but without TFC.
Throughout this paper the term order will mean an order over a Dedekind

ring R in a semisimple separable algebra over its quotient field K. Except for
{}1, I will also assume that K is a global field unless otherwise specified and
will use the term "global order" to remind the reader of this assumption.
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330 RICHARD G. SWAN

1. General results

Let A be an order over a Dedekind ring R in a semisimple separable
algebra A over the quotient field of K of R. As usual C(A) will denote the
projective class group of A and D(A)= ker[C(A) ---> C(I’)] where F is any
maximal order of A containing A (e.g., see [28]). The following result of Endo
and Miyata [7, Lemma 2.4] shows that D(A) 0 is a necessary condition for
TFC.

Recall that two lattices M and N over A are said to have the same genus
(denoted M v N) if Mo -- NO for all valuations v of K coming from R, where
M denotes the completion of M at v [28].

PROPOSITION 1.1 [7]. Let A F be R-orders in A. Let M and N be
A-lattices of the same genus. Then

M $ FN-- FM N.

Here, as in [30], FM is the F submodule of KM generated by M or,
equivalently, I’M (F (R)A M)/torsion.

Proof By Roiter’s lemma [27, Th. 3.1] choose an exact sequence 0 M
N - X 0 where X has order prime to IF: A I. The sequence 0 M
FM N FN --, 0 is then split exact since this is so locally. In fact, locally
either F=AorM=N.

COROLLARY 1.2 (cf. [30, Th. 2.3]). Let A c F be R orders in A. Assume
that TFC holds for F. Let M and N be A-lattices. Then there is a A lattice X
with X M - X N if and only if (1) M V N and (2) I’M -- FN.

Proof (1) is necessary since cancellation holds locally by Krull-Schmidt.
(2) is necessary by the hypothesis on F. The sufficiency follows from 1.1.

COROLLARY 1.3 (cf. [30, Cor. 2.4]). If TFC holds for A, then D(A) 0.

Proof Let [P] [Q] D(A) be non-zero, P and Q being locally free.
Let 1" A be a maximal order. By definition of D, [FP] [FQ]. Replacing P
and Q by P A" and Q An for some n we can assume that FP -- FQ and
the result follows from 1.1.
Using an idea of Reiner [23, Proof of 40.22] (see also [19, Proof of 2.2]), we

can give a sufficient condition for TFC but unfortunately this will usually
involve looking at an infinite number of orders. We let Genus(M) be the set of
isomorphism classes of A lattices having the same genus as M. In particular,
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Genus(A) LFI(A), the set of isomorphism classes of locally free A modules
of rank 1.

PROPOSITION 1.4. Genus(M) -- LFI(EndA(M)).
A more general version of this result applicable to modules with torsion is

given by Guralnick [13, Lemma 3.2], [12, Prop. 4.1].

Proof As in [23, Proof of 40.22], we observe that if M v N, then
HomA(M, N) is locally isomorphic to HomA(M, M) EndA(M) and so lies
in LF(EndA(M)). Let EndA(M) acting on M from the right. If P
LF(Y,) then clearly M (R) P Genus(M). This gives maps Genus(M)
LF(Y,) which are inverses since M (R) HomA(M, N) -- N and P --HomA(M, M (R)x P). It is enough to check these locally so we can assume that
M N and P Y, in which case the maps are clearly isomorphisms.
The isomorphism of 1.4 is natural in the following sense.

PROPOSITION 1.5.
EndA’ (M ). Then

Let A c A’, M’= A’M, E EndA(M) and E

Genus(M) LF(E)

Genus(M’) -- LF(2’)

commutes.

Proof We have to show that A’(M (R) P) -- M’ (R)x, P’ with P’ Y’P.
It is enough to check this locally so we can assume that P . In this case the
result is clear.
As usual we say that A satisfies locally free cancellation (LFC) if X M --X N implies M--N for locally free A modules X, M, and N. This is

equivalent to LFI(A) C(A) being an isomorphism, for instance by [26, Cor.
A6]. The following result is also an immediate consequence of [13, Cor. 6.5].

COROLLARY 1.6. Suppose that LFC holds for EndA(M) for all A lattices
M. Then TFC holds for A if and only if D(EndA(M) 0 for all A lattices M.

Proof. Let F be a maximal order containing A. We first observe that F
satisfies TFC. Let KF= A ... An with the A simple. Then F

Fn where Fi is the image of F in A. Let Ag Mni(Dg) where D is a
division algebra and choose a Fi lattice Pg such that KP is a simple A
module. Then A Endr,(Pi) is a maximal order in D. Since A EndA(P),
we see that A satisfies LFC and hence TFC since all A lattices are locally
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free [23, Th. 18.10]. Therefore I" also satisfies TFC since the category of I’i
lattices is Morita equivalent to that of A lattices. It follows that F satisfies
TFC so, by 1.2, TFC holds for A if and only if Genus(M) ---, Genus(FM) is
injective for all A lattices M. By 1.5 this is equivalent to the injectivity of
LFI(Y. ) LFx(N’ ). But Y. EndA(M) and N’= Endr(FM) EndA(I’M)
satisfy LFC by hypothesis so this map is just C(Y.) ---, C(N’) with kernel
D(A) since N is maximal.
The following results show that it is sufficient to check the conditions of 1.6

for one module M in each genus.

PROPOSITION 1.7. Let M and N be A lattices having the same genus. Then
EndA(M) and EndA(N ) are Morita equivalent.

Proof. By Roiter’s lemma [27, Th. 3.1] we can embed N in M with
Mo=No for all v, such that A is not a maximal order. We now have
KM KN and we can regard F EndA(M) and A Enda(N) as orders in
End,4(KM ). Let P=I’A as a left F and right A module. Then P is a
projective generator over I" and Endr(P) A. It is sufficient to check these
assertions locally. If A o is maximal, so are I" and A

o and the result is clear. In
the remaining cases however, Po Fo A o.

COROLLARY 1.8. IfM and N are as in 1.7, then LFC holds for EndA(M) if
and only if LFC holds for EndA(N ).

This is clear since P is locally free of rank 1 over F and A so the Morita
correspondence preserves locally free modules. The same result holds for TFC.

COROLLARY 1.9. IfM and N have the same genus then

C(EndA(M)) C(EndA(N)) and D(EndA(M)) D(EndA(N)).

This follows immediately from Matchett’s theory of bimodule induced
homomorphisms [18], [26, p. 149].

Remark. The condition TFC is left-right symmetric since M M*=
HomR(M, R) gives an equivalence between the categories of left and right A
lattices. This equivalence does not preserve locally free modules in general but
for projective modules we can use instead the equivalence P P v=
HomA(P, A) between the categories of left and right projective lattices. This
preserves locally free modules showing that LFC is also left-right symmetric,
and that C(A) is the same for left and fight modules. The same is true of
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D(A) since for P projective and A c F, we have

P v(R)Ar HomA(P, A) @h I’ --:-* HomA(P, r)

Homr(r (R)A P, r) (r P)v,

it being sufficient to check the isomorphism when P A.

2. Orders over global fields

From now on I will assume that the quotient field K of R is a global field.
Write A 1-lMn,(Di) where the Di are division algebras.

DEFINITION. We say that A satisfies the extended Eichler condition (EEC)
if each D satisfies Eichler’s condition [28, p. 174].

Equivalently, EEC holds if and only if EndA(V) satisfies Eichler’s condition
for every finitely generated A module V. This is clear from the fact that
Mn(D) satisfies Eichler’s condition for n > 1. Note that if R Z, EEC just
says that no D is a totally definite quaternion algebra.
As usual we say that A satisfies EEC if KA A does.

COROLLARY 2.1. Suppose A satisfies EEC. Then A satisfies TFC if and
only if D(EndA(M)) 0 for all A lattices M.

This follows from 1.6 and Jacobinski’s cancellation theorem [28].
The following considerations give an analogue of [30, Cor. 2.4]. Let F be a

maximal order of A containing A and let 0 be the center of I’. Suppose is
an ideal of O such that s’F c A. If M is a A lattice, write F I"M l’t
where 0 Ft is the annihilator in F of FM. Then 0 0, .’=’’r and tOM is isomorphic to the center of A Endr(FM ). Since /FM c
AM M, we see that ’A c E EndA(M). By FrShlich’s formula [28],
D(E) U(OM)/U+(O)rU(,), and U() U(A, ’).

LEMMA 2.2 [28, Th. 15.11. vU(/, ’/) U(M, @M).

PROPOSITION 2.3.
U(/.)/U+().

For all A lattices M, D(EndA(M)) is a quotient of

This group is an analogue of Wiegand’s E(R) [30].

COROLLARY 2.4.
A satisfies TFC.

If A satisfies EEC and U+(O) U(O/) is onto, then
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A version of this result applicable to non-global orders is given by
Guralnick [13, Th. 5.3].
We now turn to the main results of this section. Let N be another A lattice.

Clearly dMV D (PM SO (.0MV (.0M (9’ for some (.0’.

LEMMA 2.5. The following diagram commutes.

Aut (21t’) ---) Aut( 2Q)

Here the upper map sends a to a 1 and the lower map sends u to (u, 1)
(.0M d’.

Proof. It is clearly sufficient to do the local case and it is enough to check
the corresponding results for the algebra A rather than the order. After
extending the groundfield to make the algebra split, the result reduces to the
fact that det(f 1) det(f) over a field.

Since U/((9) c U(tP) is determined by the division rings D occurring in A,
it clear that U+(dM.S) U+(C0M) U+((.0’). It follows from 2.5 that there is
a well-defined^map D(EndA(M)) D(Ena(M N)) which is induced by
U(M) U(dM.V) sending u to (u, 1) (.0M d’.

COROLLARY 2.6. If Anna(M N) AnnA(M) then D(Enda(M)) --)

D(Enda(M N)) is onto.

In this case {MN {M SO the result is clear.

COROLLARY 2.7.
onto.

If M= Mi then D(EndA(M)) ---) D(EndA(M)) is

This follows from the obvious fact that 1-IU(M, ) --) U(M) is onto. In
particular D(Enda(M)) will be 0 if all D(EndA(Mi)) are. This gives the
following sufficient condition for TFC.

THEOREM 2.8. Let A be a global order. If A satisfies EEC and if
D(Enda(M)) 0 for all indecomposable A lattices M, then A satisfies TFC.

Note that by 1.9 it is enough to consider one indecomposable lattice M in
each genus.

In the commutative case this gives an improvement of one of Wiegand’s
main results [30, Th. 2.7] in the case of global orders.
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COROLLARY 2.9. Let A be a commutative global order. If D(A) 0 and if
every A lattice is a direct sum of ideals, then A satisfies TFC.

Proof Since EEC holds, we need only check that D(EndA(I))= 0 for
ideals I of A. Let J AnnA(I). Then (I N j)2 0 so I 3 J 0 since KA is
a product of fields. Therefore I is an ideal of A/J. Since KZ is a product
of fields and Annx(I) 0, we see that KI KY so EndA(I ) is an order of
K containing Y. This implies that the maps D(A) - D(Y) - D(End(I))
are onto by Corollary 3.7.

COROLLARY 2.10. TFC holds for ZC9.

This actually follows from Reiner’s classification of modules over ZCp2 [22].
However we can give a proof using Theorem 2.8 which only requires knowl-
edge of the indecomposable ZC9-modules [21]. With one exception these are
isomorphic to ideals of ZC9 and the argument of Corollary 2.9 can be applied.
The exceptional module is M (Z E, S, 1 + X) in the notation of [22].
This can be presented with generators e, f, g and relations

(x- 1)e=0, (x3- 1)f=0, 9g=e+ (x- 1)f

where (I)9 1 + x + X6. From this one easily sees that M is the pullback in
the diagram

M----- I

Z2 ,2

where I (3, x 1) c A ZC9/(N ) Z[x]/(I)3(I)9 with N being the sum
of the elements of the group. The maps send e, f, g to 0, 9, x 1 I and to
(3, 0), (0,1), (1, 0) Z2. The right vertical map is just ! --, 1/12= ’32. Note
that 12= (x- 1)I. This follows from the identity [(x- 1)2+ 3x]9 0
in A.
Any endomorphism of M induces one of this diagram and endomorphisms

of I and Z2 define an endormorphism of M if and only if they agree on ’32.
Now EndA(I ) A A + A(x- 1)9/3 because it is easy to check that
Al(x 1) I using the identity just mentioned, so A’(x 1) c I implies
A’c A. The elements of A induce scalar multiplications on 32 while
(x 1)9/3 induces the matrix

so the elements of End(Z2) which match endomorphisms from A on -32 are
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those of

A2 ((ac db) [a=d’c= 0mod 3}.
Therefore we have a cartesian diagram of epimorphisms

with

Note that C(Ax) 0 by Corollary 3.7 applied to ZC9 A At. It is now an
easy exercise to show that C(EndA(M))= 0 using the Mayer-Vietoris se-
quence [25].

3. Bass orders

In [30, Th. 2.7] Wiegand shows that D(A)= 0 implies TFC for 1-dimen-
sional commutative Bass rings. Using the results of {}2 we can prove a similar
result in the non-commutative case. Recall that an R-order A is called
Gorenstein if A* HomR(A, R) is projective over A or equivalently if A* is
a generator [5, 37.9]. These conditions turn out to be left-right symmetric [5].
The order is called a Bass order if it and all larger orders in the same algebra
are Gorenstein.

TI-IEOREM 3.1. If A is a global Bass order satisfying EEC and if D(A) 0,
then A satisfies TFC.

Proof Let M be a A lattice. If J AnnA(M) then A/J satisfies all the
hypotheses of 3.1. In fact A KA A A2 where KJ 0 A2 so At

A/J is an order in A1. If A 2 is the image of A in A2 then A A2 is a Bass
order containing A and so A is Bass. By 3.7, D(At) 0. We can therefore
assume that M is faithful. We can also replace A by Ol(M) { a AlaM c
M) so that A Ol(M). By a result of Faddeev [5, 37.12] there is an
epimorphism Mk A* for some k. Since A* is a generator we get an
epimorphism M" A so M"--A N for some N. By 2.6 we see that
D(EndA(Mn) 0. But

Enda(M") M.(Enda(M))
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is Morita equivalent to EndA(M) so D(EndA(M))= 0 and the theorem
follows from 2.1.

Remark. Unfortunately this result is of no use in deciding when ZG has
TFC for non-commutative G since ZG is a Bass order if and only if G is
cyclic of squarefree order. In fact if ZG is Bass then A ZG/(N) is
Gorenstein where N is the sum of the elements of G. But A*--I, the
augmentation ideal of ZG. If there is an epimorphism lm"- A we get
(I/I2)m All, i.e. (G/[G, G])m Z/gZ where g is the order of G. This
implies that G/[G, G] has an element of order g so G is cyclic. The result is
well known in this case [2], [11].

In [2, Cor. 7.3] Bass shows that an indecomposable torsionless module over
a 1-dimensional commutative Bass ring is projective over its endomorphism
ring. A converse to this for domains is given by Handelman [14]. I do not
know to what extent Bass’ result holds in the non-commutative case. A related
result over complete DVR’s is given in [5, 37.13]. In any case, hereditary
orders have this property.

LEMMA 3.2. If A is a hereditary order and M is a A lattice then M is
projective over EndA(M).

Proof. As in the proof of 3.1 we can assume M is faithful and that
A oz(M). Then M will be a generator by Faddeev’s result since hereditary
orders are Bass orders. Therefore M is now a projective generator and the
result follows from standard Morita theory [1], [5], [23].
The following is an analogue of 3.1 for the property just considered.

THEOREM 3.3. Let A be a global order which satisfies EEC and has
D(A) 0. Suppose that every indecomposable A lattice is projective over its
endomorphism ring. Then A satisfies TFC.

By Theorem 2.8 it is enough to show that D(EndA(M)) 0 for indecom-
posable A lattices M. This follows from D(A) 0 and the following general
result which does not require K to be a global field.

PROPOSITION 3.4. Let M be a lattice over an order A such that M is
projective over EndA(M). Then there are epimorphisms C(A)---, C(X)
and D(A) D(X).

Proof. If M is a left A module we regard it as a right X module and define
C and D using fight modules. This is possible by the remark at the end of 1.
Choose a maximal order F containing A.

Define a map C(A) --, C(Y.) by sending P Q] to P (R)A M
[Q (R)A M]. These modules are projective by the hypothesis and the image lies
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in C(Y) c K0() since P (R)A M and Q (R)A M are locally isomorphic. Let
A Endr(I’M) 3 y, and define C(F) C(A) similarly using FM.

LEMM 3.5. The following diagram commutes:

c(h) ---. c(y)

c(r) -- c().

Proof Let [P] [Q] C(A). By Roiter’s lemma [27, Th. 3.1] we can
find a sequence

OQP--,XO

where X 0 whenever
torsion free,

Write [X]A C(A), Since Q (R)A F is

is exact. But X (R)A F X so the image of in C(F) is [X]r. Similarly

O Q (R)A M P (R)A M X(R)A M O

is exact so maps to [X (R)A M] in C(Z) which in turn goes to [X (R)h M] in
C(A). Now [X]r C(F) goes to [X (R)r FM] C(A) but X (R)r FM = X (R)A
M since Xo 0 when (FM)v 4: Mo.

It follows that our map induces a map D(A) D(Y).

LEMMA 3.6. The maps C(A) C(E) and D(A) D(Y,) are onto.

Proof As in the proof of 3.5 we can represent an element r/= [P] [Q]
C(Y,) by r/=[Y] where 0QP0 and Yv=0 whenever
4: Fo. Let X Y (R). M v where M v= HomA(M, A). Then

OQMVpMvXO

is exact since Mov is projective whenever Po Qo
image of in C(Y,) is

and [X]A C(A). The

[x (R)a M] [Y (R)x M V(R)A M].
Now M v(R)A M Y by f (R) m tp, where tp(x) f(x)m, becomes an iso-
morphism locally at each v such that A o Fo since then Mo is projective. It
follows that Y M v(R)A M -- Y (R) Z Y.
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It remains to show that D(A) if r/ D(Z). The image ’ of in C(F)
is given by [X]r as above and

X Y (R)a (rM)v

since FMo Mo whenever Yo 4: O. Since F is maximal, (FM)v is projective
over F so the functor--(R)a(FM ) v defines a map C(A)---)C(F) as above.
This sends the image r/’ of /to ’; but r/’ 0 so ’ 0 also.

Proposition 3.4 can be regarded as a generalization of the following well
known result of FrShlich [9, 2 III]. This result is stated for C but the same
proof works for D (cf. Cor. 2.6).

COROLLARY 3.7. Let A and F be orders over R and let A F be an
R-algebra morphism such that KA - KF is onto. Then there are epimorphisms
C(A) - C(I’) and D(A) - D(F).

We choose M I" and note that EndA(M) Endr(M) I’ because KA- KF is onto.

4. A patching method

In order to use Theorem 2.8 we must first find the indecomposable A
lattices. The method considered in this section only requires knowledge of the
indecomposable lattices over certain quotients of A. Suppose KA A A
)</12 and let A; be the image of A under the projection on A i. Write

A A/li and let A A/(I + I2)- Then we have a cartesian diagram

(1)

If M is a A lattice let

M AiM (M/IiM)/torsion.

Write M M/Mi’ and let M M/(M{ + M:(). Since M{ N M2’ 0 we
have a cartesian diagram

(2)
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Note that in contrast to the usual Milnor patching of projective modules, M is
not determined by M and ME alone.

Let N be another A lattice and construct an analogous diagram

(3)

g N

We can assume that A and A 2 satisfy TFC since this is clearly a necessary
condition for A to satisfy TFC. Suppose that X M = X N for some A
lattice X. It follows that X Mi = X N and so M = N. Similarly M = N
since the Krull-Schmidt theorem holds for the finite ring A. Fix such isomor-
phisms and replace (3) by the isomorphic diagram

(4)

Let /0 I-Io sMo denote the completion of M at a finite set S of valuations
including all v for which A o O. Since the Krull-Schmidt theorem holds in
the complete case, /O =/ so the completions of (2) and (4) are isomorphic.
Therefore there is a commutative diagram

If this can be refined to

(6)

it will follow that (2) and (4) are isomorphic and that M = N. It is convenient
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to split this lifting problem into two parts as follows. Enlarge (5) and (6) to

(7)

and

(8)

M M1/I2M M2/I1M:- M2

where r/1 and 72 are the canonical quotient maps. Here is a simple case in
which this approach obviously succeeds.

PROPOSITION 4.1.
I2, I:I1,

Suppose for all A lattices Mi, 1, 2, that, with I

Im[Aut(M) Aut(M/I{M) Im[Aut(ri) Aut(M//I{Mi)].

Then if TFC holds for A and A2, it also holds for A.

In fact, it is sufficient to verify the hypothesis for indecomposable Mi using
an easy generalization of standard results on elementary transformations [1]:
Suppose that we are given a decomposition M M. For given i, j with
: 4 and f: Mj M we define eij(f ) 1 + f Aut(M) where f: M

Mj --. M m. Clearly eij(f)-1= eij(-f). Let E(M) be the subgroup of
Aut(M) generated by all eij(f ) for all : j and all f. It depends, of course,
upon the decomposition M Mi.

LEMMA 4.2. Suppose A/I is finite. Then Im[E(M) Aut(M/IM)]
Im[E(/r) .., Aut(M/IM)].

Here, as above, M M is given and 3r I-Io sMo for a finite set S of
valuations.

Proof. Since Homh(Mi, M)^ Homh(/rj,/r) we can approximate each
of a finite set of maps f: Mi, --,/I, by g" ML "* Mv choosing g so close to f
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that the induced maps Mj/IMj -o Mi/IM are the same. Therefore I-I%j(f)
and 1-Ie;j(g) have the same effect on M/1M.

If M M as above, define D(M) c Aut(M) to be the set of "diagonal"
automorphisms; i.e. those preserving the summands so 8 8 where 8:

PROPOSITION 4.3. If each
D(M)E(M) E(M)D(M).

End(Mi) is semilocal then Aut(M)

This is an analogue of a theorem of Bass [1] stating that GL,(A)=
En(A)D.(A) for a semilocal ring A. The same proof works in general,
replacing matrices over A by matrices whose i, j component is a map
Mj Mi. The same remark applies to the following which is an analogue of a
result of Vaserstein [29].

PROPOSITION 4.4. Let f: M --* N and g: N -, M. If 1 + gf Aut(M)
then (1 + fg) Aut(N) and

l+gf

0

0 )(l+fg)- E(MN)"

Vaserstein’s proof works with no essential change. Explicitly, the matrix is

e(-fu)e(g)e(f )e9. (- ug)

where u (1 + gf)- and (1 + fg)- 1 fug.
As usual [29], we deduce a form of the Whitehead lemma.

COROLLARY 4.5. Iff Aut(M) then

o)f_ E(M N).

Combining 4.2 and 4.3 gives us the following result.

COROLLARY 4.6. Let A/I be finite and let M M. If

Im[Aut(Mi)--) Aut(Mi/IM,)] Im[Aut(3i)--) Aut(Mi/IM)]

for all then the same holds for M.
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Proof. Since End(hri) is semilocal, 4.3 shows that Aut(3r) D(31)E(37I).
By 4.2, E(hr) and E(M) have the same image. The analogous statement for
D(M) is the hypothesis of 4.6.

This shows that it is enough to assume the hypothesis of 4.1 for indecom-
posable modules. In fact, by the next result, it will usually suffice to look at
one indecomposable lattice in each genus.

LEMMA 4.7.
satisfying

If A satisfies EEC, A/I is finite, and M is a A lattice

(*) Im[Aut(M) Aut(M/IM)I Im[Aut(/r) -o Aut(M/IM)]

then any A lattice in the same genus as M also satisfies (,).

Proof Let E End(M). Then, as in the proof of 4.2, E and , End(
have the same image in End(M/IM). Write A_/J. Since U() U()
is onto, the condition (,)just says that U(2) U(Y) is onto. By EEC and
[28, Th. 10.21,

c u/(e)]

where tP is the integral closure of R in the center of KE. Now suppose that
N v M. In the construction used in the proof of 1.6 we can assume that
Mo N whenever I # A o. Let A End(N). We have the same ring (9 for Y
and A. If I A v then Jo Y’o while if A is maximal vU(Eo) U((Pv). For
the remaining v, M No. Therefore the above formula shows that
u(x)/f(x)
Two simple examples to which the result applies are ZCa and ZV where

V C2 C2. We use the two diagrams

ZC4 Z[4] ZV ZC2

I landl I
zG --’  2G --,

The method also applies to ZC2p for odd primes p. We use the diagram

By [201, the indecomposable ZCp modules are Z, ideals 0 of Z[’e], and
P LFx(ZC) with endormorphism rings Z, ztGl, and ZCp. It will suffice
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for TFC to have Z[’]* -, (Z[’,]/(2))* and (Z@)* (’2@)* onto. These
conditions hold if p 2. If p is odd, the diagram

shows that U(Z[’,I, ) c ZC, and ’2Cp ’2 x Z[’,]/(2) where is the
prime ideal over p. Therefore it will suffice for TFC to have U(Z[fp], )
(Z[’p]/(2))* onto. This is so for p 3, 5 and 7 so we get a new proof of
Wiegand’s result that ZG has TFC for G V, C4, C6, C0, and C4 [30, {}5].

5. The cyclic group of order 8

The method developed in 4 can be used to settle the cancellation problem
for ZC8.

THEOREM 5.1. ZC8 satisfies TFC.

COROLLARY 5.2.
only if.D(ZG) O.

If G is a finite abelian group the ZG satisfies TFC if and

This follows from the work of Wiegand [30, 5], 2.10, and 5.1. The groups in
question were classified by Cassou-Nogu6s [4]. They are C2 x C2, Cp for p a
prime, and C, for n < 14, n 12. In {}8 I will show that the condition
D(ZG) 0 does not suffice for TFC in the non-abelian case.
To prove 5.1 we consider the diagram

zG , z[8]

ZC, ----,’C4

noting that "2C4 Z[’8]/(2). As in 4 we construct a diagram of the form (7)
and try to produce one of the form (8).

LEMMA 5.3.
onto.

Let M be a Z[’8] lattice. Then Aut(M) Aut(M/2M) is

Proof Since M is flee, this map is just GL,(Z[8]) ---, GL,(B) where
B Z[’8]/(2). Since B is semilocal,

GL,,(B)/E,,(B) B*
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so it is enough to show that Z[’8] * B * is onto. Now

B 2C4 2[x]/(x4 1) ’2[,]/,4

where x 1. One easily checks that B*/C4 has order 2 and is generated
by 1+,2+,3 l+x+x-1. This is the image of 1+ ’8 +’-1=
1 + v/ Z[’8] *.

LEMMA 5.4. Let B be an artinian ring, P a finitely generated projective B
module, and let P X be an epimorphism of B modules. Then every automor-
phism of X lifts to an automorphism of P.

Proof. Let r: Q X be a projective cover [1, III 2.12], [5, 6C]. Then
P - Q P’ with the given map being

roprt’P Q X.

Any automorphism of X lifts to a map Q Q which is onto and hence an
automorphism. We extend it to P by the identity on P’.

COROLLARY 5.5. Let M be a Z[’8] lattice and let X be a quotient of M/2M.
Then any automorphism of X lifts to one of M.

We now consider the corresponding question for ZC4. At the same time I
will discuss the case of ZI/" where 1/" C2 C2 is the four group. This case
will be needed in 6.

LEMMA 5.6. Let G be a finite p-group and let A ZG + Z(N/p) c QG.
Then any ZG lattice has the form P M where P is projective and M is a A
lattice.

Proof. We first observe that G has a unique minimal non-zero ideal
(N) (G). If N annihilates M/pM then M is clearly a A module since
NM c pM. If this is not the case, let x M/pM be such that Nx 0 and
define a monomorphism pG M/pM by sending 1 to x. Lift this map to a
map ZG M. The kernel J of this map is a Z-direct summand so J/pJ is
contained in G and maps to 0 in M/pM. Therefore J/pJ, and hence J
itself, is 0. Let M’ -- ZG be the image of ZG --, M and let M" M N QM’.
Then M" has the same rank as M’. The composition M’/pM’ M"/pM"
M/pM is injective so it follows by comparing ranks that M’/pM’-

M"/pM" is an isomorphism and therefore M" M’ + pM". This implies
that M"/M’ has order prime to p and therefore M" is projective over ZG
[27], [5]. Since M" is a Z-direct summand of M, it is also a ZG direct
summand since projective ZG modules are weakly injective [3] (or by 5.9
below). Therefore M M" M and we are done by induction on the rank.
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As an immediate corollary we see that for a p-group G, a ZG lattice M
with M/pM free must be projective.

LEMMA 5.7. Let IGI 4 and let A be as in 5.6. IfM is a A lattice and 31 is
its 2-adic completion then

Im[Aut(M) Aut(M/2M)] Im[Aut(3r) Aut(M/2M)].

Proof Let Y. Enda(M). Then the image of . in Enda(M/2M) is
Y. Y./2E. Since Y.* Y.* is onto we must show that E*/E* 0. By [28,
Th. 10.2], */Y.* vU(,)/vU(,2,)[U+(O)n vU()]. Since TFC holds
for ZG, D(Y.) 0 by 1.6 and Frthlich’s formula [28, Th. 10.6] shows that

u($)
so

u($)/u+().

Therefore

*/y* U($)IU+((_9)vU(,,2,).

Let F D A be the maximal order of QG. For G V, F Z4 while for
G C4, F Z Z Z[i]. The conductor f of A c F is easily seen to be
(2Z)4 for G V and (2) (2) for G C4 where = (1 + i) is the
prime ideal of Z[i] over 2. Let --- Endr(FM). Then f--- c E so

U(,2) D U(,2f)= U(,2f).
Now vU(,2f,) U(d3,2fd3) where O is the center of . This is immediate
here since --_ is a product of matrix algebras over Z and Z[i]. It follows that
Z*/X* is a quotient of

But this is 0. Since 60 Z Z[i] for some r and s, it is sufficient to check
the cases Z, f 2Z and Z[i],f .
LEMMA 5.8. Let M be a ZG lattice where [G[ 4. Let a be an automor-

phism of M/2M. Then a lifts to an automorphism of M in the following cases:
(1) M/2M is not free and a lifts to an automorphism of the 2-adic

completion M.
(2) M/2M is free and det(a) G c (-2G) *.
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Proof In case (2), Aut(M) Aut(M/2M) is just GL,(ZG) GL,(’2G)
since in this case M is projective (and hence free) by the remark following 5.6.
Since ’2G is local GL,(2G)/E,(’2G) (o’2G)* and the result follows
since the image of ZG * in (’2G) * is G.

In case (1), write M (ZG)" M’ by 5.6 where M’ is a A lattice. By 4.3,
Aut(/Q) D(hTI)E(3) with respect to this decomposition and the image of
E(/Q) is the same as that of E(M) by 4.2. If 8 D()t), the image of
’= 8IM’ rifts^ to Aut(M’) by 5.7. By 4.5, 8"= [(ZG)" can be modified
modulo E((ZG)") c E(M) so that

8" (fl,1,...,1) wherefl (G)*.
If the image B of fl in (’2G) * lies in G we can lift it to (ZG)*. Since
(.2G)*/G Z/2Z is generated by I + N, it will suffice to show that
(1 + N, 1) Aut(’EG M’/2M’) rifts to Aut(ZG M’).
By assumption, M’ 4:0 so M’ M’/2M’ 4= O. Since o-2G is local with

residue field ’2 we can find an epimorphism 0: .’ - ’2. Let g: ’ - ’2G
by g(m) O(m)N. Choose z M’ with O(z) 1 and define f: -2G -o M’
by f(1) z. Then I +_ga 1 + N while I + fg 1 because M’ is a A lattice
and so N annihilates M’. By 4.4,

(1 + N, 1) E(:’EG ’).

This lifts to E(ZG M’) by the following standard result.

LEMMA 5.9. Let L and M be ZG lattice one of which is projective. Then

Homz6 ( L, M) Homzo ( L/nL, M/nM)

is onto for all integers n.

Proof We can lift to a Z-homomorphism h" L M since L is free over
Z. A projective ZG module has a Z endomorphism 0 with

000-1= 1 [3]

and we use Z,oOho- or EohOo- as our lift.
We can now prove Theorem 5.1. Consider a diagram of the form (7) with

A Z[’8] and A 2 ZG with G C4. There are three cases to consider. For
the first two, the only fact we need about A is that

Im[Aut(M1) -+ Aut(M/2Mx)] Im[Aut()r) + Aut(M1/2M1)
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which shows that we can produce the required map on the left hand side of the
diagram (8).

Case 1. If M2/2M2 is not free we can produce a diagram of the form (8)
by applying 5.8(1).

Case 2. Suppose M2/2_M2 is free but f2 is not an isomorphism. Let b be a
non-zero element of kerf2 which is fixed by G. Write b--Nc for some c
which is necessarily a part of a base for M2/2M2 since B o’2G is local.
Write

M2/2M2 B X XB

with c (1, 0,..., 0). If the map a" M2/2M2 - M2/2M in (7) has det(a)
G we can complete the fight end of (8) by 5.8(2). If not, replace a by/3 a

(1 + N, 1,..., 1) which will then have det(fl) G while the resulting diagram
will still commute.

Case 3. Finally, suppose that_M2/2M is free and that ]2 is an isomor-
phism. In this case we let 8 g2f t, form the diagram

and complete to a diagram of the form (8) using 5.5.

6. The dihedral group of order 8

This case can be treated by the same method which was used for C8. As in
[26] I will use the notation Ds to denote the dihedral group of order 8
(sometimes denoted by D4).

THEOREM 6.1. ZD8 satisfies TFC.

Let D D8 (x, y: x 4 y2 1, yxy x-l). We will apply the method
of 4 to the diagram

ZD---, A

ZV ’V
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where V is the four group and A ZD/(x2 + 1)-- A’4 in the notation of
[26]. Note that A/2A ’2V. We first determine the A lattices. By [26,
Lemma 3.2]

a b ME(Z)Ia d, c =- 0 (mod 2)}.
LMMA 6.1. The A lattices M with QM simple are

P=
Z 2Z

Since QM ()we can assume that M (zz) and that theProof grea-
test common divisor of all the entries in M is 1. Writing the elements of M as
rows for convenience we easily see that (a, b) M implies that
(2a, O), ( b, O), (O, 2a),(O, 2b) M. Therefore (2,0),(0,2) M. If an odd b
occurs then M P and otherwise M Q.

LEMMA 6.2. (1) Extk(e, P) Ext,(Q, Q) z/2z.
(2) Ext,(P, Q) Ext,(Q, P) 0.
(3) Extx(P, A) Extx(Q, A) 0.

Proof This follows easily from the resolutions

in which the maps are

and

b2b 0

a a a b a(b)( 0 ) and ( d)( )0 b c c

LEMMA 6.3. The indecomposable A lattices are P, Q, and A.

Proof. We show that any A lattice M is a direct sum of these modules by
induction on the rank. By mapping QM onto a simple QA module we get an
exact sequence 0 ---, N ---, M P 0 or a similar sequence with Q in place
of P. Let N ea ob Ac. Then Ext,(P, N) (Z/2Z)a by 7.2. If the
class of the extension is non-zero, we can reduce it to (1, 0,..., 0) by elemen-
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tary transformations on (Z/2Z)a. These lift to automorphisms of pa since all
endomorphisms of Z/2Z lift. It then follows that M -- pa-1 Qb AC+l.

LEMMA 6.4. Let M be a A lattice and 371 its 2-adic completion. Then

Im[Aut(M) --, Aut(M/2M)] Im[Aut(hr) Aut(M/2M)].

Proof By 4.6 it is enough to do this for indecomposable M. If M P or Q
then Aut(M)= Z* and Aut(hr)= * have image 1 in Aut(M/2M). If
M A we must show that A* --, (’2V) * is onto. Now (’2V) * is generated
by V and 1 + x + y and V is clearly the image of D c A*. Finally 1 x + y
is a unit of A with inverse 1 + x y since xy -yx and x 2 -1 in A.

LEMM 6.5. Let M be a A lattice and let M M/2M. Given a decomposi-
tion M X Y with X q2V we can find a decomposition M S T with
S A, S/2S Xand T/2T Y.

Proof Let M pa ob Ac. As observed in the pr__oof of 5.6, ’2V
has a unique minimal ideal (N). This must annihilate P and Q since these
have dimension 2 over ’2- Let x (pl,..., Pa, ql,’", qb, r,..., rc) in M
generate X. Since Nx 4: O, some Nr 4 O, say for c. Then r generates A.
By elementary transformations of M we can reduce x to (0,..., 0, rc). These
transformations involve only maps from A and therefore lift to M. Therefore
we can choose a decomposition of M pa Qb A so that x
(0,..., 0, r). Let S be the last summand and L the sum of the remaining ones.
Then M S L and S/2S X. The map

MM=X$ Y

restricts to

Now Extk(L, S) 0 by 6.2 and 6.3 since S -- A. Therefore the exact Ext
sequence for

O__> S __> S__, X__> O

shows that HomA(L, S) - HomA(L, X) is onto so that we can lift tp" L - X
to a map 0" L - S. Let e be the elementary transformation of M S L
determined b__y -0. Then we can choose T e(L) since M S T and the
map M M sends T to Y.
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COROLLARY 6.6.
phism of X then

Let M and M X Y be as in 6.5. If a is any automor-

al" X, Y--X, Y

lifts to an automorphism of M.

This follows from the fact that A* ---, (’2V) * is onto as we have observed
in the proof of 6.4.
We can now prove Theorem 6.1 by the same method used to prove Theorem

5.1 at the end of 5. We take A A and A 2 ZV. The first two cases are
identical with those of 5. Only case 3 needs to be modified since the a_nalogue
of 5.5 does not hold here. In this case M2/2M2 is free and f2 is an
isomorphism. Therefore M is also free and we can write

M1/2M W M

with fl being the projection._on M--. Let 0" ---, . be (1 + N, 1,..., 1) with
re___spect to some_ base of M and let q0: MI/2M M/2Mx be 0.1"
M W ---, M W. By 6.6 this lifts to an automorphism o: M = Mx.

Let a: M2/2M2 - M2/2M2 be the map occurring in the diagram (7). If
det(a) V we can complete diagram (8) just as in 5 using 5.8(2). If
det(a) V replace the diagram (7) by the top and bottom lines of

where k fOf2 and the lower two lines are the original diagram (7). We can
now complete diagram (8) by using 6.4 to fill in on the left and 5.8(2) on the
right. Since det(a) V, det(aq) det(a)det(0) V as required.

7. Dihedral groups

If ZG satisfies TFC for a finite group G then D(ZG) 0 by 1.3. Endo and
Hironaka [6] have shown that if D(ZG) 0 then G is either abelian, dihedral,
or one of A4, $4, or .4 5. Further restrictions on the order of G in the dihedral
case are given by Endo and Miyata [8]. I will give here a few positive results on
the TFC problem for dihedral groups. The method of [}4 requires some
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knowledge of the indecomposable modules over reasonable quotients of ZG.
Because of this, I have only been able to handle the dihedral groups of order
2p and 4p at the present time, p being a prime. We can, of course, assume p
is odd because of Theorem 6.1.

Note. I will continue to use the notation of [26] in which D, denotes the
dihedral group of order n.
The following is a special case of a theorem of Klingler [16, Th. 11.4] which

shows that cancellation holds for all finitely generated ZD2p-modules (possi-
bly with torsion). Using the method of {}4 we can give a short proof in the
torsion free case.

THEOREM 7.1. ZD2p satisfies TFC for all primes p.

Remark. Theorem 7.1 would follow from Lee’s classification of lattices
over ZD2 [17] provided the last sentence of [17, Th. 3.2] is altered to read "up
to ZG isomorphism" rather than "Up to Z2G isomorphism". The theorem is
true in this form. Conversely, one can use Theorem 7.1 to deduce this
classification from Lee’s results in the local case and her classification of
indecomposable lattices. In fact, by 1.2 we see that if TFC holds, a module M
is determined by its genus and by FM where F ZD2 is a maximal order.
The genus of FM is determined by M. Since F Z Z M2(Rp) where
Rp Z[’ + .-t], we see that FM is determined by its genus and an ideal
class of Rp.

Proof of 7.1. Let

D2p (x, y" x y2= 1, yxy x -t)

and consider the diagram

D
2p A

zG --G
where A ZD2p/(p(X)) A in the notation of [26]. Let J be the kernel of
the map A C2. In the following we will assume that p is odd.

LEMMA 7.2. IfM is any A lattice, then Aut(M) Aut(M/JM) is onto.

Proof By [26, Lemma 8.1],

A=( R
P RR)
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where R Z["v + ’t] and P is the prime ideal of R over p. Furthermore, A
is hereditary and the indecomposable A lattices are

S=
R P

for ideals of R [17, {}1]. One checks easily that

J= p P

and S/JS--O, TIJTO over C:=. Since all A
lattices are projective, all elementary transformations of M/JM lift to M.
Therefore it is sufficient to check 7.2 for indecomposable modules M. But
Enda(’S) Enda(zgT) R and R* -->* is onto as required.

If W is a module overC , write

W W’ W" where W’= (1,0)W and W"= (0,1)W.

If a Aut(W) then a (a’,a") and we define det’(a)= det(a’) and
det"(a) det(a").

LEMMA 7.3. Let M be a ZC2 lattice and let p be an odd prime. Let

a Autzc2(M/pM)"

/f det’(a) det"(a) 1 then a lifts to Autzc2(M).

Proof. Clearly a is a product of elementary transformations. These lift to
the p-adic completion of M since ZvC2 is hereditary and the result follows
from 4.2..

LEMMA 7.4. Let V and W be finite dimensional vector spaces and let f:
V W, g: V W be epimorphisms. Then there is a commutative diagram

fV W

g
V W

where det(a) 1.
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Proof. If f is an isomorphism, then so is g and we choose a 1 and
gf-1. Otherwise, let

v= e u:e
where U kerf and U2 ker g, choose /7 1 and let a (fl, 7) where
g7 f and fl is chosen so that det(a) 1.
We can now prove Theorem 7.1 along the same lines as the proof of 5.1 and

6.1. Consider a diagram of the form (7) with A A, and A2 ZC2.
Applying Lemma 7.4 to each of the two components of f2 and g2 we obtain a
diagram

M1/JM1 o M2/pM2al
M1/JM M2/pM2

in which det’(a)= det"(a)= 1. By 7.3, a lifts to an automorphism of M2.

There is no difficulty in lifting 8 to an automorphism of M1/JMx, for example
by 5.4. This in turn lifts to an automorphism of M by 7.2.

TI-IEOPM 7.5.
D(ZD4p) O.

Let p be a prime. Then D4p satisfies TFC /f and only if

Proof. Let

D4 (x, y" X 2p "-y2= 1, yxy x-l).

We consider the diagram

where xp goes to + 1 and -1 in the two ZD2p terms.

LEMMA 7.6. Let D D2p with p an odd prime. If D(ZD4p) 0 then
Autzo(M) - Autzo(M/2M) is onto for all ZD lattices M.

This clearly implies 7.5 by 4.1 and 7.1. To prove 7.6 we need only consider
indecomposable M by 4.6 and, by 4.7, we need only consider one module in
each genus. We begin by recalling Lee’s classification of the genera of
indecomposable ZD lattices [17]. Write D (x, y: xp y2= 1, yxy
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We describe the ZD modules by giving a ZCp module where Cp (x) and
specifying the action of y. We assume p is odd. The labelling is as in [L]. The
lattices are as follows"

(sl) Z with y acting as 1,
(s2) Z with y acting as -1,
(1) ZC2 where CE (y),
(rl) Z[p] with y complex conjugation,
(rE) Z[’,] with y -complex conjugation,
(Ux) ZC, with y.f(x) -f(x-1),
(uE) ZC, with y. f(x) f(x-1),
(ol) Z ZC, with y (a, f(x)) (a, -f(x -1) + aN) where N Ex i,
(rE) Z ZC with y (a, f(x)) (-a, f(x -1) + aN),
(t) ZD.
It is straightforward to verify that these modules represent the extensions

considered by Lee [17]. The endomorphism rings are easily computed to be as
follows:

(s) z,
(t) zc.
(r) R Z[, + ;11,
(u) ZRC;= { f(x) ZC" y(x) f(x-1)),
(v) the ring E described below,
(t) ZD.

The ring E can be described as the pullback in the diagram

where . is induced by the augmentation e. E acts on Z ZC by the matrix

where 2c a e(8) for (vl) and 2c e(8) a for (v2).
When reduced modulo 2 these modules become:
(s)
(1) ’2C2,
(r) Z[]/(2)]
(u) ’EC, #’E Z[G1/(2),
(o) ’_C Z[.]/(2).
(t)

and the endomorphism tings of these modules are:
(s) #-.
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(d) ’2C2,
(r) (Z[’,]/(2))+= R/2R,
(U) "2C2 X R/2R,
(V) ’2C2 X R/2R,
(t) ’2D.
For the equality listed under (r), note that Z[’p] is Z free with base., .2,..., .p- permuted by y.
It is clear that Aut(M) --, Aut(M/2M) is onto for (s) and (l). For (r) this

map is R* - (R/2R)*. By [26, Lemma 11.1], the cokernel of this map is

D(ZD@) which is 0 by hypothesis. For (u) we have a cartesian diagram

This shows that U(R, P) c U(ZC) where R/P . By [25, 7], R*
U(R, P)U(R,2) so U(R, P) maps onto (R/2R)* if R* does. For (v) we
have E * Z * (ZC)* and, after a bit of calculation, it is easily checked
that the map is onto. The summand Z[’,]/(2) is best represented by (x-
x-)2C,. The element of E with a -1, 1 maps onto the non-trivial
unit of #-2C. Finally, the Mayer-Vietoris sequence for our cartesian diagram
for ZD4p gives Kx(ZD) K(’2D) --. D(ZD4p) --> O. Using [28, Cor. 10.5],
we see that

U(’2D)/U(ZD ) D(ZD@ )

which is 0 by hypothesis.

8. Negative results

The results obtained so far suggest that TFC may hold for ZG whenever
D(ZD) 0. However this is not the case as the following result shows.

THEOREM 8.1.
hold for ZD2n.

Let d 2 divide n where d 5 or d > 7. Then TFC does not

In particular TFC fails for D2, if n >_ 7 although D(ZD2n ) 0 for all n
[10]. Similarly TFC fails for ZDEp2 for prime p >_ 5 but D(ZDEp2 ) 0 if p is
a regular prime [15] [8].

Proof. Let D D2n (x, y: xn= y2= 1, yxy x-) and let C C
(x) c D. Make ZC a ZD module by y. xi= x -i as in the case (u2) of 7.
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Let I be the augmentation ideal of ZC so that I (x 1). Then (I, d) is a
ZD-submodule of ZC.

LEMMA 8.2. (I, d)/(I 2, d) -- Z/dZ with x acting as 1 andy acting as -1.

Proof. Since dZC tq I dl, we have

(I, d)/(I2, d) I/(I tq (i2, d)) I/(I2 + dI).

Since I/I 2 C Z/nZ and din, it follows that (I, d)/(I 2, d) -- Z/dZgenerated by the image of x 1. Note that x acts trivially since (x 1) 2 I
and y(x 1) (x -1 1)(1 x) / (1 x) so y acts as -1.

LEM_ 8.3. Endzc(I, d) ZC + Z N/d where N Exi.

Proof. Clearly the endomorphism ring lies in Endt2c(QC) QC and
contains ZC. It also contains N/d since din and N-= n mod I; thus
N (1, d). Suppose that a QC and a(I, d) c (1, d). Then

a(x- 1) =b(x- 1) +cd

with b and c in ZC. Taking augmentations shows that e(c)= 0 and so
c c(x 1). It follows that a b Cld annihilates x I and therefore has
the form qN with q Q. Since qN(I, d) c ZC we see that dqN ZC and
hence dq Z.

Remark The same result holds for any finite group G if dllGI. As above we
show that any endomorphism of (1, d) preserves I and use the fact that
Endzc(I ) ZG/(N). To see this note that if is an endomorphism of I,
then x (x 1)is a 1-cocycle which then splits in ZG; thus (i) ia for
some a ZG. It is also quite easy to show that (N, d) has the same
endomorphism ring as (1, d).
Note that the augmentation of QC takes N/d to n/d in Z and so defines a

map e: Endzc(I, d) Z.

LEMMA 8.4. For any a

_
Endzc(I, d) the diagram

(I, d) --2-. (I, d)

Z/dZ Z/dZ

commutes.
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The vertical map here is that given by 8.2. The assumption that d21n will be
needed in the proof.

Proof. This is trivial for a ZC so we need only check the case a N/d.
Here e(a) n/d =- 0 mod d since dEIn. Clearly a(x 1) 0 and ad N so
we must show that N maps onto 0 in Z/dZ. Now

N= Ex’=n+ E(x’-l)

=n+ (x-1)E(1 +x+ +x’-1)
=-n+(x-1)Ei

=n+ (x-1)n(n-1)/2mod(x-1)2

Since d21n, we see that dln(n 1)/2 and so N 0 in Z/dZ as required.
Now let Z’ Z with x acting as I and y acting as -1. Define M to be the

pullback in the diagram

M (I d)

Z Z/dZ.

Since QM QC Q’ and Homoo(Q’, QC) Homon(Qc, Q’) 0, the de-
composition QM QC Q’, and hence the diagram, is preserved by all
endomorphisms of M. Using 8.3 we get a cartesian diagram

Endzn(M) Endzn(I, d)

Endz(Z’ ) Endz(Z/dZ)

The bottom line of (’) is just Z Z/dZ and the Mayer-Vietoris sequence of
(’) gives

K(Endzn(I, d)) K(Z) - K(Z/dZ) Ko(Endzn(M))
Ko(Endz(I, d)) Ko(Z ).

The image of O clearly lies in D(Endzo(M)). The map of (f) factors as

Endzv (I, d) Z - Z/dZ
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so we see that D(Endzn(M)) contains the group KI(Z/dZ)/K(Z)
(Z/dZ)*/Z*. This group is non-trivial for the range of d specified in 8.1;
thus D(Endzn(M)) 4:0 and TFC fails by 2.1.
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