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PRESENTATIONS OF MODULES WHEN IDEALS
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Dedicated to the memory of Irving Reiner, with gratitude for his caring
and encouragement

We extend elementary divisor theory by studying presentations of modules
over a class of tings that includes coordinate rings of affine curves, and the
orders over Dedekind domains studied in integral representation theory. As an
application, we answer a question of Nakayama about the uniqueness of the
diagonal form of matrices over noncommutative principal ideal domains.
As a further application of our methods, we extend the Drozd Cancellation

Theorem to modules over the rings we work with.

Let f and g: P U be presentations of a module over a ring A. In other
words, P is a projective module, and f and g are surjective A-module
homomorphisms. (Modules are always finitely generated in this paper, unless
otherwise stated.) As in matrix theory, we say that f is equivalent to g
(notation: f--- g) if there exist automorphisms a and fl of P and U, respec-
tively, such that flfa g.
Using this terminology, we can restate the main result of elementary divisor

theory in the following form: If A is a commutative PID (principal ideal
domain) and there is a presentation P U, then any two presentations of U
by P are equivalent to each other. We say, more briefly, U is uniquely
presentable by P.
To see the relation between this and more conventional statements of the

elementary divisor theorem, let g: An -* U be a presentation of an arbitrary
A-module. We want to "diagonalize" g, that is, show that g is equivalent to a
direct sum of presentations of cyclic modules. Assuming that we already know
that U is a direct sum of cyclic modules, it is not hard to show that U is a
direct sum of n cyclic modules. Say U U1 U,. For each there is a
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presentation A --* U since U is cyclic, so taking the direct sum of these
presentations gives a presentation f: An --* U. By unique presentability we
have g f, as desired.
Very tittle seems to be known about the structure of presentations of

modules over rings with nonprincipal ideals. (And the problem of Nakayama,
discussed below, shows that the basic facts are not yet completely known for
noncommutative PID’s.) Is it common for modules to be uniquely present-
able? Is it common for modules to have infinitely many inequivalent presenta-
tions?
The rings A whose module presentations we study are a class of module-f-

inite algebras, over a commutative noetherian ring R of Krull dimension 1,
such that A is an R-order in a semisimple artinian ring. This class includes
(when R is a Dedekind domain) the orders that occur in integral representa-
tion theory, and (when A R) coordinate rings of affine curves. We call them
ring-order algebras, and give a precise definition in Section 2,. together with an
example, due to Heinzer and Huneke, of a ring of algebraic numbers that is a
ring-order but not a classical order over a Dedekind domain.
One known result is that, if A is a Dedekind domain, then every (finitely

generated) A-module U is uniquely presentable by every projective module P
that can be mapped onto U. This is proved in [L ’66, 1.9] but is actually
implicit in Steinitz’s 1911 paper [S ’11]. R. B. Warfield [W ’78, Theorems 9 and
10], improving on results of Fitting, showed that if A is a ring with 1 in its
stable range and P is free, then unique presentability holds for every U that
can be presented by P. For ring-order algebras without 1 in their stable range,
his results show that unique presentability holds if P is free and of rank at
least 2 greater than the minimal number of generators of U. On the other
hand, H. Byun [By ’84] has studied presentations by projective modules whose
rank equals the minimal number of generators of U. She showed the existence
of many non-uniquely-presentable modules of finite length over Dedekind-like
rings, a class of commutative ring-orders that includes some integral group
tings and some coordinate tings of affine curves. Suitable such modules can
have either finitely many or infinitely many inequivalent presentations, and are
the motivating examples for the theory constructed below.

Consider a presentation P --* U of a module over any ring-order R-algebra
A. For every maximal ideal m of R, the localized ring A, has 1 in its stable
range. So, by a slight modification of Warfield’s results Um is uniquely
presentable by P,. Thus the question to be addressed is: what are the
"non-local" invariants of presentations of modules?
Our first step is to observe that the collection of all equivalence classes of

presentations P --* U, with P and U fixed, has an algebraic structure.
Given presentations f, g, h" P --* U there is a presentation s: P --* U such

that

(0.1) f s-- g h.
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If A is commutative, we show that the equivalence class [s] of s is uniquely
determined by (0.1), and we write

(0.2) [s] [g] + [h] (sum with respect to f).

It then follows easily that the set of all equivalence classes of presentations
P - U becomes a group with respect to this addition; and we denote this
group presf(P, U) to emphasize its dependence on the arbitrarily selected f.

If A is noncommutative, the equivalence class of s can fail to be uniquely
determined by (0.1). So we define [s] [t], to mean that

(0.3) fs--ft

and say that s and are stably equivalent presentations of U by P. The set of
stable equivalence classes of presentations of modules stably isomorphic to U
by modules stably isomorphic to P forms a group with respect to the addition
in (0.1) and (0.2), and we again denote this group by presf(P, U). As in
K-theory, stable equivalence reduces to ordinary equivalence, except in some
"low rank" situations (and, when A is commutative, it always reduces to
ordinary equivalence).

If P is a progenerator and kerf is faithful, the group presf(P, U) turns out
to be a homomorphic image of K(A/IA), where I is a conductor ideal from a
maximal order to A (Theorem 4.11). We deduce this from a Mayer-Vietoris
sequence (Theorem 4.8) that relates what we call the "genus class group" of a
presentation to the locally free class group of a maximal order F containing A
and the groups KI(F and KI(F/IF). We now describe some consequences of
these facts.
Our most detailed results occur in the commutative case. Here we show that,

if U has finite length, presf(P, U) is a torsion group with exponent dividing
the rank of P, even if A has infinite residue fields (Theorem 6.5). In less
technical language, if f, g: P U are presentations and rank P n, then
fn, gn. pn U are equivalent presentations.

If A is a finitely generated algebra over an algebraically closed field of
characteristic zero, we prove that every module of finite length is uniquely
presentable by every projective module that presents it. This becomes false for
algebraically closed fields of characteristic p :# 0.
On the other hand, if U is not of finite length and A has infinite residue

fields, then pres,(P, U) can contain elements of both finite and infinite order.
In fact, we construct an example where A is an integral domain, finitely
generated as an algebra over an arbitrary field k, and U is a torsion-free
A-module of rank 1 such that presf(A2, U)--k* (the multiplicative group
of k).

If A is one of the orders that occur in integral representation theory, then
AlIA is a finite ring, hence K(A/IA) is a finite group. We conclude that
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every pres,(P, U) is a finite group. In fact the orders of thee presentation class
groups have a uniform bound n n(A) that is independent of P and U. If A
is noncommutative, presy(P, U) can consist of stable rather than actual
presentation classes. But in the presence of a suitable Eichler condition, our
uniform bound n n(A) applies to actual, rather than stable presentation
classes. When this Eichler condition fails, every presentation set P U
remains finite, but a uniform bound can fail to exist.

Nakayama’s question. Let A be a noncommutative PID (every left ideal
and every right ideal is principal), and let A be an rn n matrix over A. Then,
for suitable invertible matrices P and Q over A, the matrix D PAQ is a
diagonal matrix, D diag(dl, d2,... ). Three obvious invariants for the equiv-
alence class of A are m, n and the isomorphism class of the left A-module

U A’/AmA =- A/Ad

presented by A. If A is commutative, the elementary divisor theorem states
that these invariants suffice to determine the equivalence class of A. For
noncommutative A a complete set of invariants is not known. Asano [A ’38,
pp. 27-28] proved the "stability" result that the invariants m, n and U
determine the equivalence class of the matrix A 11 where 11 is the 1 1
identity matrix. Then Nakayama wrote the paper [N ’38] whose main purpose
was to lament the fact that a complete set of invariants for the equivalence
class of A was not known.

Examples of the failure of m, n and U to determine the equivalence class of
A already occur when A is a 1 1 matrix, and such examples seem to exist for
most noncommutative PID’s A. For specific examples see [LR ’74, 4.6] and
Example 5.11 of the present paper.

In Section 2 we prove that, if A is any PID, module-finite over its center,
and A has rank > 2, then the equivalence class of A is determined by m, n,
and U, just as in the commutative case. (This was proved, for A the ring of
integral quaternions, in [K ’87].)

This result also holds for noncommutative PID’s that are not module-finite
over their center, as we show in [GLO ’88].

Outline. This paper is organized as follows. In Section 1, Genus and
presentation class groups we prove that presf(P, U) is a group, in fact, a
subgroup of the "genus class group" fg(f), consisting of all stable equivalence
classes of presentations locally equivalent to f. This resemblance to module
theory is no accident since the category of presentations of A-modules turns
out to be equivalent to a category of modules over the ring T2(A ) of lower
triangular 2 2 matrices over A. It follows easily from Bass’s cancellation
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theorem that, for every f, f(f) -= ff(f f); and this latter group consists of
actual (rather than stable) presentation classes, a fact we use often in the rest
of the paper.

In Section 2, Ring-order algebras, regular localizations, Drozd condition, we
introduce ring-order algebras and discuss some relevant localizations with
respect to sets of regular elements of R. The main result is the Drozd
Cancellation Theorem, a sufficient condition for direct-sum cancellation to
hold in the genus of a presentation f: P U, hence for fg(f) to consist of
actual presentation classes. To state this condition, let A denote the semisim-
pie artinian ring in which A is an order.
Our theorem states that cancellation holds in f(f) if every composition

factor of the A-modules A (R)R P and A (R)n U either occurs at least twice or has
a commutative endomorphism ring. (We do not know whether the hypothesis
on A (R) U is really needed.)

This sharpens the above-mentioned consequence of the Bass Cancellation
theorem (cancellation always holds in ff(f f)) in two ways: The Drozd
condition is always satisfied when A, hence A, is commutative; and when A is
noncommutative, the Drozd condition is often satisfied by indecomposable
presentations f:
We also prove a Drozd cancellation for modules over ring-order algebras

that generalizes the version of the Drozd Cancellation Theorem for modules
given, in [G ’87, 5.7].

In Section 3, Maximal orders, Nakayama’s question, we let F be a maximal
ring-order R-algebra in a simple artinian ring A, and let f: P U be a
presentation of a F-module. The purpose of Section 3 is to prove that if kerf
has uniform rank > 2, then U is uniquely presentable by P. When A is a
PID, this becomes our answer to Nakayama’s question. But the more general
result is needed, independently of Nakayama’s question, because the proofs of
our main theorems, in Section 4, require unique presentability over F. The
groups presf(P, U) are of no interest over maximal orders since, as we show,
they always consist of a single element.

Section 4, Restricted genus of a presentation, is the guts of this paper. Let F
be a maximal order containing A, and let r.gen(f) denote the "restricted
genus" of f, that is, the set of all equivalence classes of presentations
g: S-* V in the genus of f: P-* U such that l(R)g: F(R)S-*F(R) V is
equivalent to 1 (R) f: F (R) P F (R) U as presentations of F-modules. Our
main results are: (i) the one-to-one correspondence, when appropriate unique
presentability holds over F, between the presentation classes in r.gen(f) and
certain double cosets of units of the localization F,, r the finite set of
maximal ideals of R that contain the conductor ideal I; (ii) our Mayer-
Vietoris sequence for the genus class group of a presentation; and (iii) our
explicit formula for pres,(P, U) as a homomorphic image of K(A/IA). The
idea of the proofs is to adapt the description of the restricted genus of a
module, given in [G ’87] to presentations.
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Section 5, Global fields, proves our finiteness results for orders over Dede-
kind domains in global fields.

Section 6, Commutative case, completes this paper.

1. Genus and presentation class groups

In this section A denotes a module-finite algebra over a commutative
Noetherian ring R of Krull dimension < 1.
The genus of a A-module M, denoted by gen(M), means the collection of

all A-modules N such that Nm Mm for all maximal ideals of R. To see that
this definition is independent of the particular coefficient ring R being used, let S
be-the center of A. Since RS is finitely generated, Sm is a semilocal ring for
every maximal ideal m of R. Since local isomorphism implies global isomor-
phism, for modules over noetherian local rings [GW ’76], A-modules in the
same genus with respect to S are in the same genus with respect to R.

1.1 LEMMA. Let M be a left A-module and E E(M), the endomorphism
ring of M.

(i) The functor homA(M,... ) is a category equivalence between div(M),
the category of all direct summands offinite direct sums of copies of M and the
category of all projective left E-modules. lts inverse is M (R)e (...).

(ii) gen(M) c_C_ div(M).
(iii) The functor in (i) provides a bijection between all isomorphism classes of

A-modules in the genus ofM and all isomorphism classes of left E-modules in the
genus of E itself.

Proof. Statement (i) is a well-known observation of Dress [D ’69, p. 985],
(ii) is proved in [G ’84, 3.1]; and (iii) holds because of (ii) and the fact that the
two functors in (i) localize properly. These statements all hold without the
assumption that R has dimension < 1. rq

1.2 LEMMA. Let M be a A-module. Then for every X gen(Mn) (n > 2)
we have X Mn-1 M’ with M’ gen(M).

Proof Let E E(M), and note that E is a module-finite R-algebra. After
applying the functor hOmA(M,... ) in Lemma 1.1, we can assume that M and
X are projective E-modules, with M E and X gen(En). Then, for every
maximal ideal of R, Xm has a direct summand isomorphic to (Era) n. Since R
has Krull dimension < 1 and n > 2, it follows from the version of Serre’s
theorem proved in [Sw ’68, 11.2] that X E X’ for some X’. Since
direct-sum cancellation holds for A-modules when R is local [E ’73], [GW ’76],
we have X’ gen(M"-1), and induction now completes the proof, rq
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1.3 LEMMA.
gen(M). Then

Let M be a A-module, and let N, H, H1... H be A-modules in

Proof We want to cancel every H from the isomorphism

By Lemma 1.1 we can suppose that each direct summand in (1.3.1) is a
projective E E(M)-module in the genus of E. Since R has dimension < 1
and two summands remain on each side after the desired cancellation, Bass’s
Cancellation Theorem [B ’68, 3.5] now completes the proof. []

We can now extend the well-known notion of "genus class group" so that it
applies where we shall need it.

1.4 DEFINITIONS. Let M be a A-module. We say that modules N and N’
in gen(M) are stably isomorphic, and write [N] [N’], if N H -= N’ H
for some H gen(M). This is an equivalence relation by Lemma 1.3.

Let ’(M) be the collection of stable isomorphism classes [N] with N
gen(M). For S, G, H gen(M) we define

(1.4.1) [S] [G] + [H] (sum with respect to M)

to mean that

(1.4.2) M, S --- G, H.

By Lemmas 1.2 and 1.3 this addition is well-defined and makes fg(M) into an
abelian group in which [M] 0. We call if(M) the genus class group of M.

Let M and N be A-modules. Then there is a natural homomorphism of
abelian groups

(1.5) v: fC(M) fC(M N) given by [H] [H N]

1.6 LEMMA. Suppose N gen(Mn) with n > 1. Then v is an isomorphism.
Moreover, f(M N) consists of actual, rather than (merely) stable isomor-
phism classes.

Proof Take any X gen(M N). By repeated use of Lemma 1.2, we
have X---HN with Hgen(M); so v is a surjection The proof is
completed by Lemma 1.3. []



600 ROBERT M. GURALNICK AND LAWRENCE S. LEVY

1.7 COROLLARY. Let M be an A-module, and N gen(M). Then
(i) (M) - f(N), and
(ii) For every n > 2, f(M) f(Mn) via v, and f(M) consists of actual

isomorphism classes.

Proof. By the Lemma, both fC(M) and f(N) are isomorphic
(M N). Statement (ii) also follows immediately from the Lemma. []

to

We postpone further discussion of when fC(M) consists of actual isomor-
phism classes to the discussions of the Drozd and Eichler conditions in
Sections 2 and 5. In particular, in Section 2, we prove that fC(M) always
consists of isomorphism classes when A is any commutative ring-order. We do
not know whether this holds for arbitrary noetherian commutative rings A of
dimension 1.

1.8 Remarks on T2(A ). It is often easier to understand the category of
presentations--or more generally, homomorphismsuof A-modules, if one
realizes that this category is equivalent to a category of modules over a
different ring. We learned the following device from [GR ’78, p. 61].

Let T2(A) be the ring of 2 2 lower triangular matrices over A.
For each homomorphism f: P U of left A-modules we define an associ-

ated left T2(A)-module M(f) as follows. As a left A-module, M(f) P U.
We make M(f) into a T2(A)-module by letting the matrix units ell and e22
act on P and U, respectively, and by letting e21. p f(p), for p P. More
completely, we define

a 0
b c u b’f(p) +cu

Conversely, let Y be a left T2(A)-module. We get a homomorphism f:
P U of left A-modules by letting P eY, U= e22Y, and f=
multiplication by e21.

It is easy to verify that for A-homomorphisms f and g, we have

f g M(f ) M(g) (isomorphism of T2(A)-modules).

In other words, the functors in the two preceding paragraphs are "inverses" of
each other.

It is also easy to verify that, for A-homomorphisms f and g and a maximal
ideal m of R, we have fm- gm (as homomorphisms of Am-modules) if and
only if M(f )m -= M(g)m (isomorphism of T2(Am)-modules).
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1.9 FUNDAMENTAL DEFINITIONS. Let f: P --, U and g: Q ---, V be homo-
morphisms of A-modules. We call f equivalent to g, and write f- g, if there
exist A-module isomorphisms a: Q --- P and fl: U --- V such that flfa g.
By analogy with modules, we define the genus of a homomorphism f:

P U of A-modules, denoted by gen(f), to be the collection of all A-homo-
morphisms g such that gm- fm for every maximal ideal m of R. This
definition is independent of the particular coefficient ring R being used,
because we are really talking about the genus of the T2(A)-modules M(f) and
M(g) defined in Remarks 1.8.

Let g gen(f). We say that f and g are stably equivalent, and write
[f] [g] if there is a homomorphism h gen(f) such that f. h g h.
To show that stable equivalence is indeed an.equivalence relation we prove:

(1.9.1) Let f be a A-module homomorphism, and let g, h, hi,..., h be
A-module homomorphisms in gen(f). Then

Changing to T2(A)-modules shows that this is a special case of Lemma 1.3.
Let if(f) be the collection of stable isomorphism classes [g] with g

gen(f). For s, g, h gen(f) we define

(1.9.2) [s] [g] + [h (sum with respect to f)

to mean that

(1.9.3) f, s- g, h

This addition is well-defined and makes fg(f) into an abelian group, the genus
class group off, in which [f] 0. This holds because changing to T2(A)-mod-
ules shows that, in effect, (f) f(M(f)), an identification we shall freely
make from now on.
We say that gen(f) (for f: P U), is fully stable if direct-sum cancellation

holds in gen(f), gen(P), and gen(U). This is equivalent to saying that fg(f)
consists of actual, rather than stable equivalence classes of homomorphisms,
and f(P) and (U) consist of isomorphism classes, rather than stable
isomorphism classes, of modules.

Finally, let f: P- U be a presentation of a A-module. We define the
presentation class group presy(P, U) to be the subgroup of f#(f) consisting of
all stable equivalence classes [g] of presentations g: S V where [S] [P]
in f#(P) and [V] [U] in f#(U). This definition is justified by the following
result.



602 ROBERT M. GURALNICK AND LAWRENCE S. LEVY

1.10 PROPOSITION. Let f: P U be a presentation of a A-module. Then:
(i) Every presentation g: P - U is in gen(f).
(ii) IYhen full stability holds in gen(f), presf(P, U) consists of all equiv-

alence classes ofpresentations P - U.

Proof To prove (i) we can suppose that R is local. Then A has 1 in its
stable range [W ’80, 3.4]. So g is equivalent to f by [W ’78, Theorem 4]. The
point of (ii) is that full stability guarantees that, if g and h are presentations
P U, then so are any representatives of [g] + [h] and -[g]. r
Now let f and g be presentations of A-modules, and consider the natural

homomorphism

(1.11) v: f(f) f(fg) given by[h]- [hg]

It is obvious that , takes presf(P, U) into presf.g(P S, U V).

1.12 COROLLARY. Let f: P U be a presentation of a A-module, and let
(g: Q V) gen(f). Then f(f) f(g) and f(f) -- f(fn) (Vn). More-
over:

(i) presf(P, U) = presg(Q, V).
(ii) pres/(P, U) -= pres/,(Pn, U’) via v.
(iii) Full stability holds in gen(f") for all n > 2.

Proof The isomorphisms involving f(f) are special cases of Lemma 1.6.
Statement (iii) is a consequence of Lemma 1.6, applied to both A-modules and
presentations of A-modules. Similarly, full stability holds in gen(f g).
Statement (i) is now easily proved by showing that presf( ) and presg( )
are both isomorphic to presf,g( ). The proof of (ii) is similar. []

If full stability does not hold in gen(f), we do not know whether presf(P, U)
consists of, or is generated by, presentations P - U.
We close this section with a variation of a result of Warfield, which we

discuss after proving it. Recall that a progenerator is a projective A-module S
such that there is a surjection Sd - A for some d.

1.13 LEMMA. Let f, g: P - U be presentations of a A-module, and let S be
any progenerator. Then (f,O) and (g,O) are stably equivalent presentations
PS-U.

Proof By [W ’78, Lemma 1], (f, 0) and (g, 0) are equivalent presentations
P P --* U. Since S is a progenerator, P is a direct summand of S", for some
n. So we have equivalent presentations

(f,O), (g,0): P S" --* U.



PRESENTATIONS OF MODULES 603

So (f, 0)" and (f, 0)n-1 (g, 0) are equivalent presentations (P S)" U.
By (1.9.1) we have [(f, 0)] [(g, 0)] as desired, t3

1.14 THEOREM (Triviality of inefficient presentations). Let f: P -. U be a
presentation of a A-module, and suppose that P P’ S, where P’ can be
mapped onto U, and S is a progenerator. Then presf(P, U) (0).

Proof After replacing f by f2 we can assume that full stability holds in
gen(f). Let g’: P’ -* U be as in the hypotheses. Then

(g’,0)" P’ S P --* U

is a presentation of U. Let h be an arbitrary presentation P U. By Lemma
1.13, the presentations

(g’,0,0) and (h,0)" P’ S S P S U

are stably equivalent, hence (by full stability) equivalent. Adding g
equivalence and regrouping terms gives

to this

(g’, 0)2 (g’, 0) h (equivalent presentations p2 U2)

so, by full stability in gen(f), we have (g’, 0)--h. In other words, every
presentation h" P U is equivalent to the fixed presentation (g’,0), as
desired, t3

1.15 Example. It is easy to see that the hypothesis of Theorem 1.14 does
not imply that U is uniquely presented by P. There exist maximal orders A in
simple algebras whose projective modules do not satisfy direct-sum cancella-
tion [Sw ’62]. Say P’ S =- P" S with P’, P", S projective and P’ P"
(and S is a progenerator since every projective module over a maximal order
in a simple algebra is a progenerator). The coordinate projections P’ S S
and P" S -* S are inequivalent presentations of S because they do not
have isomorphic kernels. []

Our ring A has 2 in its stable range [W ’80, 3.4]. So, by [W ’78, Theorem 9],
if there is a presentation An U, then U is uniquely presented by An+2.
Warfield actually states a stronger result: any two presentations f, g" An+ 2

U are right equivalent in the sense that g fa for some automorphism a of
An+ 2. But the type of direct-sum cancellation used in his proof only establishes
ordinary equivalence. However, he comments in a later paper that using the
stronger form of cancellation called n-substitution in [W ’80] yields the
stronger result.
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Our methods do not seem to yield any information about this stronger form
of equivalence.

2. Ring-order algebras, regular localizations, Drozd condition

In this section we introduce ring-order algebras, extend some familiar tools
to work with them, and give an example of a subring of a quadratic number
field that is a ring-order but not an order in the sense of integral representa-
tion theory. The principal result of this section is a sufficient condition, called
the Drozd Condition, for full stability to hold in the genus of a presentation
f: P U of a A-module, where A is a ring-order algebra.
We begin with some notation that will remain fixed through the rest of this

paper, unless otherwise stated.

2.1 Notation (A, F, R, A). Let A be an R-order in a semisimple artinian
ring A, that is, A is a module-finite algebra over a central subring R, and
A Q(R) A, where Q(R) denotes the classical quotient ring of R.
We call A a ring-order R-algebra if R is noetherian of Krull dimension < 1

and A is contained in some maximal R-order F in A.
Note that the central subring R cannot have nilpotent elements 0,

because such elements would generate nilpotent ideals of A. Moreover:

(2.1.1) The integral closure/ of R in Q(R) is contained in F.

To prove this, let x R. Then R[x], and hence R[x]. F, is a module-finite
R-algebra. Since the second of these contains the maximal R-order F, we have
R[x].F=F, hencexF.

Since R, hence RF is noetherian, (2.1.1) shows that/ is a finitely generated
R-module. So R is itself a ring-order R-algebra. As in [HL], we call a
commutative ring R a ring-order if it is a ring-order algebra over itself; in
other words, if R is a noetherian commutative reduced ring of dimension < 1
with finite normalization.
The reason for the name "ring-order algebra" is that the most familiar

examples are the orders over Dedekind domains studied in integral representa-
tion theory, and the (commutative) coordinate rings of affine curves studied in
algebraic geometry [ZS ’58, p. 267].

Moreover, being a ring-order algebra is a ring-theoretic property of A, in
the sense that A is a ring-order algebra over its center and the semisimple
artinian ring A Q(R)A is the Goldie quotient ring of A.
We often make the following nontriviality assumption.

(2.1.2) A is an indecomposable ring and is not artinian. In particular, no
nonzero R-submodule of F has finite length, and no minimal prime ideal of R
is maximal.
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To prove the assertions in the second sentence, note that if F has an
R-submodule of finite length, so does A (since RF is finitely generated and
A

___
Q(R)A Q(R)F). Moreover, if Rx (x A) has finite length, then so

does the R-module Ax, which is a sum of homomorphic images of Rx since

RA is finitely generated. In particular, Ax has finite length as a A-module. So
the socle soc(A) is nonzero. Since A Q(R)A is semisimple artinian, A is a
semiprime ring. Since A is also noetherian, its socle is generated by a central
idempotent [CR ’80], contrary to our indecomposability hypothesis in (2.1.2).

Finally, let be any minimal prime of R, and let q be the product of all
other minimal primes of R. Then 4:0 (else contains a minimal prime
other than itself); and ct 0 since R has no nonzero nilpotent elements. If
were a maximal ideal, then the R/0-module would have finite length. But
we have just shown that no nonzero R-submodule of F (in particular of R)
has finite length.

2.2 Notation (1, r). Since RF is finitely generated and contained in Q(R)A,
there is a conductor ideal I from F to A, that is, an ideal I of R such that
IF

___
A, and such that I contains regular elements (non-zero-divisors) of R.

Note that we do not require I to be the largest possible conductor ideal from
F to A. We fix such an ideal I for the remainder of this paper, and let r
denote the set of all maximal ideals of R that contain I.

Since every minimal prime ideal of a noetherian commutative ring consists
of zero-divisors, R/I is noetherian of Krull dimension zero, that is, R/I is
artinian. Hence r is a finite set.

2.3 Regular localizations. A regular localization of R means a localization
of the form S-1R where S consists of regular elements (non-zero-divisors) of
R. Let m be a maximal ideal of R.
We use the notation Rm0 for the regular m-localization S-IR where

S (regular elements of R m } R m LI{ rt minspec R )

The second equality above results from the fact that, since R is noetherian and
has no nilpotent elements 4: 0, its set of zero-divisors is the union of all
minimal prime ideals of R.
We often find it more convenient to use the regular localization Rmp rather

than the ordinary localization Rm because the natural map R Rmp is
always one-to-one, and because Rm is a subring, with the same identity
element, of the classical quotient ring Q(R). To display the precise relation
between the regular and ordinary m-localizations of R, let Q(R)= ) Qg
where each Qk is a field (because R has no nilpotent elements 4: 0). Then

(2.3.2) Rm Rm $ ((Q,I(Q,),, o)) and (Rmo), Rm.
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Of course, it can happen that an ordinary localization is a regular localiza-
tion. For example, let R, denote the localization S-1R, where S R- Ur,
and let R,p denote the regular r-localization T-1R, where T is the set of
regular elements in r. Then we have:

2.4 LEMMA. Rr R,p when (2.1.2) holds and 1 4: R.

Proof Since R is a ring-order, we have Q(R)= kQk with each Qk a
field. So the set of zero-divisors equals of R equals the union of the minimal
prime ideals k ker(R Qk) of R. Thus it suffices to show that, for each
k, there is a maximal ideal m

_
such that m r. By symmetry it suffices

to work with 1; and such an m exists if I + 4: R. So we suppose that
I + R. Then there is an expression + p 1 with I and p .

Since the Q-coordinate of equals 0, we see that the Q-coordinate of is
the identity element e of Q1. Since e is integral over R (e2= e), e is an
element of the integral closure/ of R in Q(R). By (2.1.1), /

_
F. Moreover,

Ie

_
IF

_
A. Therefore e ie is a nontrivial central idempotent element of

A, contrary to our indecomposability hypothesis (2.2.1). []

2.5 LEMMA. Let L and X be submodules of a A-module V (not necessarily
finitely generated). Suppose that L, X, (as submodules of V) and Lmp Xmp
(as submodules of Vmp) for every maximal ideal m ti r. Then L X.

Proof (Lmp)m Lm by (2.3.2). So Lm
R, hence L X. rq

Xm for every maximal ideal m of

By a A-lattice we mean a (finitely generated) submodule of a free A-mod-
ule; equivalently, a A-submodule of an A-module. A full A-lattice in an
A-module V means a A-submodule M of V such that AM V.
We need to know the precise amount of freedom one has in prescribing the

regular localizations of a A-lattice. One obviously necessary condition is the
"consistency condition" that if L and M are full A-lattices in V, then
Lmp Mmp for almost all maximal ideals m of R (because there exist regular
elements d and e in R such that dL

_
M and eM

_
L). The following

theorem shows that, as is known for orders over a Dedekind domain, this
necessary condition is also sufficient. The word "strong" refers to the fact that
we are prescribing the localizations up to equality, not merely up to isomor-
phism.

2.6 STRONG CONSISTENCY THEOREM. Let M be a full A-lattice in an
A-module V, and let F be a finite set of maximal ideals of R. For each maximal
ideal m F, let X(m) be a full Amp-lattice in V. Then there is a unique full
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A-lattice L in V such that

(2.6.1)
X(m) if rrt F,

otherwise.

Proof The uniqueness assertion follows from Lemma 2.5.

In proving the existence of L we can suppose that F consists of a single
maximal ideal rt and A satisfies nontriviality condition (2.1.2). Let X be the
A-module generated by some finite set of An;generators of X(rt). Then X is
a full A-lattice in V, and X,o X(rt). We find elements d and e in R such
that L =dM + eX has the desired properties.

Let D be the finite set of maximal ideals rrt 4: rt such that M,o 4: Xm0. It
suffices to choose d and e satisfying the following conditions:

(2.6.2) dM,o

_
X,o and e-- 1 (mod rt).

(2.6.3) d 1 (mod m)and eXr
_
Mmo when rtt D.

(2.6.4) d is regular in R (so d becomes a unit in Ro except for a finite
set E of maximal ideals rrt) and e 1 (mod rrt) when rrt E D (n).

The element d exists, by the Chinese Remainder theorem, once we show that
requirements (2.6.2) and (2.6.4) follow from a finite number of congruence
relations at distinct maximal ideals. Since M,o and X.o are both full A.o-
lattices in the same A-module, there is a regular element y of A,o such that
yM.o

_
X,o. Since R,o/(y) is an artinian ring, its radical rto/(y) is

nilpotent. So rto (y) for some s. Choose any such s, and then take
d n rt+. (Note that rt 4: rt+ since, by (2.1.2), the maximal ideal
of R, is nonzero.) Any such d has the property required in (2.6.2). In order
for d to be as in (2.6.4), we must keep d out of all minimal prime ideals. This
can be accomplished by choosing a finite number of maximal ideals, and
keeping d out of some power of each of them. We already have d
This, together with (2.6.3) and conditions of the form d 1 modulo a finite
number of additional maximal ideals, constitute the needed Chinese Re-
mainder conditions for the existence of d.
A similar, but easier argument then yields e.

One application of the preceding theorem is a very simple proof that being a
maximal order localizes.
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2.7 COROLLARY. ’r is a maximal R,-order in A.

Proof Suppose F,, X for some R..-order X in A. By the theorem, there
is a full A-lattice L in A such that L,, X and such that Lmp Fmp when
m r. It is easily checked, locally, that L2 L, hence L is an R-order in A
and L

_
F. So, by maximality of F we have L F, hence X L, F, as

desired, rq

2.8 Notation (Structure of F,). Since F is a maximal order in A, there is a
decomposition F )k Fk where each Fk is a maximal order, over its center,
in one of the simple ring-direct summands of A. By Corollary 2.7, each (Fk),
is then a maximal order over its semilocal center. Hence, as shown below,
(Fk), is a full matrix ring over a (non-commutative) principal ideal domain
m k ("il" ).
For the proof of the last assertion, and other related facts we need later, we

show that each Fk is a maximal order over a Dedekind domain, namely its
center, which we call R k. By maximality of Fk and (2.1.1) the integral closure
R of R in Q(Rk) is contained in the center of Fk. Hence R R which is
a Dedekind domain.

Therefore the assertion about (Fk),, being a full matrix ring follows from the
proof of [R ’75, (17.3) and (18.2)], together with the fact that, because of the
semilocal center, local module isomorphism is the same as actual isomorphism.

2.9 Drozd condition. Let Q Q(R) so that A QA. We say that a
A-module U satisfies the Drozd condition if, whenever a simple A-module S
occurs exactly once as a composition factor of Q (R)R U, the endomorphism ring
E(S) is commutative.
The Drozd condition places no restriction on composition factors of Q (R) U

that appear more than once.
Our main stability result so far (Cor. 1.7) has been the consequence of

the Bass cancellation theorem: direct-sum cancellation always holds in
gen(U U). We now prove a sequence of cancellation results which show
that, over ring-order algebras, stability occurs much more often than this. For
example, the Drozd condition is satisfied by U A for every faithful A-mod-
ule U. It is also satisfied for many indecomposable A-modules U; and if A is
commutative (see Cor. 2.19), it is satisfied by every A-module U.

2.10 DROZD CANCELLATION LEMMA (maximal orders). Suppose M X
N Xfor F-lattices M, N, X and suppose that M satisfies the Drozd condition.
Then M N.

Proof We can suppose the maximal order F is an indecomposable ring
and its center is R. Then, as observed in 2.8, F is a maximal order over the
Dedekind domain R, in the sense of integral representation theory.
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We can now suppose that A Q. F is a full matrix ring over a division
ring. By [R ’75, 21.5], every F-lattice is projective and, for every indecompos-
able F-lattice U, the A-module Q. U is a simple module. Moreover, since
every localization of F at a maximal ideal of R is a full matrix ring over a
(noncommutative) PID, it follows that all indecomposable F-lattices are in the
same genus.

Write M, N and X as direct sums of indecomposable, lattices. If M is the
direct sum of at least two indecomposables, the desired conclusion follows by
Lemma 1.3.
The remaining case is that M is indecomposable. Then, by the Drozd

condition, the simple A-module Q. M has a commutative endomorphism
ring. But then the endomorphism ring of M is our Dedekind domain R, and
R is Morita equivalent to I’. The desired cancellation now follows by passage
from F-modules to R-modules, where it is well known. []

2.11 DROZD CANCELLATION THEOREM (Lattices). Let M be a A-lattice that
satisfies the Drozd condition. Then direct-sum cancellation holds in the genus
of M.

Proof Let f: M N be a homomorphism of A-lattices and Q Q(R).
As in integral representation theory, f has a unique natural extension to a
homomorphism QM QN of A QA-modules, since QM Q (R)R M. Again
calling this extended map f we get a natural embedding E(M)_ E(QM).
Consequently we have E(M) c_ E(FM)

_
E(QM) (even though FM m

F (R)A M) and E(M)
_
E(S- 1M)E(QM) for every multiplicatively closed set

S of regular elements of R. We use these identifications without explicit
mention.

Let f be as in the preceding paragraph, and suppose that M and N are also
modules over some larger subring A’ of QA. Then f is also a A’-homomor-
phism. This follows from the discussion in the preceding paragraph. However,
it becomes false for modules that are not lattices.
By the restricted genus of the A-lattice M we mean the collection of all

A-lattices N gen(M) such that FN -= FM (as F-modules or A-modules; it
does not matter which since M and N are lattices).

For a E*(FM,) [the invertible elements of E(FM,,)] let M M,, t
FM. Then M is in the restricted genus of M, and every A-lattice in the
restricted genus of M is isomorphic to some M. The proof is identical to that
given in [G ’87, 3.4] for orders over Dedekind domains, if in that proof we
interpret Me (P r’) to be the regular P-localization of M. It follows from
this same proof that

(2.11.1) M, -= M a X(M) where X(M) E*(M)E*(rM).

Note that we are not claiming that ,(M) is a group.
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Recall, from Notation 2.8, that I’,, is a direct sum of full matrix rings over
the PID’s Ak(r)" We can therefore consider E(FM,) to be a direct sum of full
matrix rings over the rings Ak(r ). Now we make use of the Drozd condition.
For each k, either Ak(r) is commutative or the size of the matrices over A(r)
appearing in E(FM,,) is at least 2 2.

Let d be the subgroup of E*(FM,) generated by all coordinatewise
elementary transvection matrices. By the Drozd condition and the fact that F,,
has 1 in its stable range, d is a normal subgroup of E*(FM,). See [B ’68,
Chap. V, 4.1], noting that SR 2 in the terminology there is what we are calling
stable range 1. We claim that

(2.11.2) X(M) d

___
X(M) (in particular, d

___
X(M)).

Let I + d (d 2 0) be a tuple of elementary transvection matrices in E*(I’M,).
For some R Ur, we have td E(I’M). Since r is the set of all maximal
ideals containing I, there exists s R such that st 1 (mod I). Then
1 st I, so

(2.11.3) 1 + d [1 + (1 st)d](1 + std) [1 + IE(rM.)IE*(rM).

By normality of d, (2.11.2) is equivalent to

(2.11.4) e.

Take e ele2.., e = o, where each e has the form 1 + d with d 2-- 0.
Factor each e as in (2.11.3). Since 1 + IE(FM,,) is a normal subgroup of
E*(FM,,)--the kernel of the homomorphism tlaat reduces all entries in the
matrices of E*(FM,) modulo I,, times the appropriate coordinate ring Ak(r )
---we see that

(2.11.5) e [1 + ie(r t.)] e,(r t)_c

so (2.11.4) holds, and (2.11.2) is proved.
Now suppose that M X-= N X with N and X in the genus of M.

Then

FMFX=FNFX.

So by the Drozd Cancellation Lemma for maximal orders we have FM --- FN.So N is in the restricted genus of M. Therefore we have N -= M,, for some a.
Moreover by Lemma 1.3, the relation M,, X =- M X implies that
M,,M-=MM.
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Applying (2.11.1) to M M in place of M we get

(2.11.6) M, M M M oo]
GL2(E(M,))GL(E(FM))

By (2.11.1) it now suffices to prove that a X(M), and by (2.11.2) it suffices
to do this modulo d. Let v denote "natural image in Kt(E(FM,))". Since

u(a) u(diag(a, 1)),

it suffices to show

(2.11.7) vGL(E(M,))vGL2(E(FM))
_
vE*(M,)uE*(FM).

Since 1 is in the stable range of E(M,), every element of vGL2(E(M)) has
the form v diag(8,1) v(,$) vE*(M,). It therefore suffices to show that
vGLz(E(FM)) belongs to the right-hand side of (2.11.7). Let F E(FM). It
now suffices to prove:

(2.11.8) GL2(F )
_

diag(F*,l), ker(v" GL2(F ) (Kx(F,))

The properties of F that we use are that it is a maximal order whose center,
which we now call R, is a direct sum of Dedekind domains and such that, by
the Drozd condition, B Q(R)F is a direct sum of fields and matrix rings of
size at least 2 2 over division rings. The localization in (2.11.8) is at a finite
set r of maximal ideals of the center R of F. We can assume, by working one
coordinate ring at a time, that B is a simple ring and R is a Dedekind
domain.

First, let B be commutative, soF R. If a GL:z(R ) has determinant d,
then a diag(d, 1)/3 where det/3 1. Since 1 is in the stable range of R, the
matrix fl is a product of elementary matrices in GL2(R,) whence (2.11.8)
follows.
Now suppose B is not commutative. Then, by the Drozd condition, B is a

full matrix ring of size at least 2 2 over a division ring D. We have
F E(aP) where P is a locally free module over a maximal order A in D,
and R is the center of A [R ’75, 21.6]. In. particular, F. is a full matrix ring
over A,.

Let N P P2 with each P,. P, so GL(F)= E*(AN).
We call an automorphism a E(N) elementary with respect to a decomposi-

tion AN P’ P" (P’, P" locally free) if a equals right multiplication by a
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matrix of the form

1(2.11.9) a=
0 1

or
1 0
V 1

where ), maps P’ to P" or vice versa.
Let g(N) denote the subgroup of E*(N) generated by all elementary

automorphisms with respect to all such decompositions of N.
Every a of the form (2.11.9) becomes a product of actual elementary

transvection matrices, with respect to a suitable basis of the free A..-module
N,. Hence vo(N) 1 in Kt(F,).
Now let /3 be any element of GL:(F) E*(N). By the following lemma,

there exists a o(N) such that Pta P. Tlen we have

E*(N) GLg_(F)

so v(fl) z’(3’x)’(Y3) z,(F*). F’I

2.12 LEMMA. Let A be a module-finite R-algebra, where R is noetherian of
Krull dimension 1, and let N be a locally free A-module. Suppose that L =- L’ for
locally-free direct summands L and L’ of N, and suppose rank(N) rank(L) >
2. Then L’= La for some a (N) (g(N) as defined above, following
(2.11.9)).

Proof If L is free of rank 1, then this lemma becomes a special case of
[B ’68, 3.4, p. 183]. Next let L be an arbitrary locally free module of rank 1.
Changing categories by the category equivalence hom(L,...) in Lemma 1.1
makes L free of rank 1, so the previously considered case yields the desired a.
We complete the proof by induction on the rank of L. We can suppose that

rank(L) >_ 2. Write L L L2 and L’= L L with each L -= L[ and
L locally free of rank 1. Then Li Lxa for some a g(N). Since (N) is a
group, we can now suppose that L L. Let

N L L2 X L L Y,

and let 0: N - L2 X be the projection map. Then L. X LO YO so,
by induction, there exists fl g(L2 X) such that LO LEft. Since ker 0
L and LEft LEflO we have L LEft L L_. Extending fl to the
element of (N) that equals 1 on Lx we get (L L2)fl L L as
desired. []

2.13 LEMMA. (Let A be a ring-order R-algebra in the semisimple artinian
ring A.) Let E be a module-finite R-algebra and S R 1e. Suppose that E is
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an S-order in a semisimple artinian ring B, and every division algebra associated
with B is, up to R-isomorphism, one of the division algebras associated with A.
Then E is a ring-order S-algebra.

Proof What must be proved is that E is contained in a maximal S-order
in B. The direct sum E’ of the projections of E in the simple components of
B is an R-order containing E. So it suffices to prove that E’ is contained in a
maximal order. Thus we can suppose that B is a simple artinian ring.

Let A be the division algebra associated with B. We have S R 1a. Since
A is R-isomo.rphic to one of the division algebras associated with A (2.1.1)
shows that S, the integral closure of S in the center Z(A), is a finitely
generated S-module. Hence 5E is an S-order containing E, so we can

suppose E SE. Now Z(E) is the Dedekind domain S whose field of
fractions equals Z(A)= Z(B). Since central simple algebras are trivially
separable algebras over their center, E is contained in a maximal q-order G in
B [R ’75], and G is also the needed maximal S-order inB. []

2.14 Notation. Let R be a commutative ring-order. For an R-module U,
let t(U) denote the torsion submodule of U, that is, the kernel of the natural
map U Q(R) (R)R U. Then let U U/t(U). If U is also a A-module, then U
is a A-lattice (a submodule of a free A-module). The product Q(R)U then
makes sense and is canonically isomorphic to Q(R) (R)g U.
For a surjection f: P U of A-modules, we let E(f), the endomorphism

ring of f, denote the set of elements a of E(P) such that for some fl E(U)
we have fa fir. It is easily verified that E(f)= E(M(f)) where
M(f) is the T(A)-module defined in Remarks 1.8. Finally, we let E(f)
E(f)/t( E(f )), a module-finite R-algebra.
We often write canonical isomorphisms as equality.

2.15 LEMMA. Let

Kpf--U

be a presentation of a A-module, and let Q Q(R ). Then we have the following
canonical R-algebra surjection / and isomorphisms (denoted by equality):

Qff(f ) Q (R) E(f ) E(QK) E(Q (R) U) E(QK) E(Q)
((R)=

Moreover, (ker ]t) 2 O, and E(QK) and E(Q) are semisimple artinian rings
whose associated division algebras are (up to R-algebra isomorphism) among
those ofA QA.
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Proof The induced sequence QK QP Q (R) u QU is exact, since Q
is a fiat R-module, and is split since QA is a semisimple artinian ring. Hence
E(1 (R) f) can be viewed as an upper triangular matrix ring whose elements
acting on the left, have the form

E(QK Q(R) U) E(QK Q).

Moreover, E(1 (R) f)= Q (R) E(f), as one can see by tensoring the ,T2(A )-
module M(f) with Q. So we define , by ,(q) (ql, %). Since K and U are
A-lattice, E(QK) and E(QU) are semisimple artinian rings and their associ-
ated division algebras are, up to R-algebra isomorphism, among the division
algebras of QA. [3

2.16 DROZD CANCELLATION THEOREM (presentations).

Kpf-u

Let

be a presentation of a A-module, and Q Q(R ). Suppose that K and U satisfy
the Drozd condition 2.9. Then direct-sum cancellation holds in the genus off.

Proof We can suppose that A is an indecomposable, nonartinian ring-
order R-algebra, where R is the center of A. Let E E(f), and let E’ be the
natural image of E in the semisimple artinian ring E(QK) E(QU) ob-
tained by combining the natural embedding

E E(1 (R)f" QP --, Q)

with the natural surjection , described in Lemma 2.15. By that Lemma, E’ is
an S R 1E,-order in the semisimple artinian ring E(QK) E(QU). And,
by Lemma 2.13, E’ is a ring-order S-algebra.

It now suffices to define an additive functor X on div(f), the category of
direct summands of the presentations fn (n 1, 2,... ), such that (i) for every
presentation g gen(f), X(g) is a (necessarily projective) E’-module in the
genus of E’; and (ii) for g and h in the genus of f, g-- h * X(g) X(h).
For then transforms every direct-sum relation g h g k to a similar
direct-sum relation among E’-lattices in a single genus, and the Drozd
Cancellation Theorem for lattices completes the proof. (Use of this functor is a
minor modification of the basic procedure described in [G ’84].)
The desired functor X is the composition of the following three functors.

The first functor is g M(g) where M(g) is the T T2(A)-module de-
scribed in Remarks 1.8. The second functor is

M(g) - homr(M(f ), M(g))
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in Lemma 1.1, which is a category equivalence between div(M(f)) and
div(E). The third functor is

X fl(X) X/ker(E E’). X.

This functor satisfies X Y ,, B(X) fl(Y) by uniqueness of the projective
cover, because ker(E - E’) is an ideal of square zero. rn

2.17 DROZD CANCELLATION THEOREM (modules). Let U be a A-module
that satisfies the Drozd condition. Then direct-sum cancellation holds in the genus
oft .

This theorem was proved by Drozd [Dz ’69] under the additional hypotheses
that U is a A-lattice, A is an order over a Dedekind domain R and Q(R)A is
a separable Q(R)-algebra. It was extended in [G ’87] by allowing U to be an
arbitrary (finitely generated) module.

Proof Suppose W X -= W Y for modules W, X, Y in the genus of U.
Present W, X, and Y inefficiently, by a huge free module F. Then the
presentations

(F W) (FX) and (F W) (F Y)

are stably equivalent, by Theorem 1.14, hence equivalent by (1.9.1). By the
Drozd Cancellation Theorem for presentations, we have (F - X) (F - Y)
and hence X-= Y. []

Let f: P U be a presentation of a A-module. Recall, from 1.9, that we
say that gen(f) is fully stable if direct-sum cancellation holds in gen(f),
gen(P), and gen(U); and this is equivalent to saying that f(f) consists of
actual, rather than stable equivalence classes of homomorphisms, and fg(P)
and f(U) consist of isomorphism classes, rather than stable isomorphism
classes, of modules. Moreover, by Proposition 1.10, this implies that
presf(P, U) consists of all equivalence classes of presentations of U by P. By
combining the Drozd Cancellation Theorems for presentations and modules,
we get:

2.18 THEOREM (full stability). (Let A be a ring-order algebra.) Let

Kpf---U

be a presentation of a A-module, and suppose that K, P, and U satisfy the
Drozd condition. Then full stability holds in gen(f).
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2.19 COROLLARY. Let

Kpf.u

be a presentation of a A-module and suppose that A is commutative. Then full
stability holds in gen(f).

Proof What must be proved is that every A-module satisfies the Drozd
condition. Since A is commutative, the semisimple artinian ring A Q(R)A
is a direct sum of fields. The ring of endomorphisms of every simple A-mod-
ules is one of these fields, hence is commutative. []

2.20 Appendix. We give an example of a commutative ring-order R con-
tained in a quadratic extension of the rational numbers Q, and such that R is
not a module-finite algebra over any Dedekind subring. We wish to thank W.
Heinzer and C. Huneke for producing this example and R. Wiegand for
showing it to us.

Let T Z[2-] Z[x]/(x 2 8). This ring has two maximal ideals P, S
lying over 7Z because, modulo 7, x2- 8=x2- l=(x- 1)(x+ 1). We
claim that p Ty for some e > 1 and some y T.
The ring of all alg.ebraic integers in Q(T) is 7= Z[v-], and (2) is a

conductor ideal from T to T. Moreover, 2 P because any ideal containing 2
and 7 also contains 1. Since P does not contain the conductor ideal (2), it is
invertible. By the Jordan-Zassenhaus theorem, there exist integers u < v such
that pu _= po. Hence, by invertibility, po-u is principal, as desired.

Let R T[1/y]. We claim:

(2.20.1) RN Q=Z;

(2.20.2) R is not integrally closed in Q(R).

For (2.20.1), suppose that R N Q Z. Then R Q contains 1/p for some
prime number p. Some maximal ideal of T contains p, and since the
localization R T[1/y] of T was formed by removing only one of the two
maximal ideals containing 7 (and no other maximal ideal), p is in some
maximal ideal H of R. But then 1 (1/p)p H, a contradiction.

For (2.20.2) note that 7T

_
P so (7T) e

_
P Ty. Since 7 becomes invert-

ible in the localization Z212- of T, y is invertible there, too. Hence R has
the localization ZE[2V- l/y]-- ZE[2V- which is not integrally closed in its
quotient field.
Now suppose R is a module-finite algebra over some Dedekind subring D,

hence integral over D. We must have Q(D) Q or Q(D) Q[v-] Q(R).
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If Q(D) Q, then D
___
R t3 Q Z. So R is integral over Z, hence over T.

But this is impossible because no prime ideal of R lies over the maximal ideal
PorT.

If Q(R) Q(D) then integrality of R over D, which is integrally closed in
Q(D), shows R D, contrary to (2.20.2).

3. Maximal orders, Nakayama’s problem

In this section we prove a unique presentability theorem for maximal orders.
Consequences of this are our answer to Nakayama’s question and the fact that
presf(P, U) always equals zero over maximal orders.

3.1 LEMMA. Let I’ be a maximal ring-order R-algebra in a simple artinian
ring A Q(R) F. Then:

(i) For every essential left ideal L of F, r(F/L) has finite length.
(ii) For every nonzero 2-sided ideal T of F, F/I" is an artinian PIR (every

left ideal and every right ideal is principal).
(iii) Suppose F is not artinian. Then a (finitely generated) F-module has

finite length if and only if it is annihilated by a regular element of R.

Proof For (i) and (ii) see [ER ’70, 1.3 and 3.3]. For the "only if" part of
(iii) it suffices to show that every cyclic module F/L of finite length is
annihilated by a regular element of R. Since F/L has finite length, L is
essential in F [ER ’70, 1.3], so AL A. Since A Q(R)F we have Q(R)L
A so 1,=d-lx with d regular in R and xL. Then d=xL so
d(F/L) 0. Conversely, suppose dU-- 0 for some regular d R and some
F-module U. Since R is noetherian of Krull dimension 1, R/dR is an artinian
ring. So U has finite length as an R-module, hence as a F-module. rq

3.2 Remarks. Let F be a maximal ring-order R-algebra in a simple
artinian ring, and suppose that F is not an artinian ring. We adapt some
known properties of (finitely generated) F-modules to forms in which we shall
need them.
A module U over any ring is called uniform if U 4= 0 and if the intersection

of any two nonzero submodules of U is again nonzero. If U U U,
with each U uniform, then the number n is an invariant of the isomorphism
class of U (by the Krull-Schmidt theorem, applied to the injective hull of U,
because the endomorphism ring of the injective hull of each U is a local ring).
The integer n is called the uniform rank, u-rk(U).

Every F-module M has a decomposition [ER ’70; p. 71]:

(3.2.1) M P U with P projective and U of finite length.
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Moreover, U (u MiRu has finite length} and is called the torsion sub-
module of M. Every projective F-module P has a decomposition [ER ’70, 1.4]:

(3.2.2) P P1 * * Pn with every Pi uniform.

Since F is locally a full matrix ring over a (noncommutative) principal ideal
domain [see Notation 2.8], we have:

(3.2.3) Any two projective F-modules of the same uniform rank are in the
same genus.

By Lemma 3.1, every F-module U of finite length is a module over an
artinian PIR; hence [J ’56, pp. 78-79]

(3.2.4) U U1 U with each U/a uniserial module

where uniserial means that its submodules are totally ordered by inclusion and
U itself 4: 0.
Every uniserial F-module of finite length is a direct summand of I/32 for

some unique maximal ideal of F and exponent e, and [J ’56, Theorem 44,
p. 79]:

(3.2.5) 1’/32 e is a direct sum of mutually isomorphic uniserial modules.

Let U have finite length and be decomposed as in (3.2.4). As in abelian
groups, we define the 9X-component U of U to be the sum of all terms U
that are annihilated by some power of 9X. This is a fully invariant submodule
of U, and does not depend upon the particular decomposition (3.2.4) used to
compute it. A primary component of U means an -component for some 932.

In what follows we have to know whether there exists a presentation P --* U
from a given projective P to a given U of finite length. To state the answer, we
define the capacity of 932 to be

(3.2.6) x() u-rk(r/)/u-rk(r).

Then:

(3.2.7) Let P and U be F-modules, with P projective and U of finite
length. There is a presentation P --* U if and only if

u-rk(U) < x(). u-rk(P)

for every maximal ideal 932 of 17’.
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Since P is projective, it can be mapped onto U if and only if it can be
mapped onto U/(rad U). So we can suppose that U is a semisimple module.
Moreover, P can be mapped onto U if and only if P can be mapped onto
every nonzero U. So we can suppose that U is the direct sum of some
number of copies of the unique simple module S over the simple artinian ring
I’/gX. On the other hand, if H and J are uniform projective modules, we have
H/gXH J/gXJ by [LR ’74, 2.6]. (For the rings we are dealing with, this can
also be proved from (3.2.3).) Thus, for every uniform projective F-module H
we have H/gXH S for some m that is independent of H.

Writing F P1 Pn with each Pi uniform, hence n u-rk(F), we
get F/gX -= Sm’. This shows that x()= u-rk(H/gXH) for every uniform
projective F-module H. The desired result now follows by writing P P1

P, with each Pi uniform and noting that a surjection: P U exists
if and only if a surjection of semisimple modules P/93P --, U exists.
We will need to know the precise structure of P/SP where P is a uniform

projective F-module and S is a nonzero 2-sided ideal of F. Every such ideal of
F is a product of maximal ideals; and 92 92 for all maximal ideals
and 92 of I’ [R ’68, 2.1]. These remarks show that we get the answer to our
question by repeated use of the following:

(3.2.8) Let T be a 2-sided ideal of F, and 992 a maximal 2-sided ideal not
containing T. Then, for every uniform projective F-module P, we have
P/92eTp --- P/gJ2eP P/TP, and p/jep is the direct sum of x(gX) mutu-
ally isomorphic uniserial modules, each of length e.

The splitting follows from the Chinese remainder Theorem. The proof that
P/gxep is as claimed is similar to that of (3.2.7), so will be omitted.

Next, we prove that for projective F-modules P
_
P"

(3.2.9.) r(P/P’) has finite length * u-rk(P) u-rk(P’)

If P/P’ has finite length, it is annihilated by a regular element d of R, by
Lemma 3.1. Hence dP

_
P’

_
P, so AP AP’, where A Q(R)F; and the

stated equality of uniform rank follows. Conversely, equality of uniform rank
shows that AP AP’, hence Q(R)P Q(R)P’, so d(P/P’)= 0 for some
regular element d of R. By Lemma 3.1, P/P’ has finite len-gth.

Finally, we recall, from [LR ’74, 1.9]:

(3.2.10) If H is a noetherian module over any ring F, and T is a 2-sided
deal of F, then all surjections H H/TH are equivalent to each other.

3.3 "STABLE" INVARIANT FACTOR THEOREM. Let F be a maximal (hence
hereditary), non-artinian ring-order algebra in a simple artinian ring, and let K
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be a submodule of a projective F-module P. Then, for some d, there exist
compatible decompositions

(3.3.1) pa=p... p,
and

(3.3.2) Ka= TP T,P, (T

_ _
T,)

where
(3.3.3) each T is a 2-sided ideal of F and each Pi gen(I’).

If F is commutative, we can take d 1.

Proof For commutative I’, this is Steinitz’s theorem [S ’11; L ’66, 1.10].
Now consider the hypotheses as stated, and let f be the natural homomor-
phism of P onto U P/K. By [LR ’74, 3.1, 3.2] there exist compatible
decompositions

(3.3.4) P X X, (each X uniform)

and

(3.3.5) U Ut Um

with each f(Xi) U/. This yields a decomposition K ,. (X n K).
Our first objective is to find d such that (3.3.1)-(3.3.3) are satisfied with

each Pi uniform, rather than in gen(I’), if X n K 0 we can take T,. 0, and
then forget about Xi. So we suppose, from now on, that, for each i, X K :/: 0.
Then, by (3.2.9), each X/(X K) has finite length, so U has finite length,
too.

Let S(U)be the set of maximal ideals of I" such that the -component
U is nonzero. S(U) is a finite set because U has finite length.

Let d be a common multiple of the finite set of numbers {x()l U }
defined in (3.2.6). The decompositions (3.3.4) and (3.3.5) yield decompositions
of pa and Ua which, after a change of notation, we again call (3.3.4) and
(3.3.5). Now let each U/= h V/h with each V/h uniserial. Because of our choice
of d, decompositions (3.3.4) and (3.3.5) now satisfy:

(3.3.6) Suppose V,.h
___

Un. Then the number of times, up to isomorphism,
that Vh occurs as a direct summand of U is a multiple of x(). Moreover,
each U is a homomorphic image of every Xj..

The final assertion in (3.3.6) holds by (3.2.7), since U/= f(Xi) is a homomor-
phic image of X.
We claim that U has a new decomposition (3.3.5) in which each U X/TX

for some 2-sided ideal T 0.
Each of the following two types of reshuffling of the summands Vh results

in a new decomposition of U that, by (3.2.7), still satisfies (3.3.6). Type (i):
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Choose two summands U and U and a maximal ideal , and interchange
some V,.h in the 9X-component of U with some Vk in the 9X-component of U.
Type (ii): If, for some and )2, the -component of U consists of fewer
than r(932) summands Vh, move a summand Vj.k from the -component of
some Uj. to that of U/.
By means of a sufficient number of reshuffles of these types, and by making

use of the first assertion in (3.3.6), we get a new decomposition (3.3.5) with the
following properties: For each 9X S(U) and each i, the 9X-component of U
either consists of precisely x(932) mutually isomorphic summands Vh or equals
zero; moreover, the length e(i, ) of every uniserial summand Vh in the
9X-component of U,. is < the length of every uniserial summand in the
9)2-component of U/+ 1.

Hence repeated use of (3.2.8) and the paragraph above it show that, for
each i,

(3.3.7) U XilTX where T/= II(xe(i’an)lg)2 S(U)}
___

T/+ 1.

However, we have lost the property that f(Xi)= U. We recover this by
means of the rifting theorem of [LR ’74, 1.5]: Since each Xi is projective, U
has finite length and, by (3.3.6), every U is a homomorphic of every Xj, the
decomposition (3.3.5) of U can be lifted to a new decomposition (3.3.4) in
which each f(X) U and each new X is isomorphic to the old Xi. By (3.3.7)
and (3.2.10), U/is uniquely presented by Xi, so we now have ker(X --, Ui)
TiXi, and therefore K i TXi as demanded in (3.3.2). Moreover, we have
T T/ 1- Thus the theorem is proved, but with each P uniform instead of in
gen(F).
The proof is now easily finished. Any two projective F-modules of the same

uniform rank are in the same genus, by (3.2.3). Replace (3.3.1) and (3.3.2) by
direct sums of u-rk(F) copies of themselves, and then change notation so that
each new Pi and U is the direct sum of the u-rk(F) old ones. Since each new P
is now in gen(F), the proof is complete. D

3.4 LEMMA. Let K be a submodule of a projective module P over a maximal,
nonartinian ring-order algebra F, and suppose that P/K has finite length. Then,
for some d, pd/Kd is uniquely presentable by pal.

Proof Choose d as in the Stable Invariant Factor Theorem, let f be the
natural homomorphism pa _, U Pa/Ka and, in the notation of (3.3.1), let
f(Pi) U/. Then we have decompositions

(3.4.1) pd= P1 *Pn and U U1 * * Un

where each f(P) U. We claim that, in fact, every Pi can be mapped onto
every U.
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By (3.2.7) it suffices to show that all of the summands Pi have the same
uniform rank. This holds since, by (3.3.3), every Pi gen(I’).

Consider a presentation f: P --* U of a module over any ring, and a pair of
decompositions of the form (3.4.1). Under the following conditions, it is
proved in [LR ’74, 1.6] that if U is uniquely presentable by Pn, then U is
uniquely presentable by P. Each P is projective, each U has finite length, and
each P can be mapped onto each U.. Moreover, if Pn is noetherian and
U P/TP for some 2-sided ideal Tn of F, then U is uniquely presentable
by P, (3.2.10). Since our Stable Invariant Factor Theorem provides the needed
2-sided ideal, the proof is complete.

3.5 UNIQUE PRESENTABILITY THEOREM (maximal orders). Let f: P U be
a presentation of a module over a maximal ring-order R-algebra F in a simple
artinian ring A. Suppose that u-rk(ker f) >_ 2 or F is commutative. Then U is
uniquely presentable by P.

Proof We can suppose that F is not artinian. For if F is artinian, U is
uniquely presentable by P by the proof of 1.10(i).

If F is commutative, then it is a Dedekind domain, and the theorem is
known. See [L ’66, 1.9] or the historical remarks in [LR ’74, 3.6]. So we can
assume, from now on, that u-rk(ker f) > 2.

Suppose, first, that U has finite length (the crux of our proof). Then, by the
preceding lemma, there is a d > 0 such that Ud/ is uniquely presentable by
pd+l.
Now let g and h be arbitrary presentations P-* U. Then g fd and

h fd are presentations pal+ ud+. Hence g fd h fd.
Thus, all that remains is to cancel fa. By (1.9.1) (effectively, the Bass

Cancellation Theorem for presentations) we get g f-- h f. To cancel the
final f we verify the hypotheses of the Drozd Cancellation Theorem for
Presentations 2.16. Let Q Q(R). Since u-rk(kerf) > 2, E(Q. (kerr)) is a
full matrix ring of size at least 2 2 over a division ring. And since U has
finite length and F QF, Q (R) U 0 by Lemma 3.1(iii). Therefore the Drozd
conditions are satisfied, and the theorem is proved when U has finite length.
Now we drop the additional hypothesis that U has finite length. But we can

still suppose that F is not artinian. The critical observation here is that, since
F is maximal, every presentation of every F-module is equivalent to a
presentation of the form

(3.5.1)

where U’ has finite length and the arrow
prove this before using it.

denotes an isomorphism. We
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Let a presentation f: P U be given. As in (3.2.1) there is a decomposi-
tion U U’. P2 with P2 projective and U’ of finite length. Since P is
projective, the composite surjection P --* U P_ splits, giving a decomposi-
tion P P’ P" with f: P" ---, f(P") an isomorphism. Moreover, we have
U U’ f(P"). This decomposition, together with P P’ P" expresses f
in the form (3.5.1).
Now let g be another presentation P U. We get decompositions f

f’ f" and g g’ g" corresponding to decompositions of the form (3.5.1).
So it suffices to show that f’-- g’ and f"-- g". For the second of these, it
suffices to show that P" is unique up to isomorphism. This holds since P" is
isomorphic to U modulo its torsion submodule U’. (See the remark below
(3.2.1).)
To see that f’- g’ it suffices to show that P’ and U’ are unique up to

isomorphism and U’ is uniquely presentable by P’. Uniqueness of U’ holds
since it is the torsion submodule of U. For uniqueness of P’, note that
P’/kerf =-U’, which has finite length. So, by (3.2.9), u-rk(P’)
u-rk(ker f) which is > 2 by hypothesis.
We have two decompositions of the form (3.5.1), one corresponding to f,

and one corresponding to g. Since P’ has u-rk > 2, we can apply the Drozd
Cancellation Lemma for maximal orders, 2.10, to conclude uniqueness of P’.
Finally, we again use the fact that u-rk(P’) > 2, together with the fact that U’
has finite length, to conclude, from the case of the theorem already proved,
that U’ is uniquely presented by P’. This completes the proof of the theorem.

3.6, COROLLARY (Nakayama’s question). Let F be a PID that is module-
finite over its center, and let A and B be matrices of equal size over F that
present isomorphic left F-modules" F/(FmA)---F/(FmB). If A has rank
> 2, then A B.

Proof First we show that F is a maximal ring-order algebra over its center
R. Since F is a PID and is module-finite over R, it suffices to show that R is a
Dedekind domain; and this is done in [RS ’74].
Now, a right multiplication by A yields a free resolution

(3.6.1) r" -- F U

of U F"/(I’mA). Similarly B yields another free resolution (fl, g) of U. By
our Unique Presentability Theorem we have f-- g. If a is one-to-one, then so
is fl, and we have a fl as desired.

If a is not one-to-one, first get decompositions a a0
, cq and fl fl0 * fl

in which ao flo 0 and eq and fl are one-to-one (for example, by diagonal-
izing A and B). Then apply the previously considered case to cq and fl. [3
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3.7 COROLLARY. Let f:
maximal ring-order algebra
pres,,(P, U) (0).

P U be a presentation of a module over a
F in a semisimple artinian ring A. Then

Proof. We can suppose that F is a maximal order in a simple artinian ring,
and F is not itself artinian. By Corollary 1.12, it suffices to show that the
group pres/./(P P, U U) equals (0). Moreover, full stability holds
in gen(f2), so consists of actual presentation classes.

If f is an isomorphism, so is f f, so obviously equals zero. Otherwise

u-rk(ker(f f)) >_ 2,

so our Unique Presentability Theorem shows that (0). r

3.8 LEMMA. Let M be a F-module, where F is a maximal ring-order algebra
in a simple artinian ring. Then if(M) (0) if M has finite length. Otherwise
if(M) --- (Y).

Proof. We can suppose that I" is not artinian, and use the notation in
Remarks 3.2. If M has finite length as a F-module, then it has finite length as
an R-module by Lemma 3.1 and the fact that R has Krull dimension 1. Hence
M is the direct sum of its localizations at maximal ideals of R. Since the
isomorphism class of M is determined by its localizations, we have if(M)
(0).
Now suppose that M does not have finite length.
Let M’ be a uniform projective F-module. All projective F-modules are

direct sums of uniform modules, by (3.2.2); and all uniform projective F-mod-
ules are in the same genus, by (3.2.3). So if(M) -= ff(M’) by Corollary 1.7. In
particular, ff(F) --- ff(M’), so (M) -= if(F). []

3.9 PROPOSITION. Let

Kpf---U
be a presentation of a F-module, where P 4: 0, and F is a non-artinian maximal
ring-order algebra in a simple artinian ring. Then:

(i) if(f) -= if(F) (F) unless K 0 or U has finite length.
(ii) (f) --- if(F) /f K 0 or U has finite length.

Proof After replacing f by f2 we can assume (Cor. 1.12) that full stability
holds in gen(f). We get a homomorphism 3’: if(f) if(P) (U) by
letting 3’[g] ([S], [V]) for any presentation

LSg--V

in gen(f). By Corollary 3.7, , is a monomorphism.
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Now suppose that U does not have finite length. Then, by Lemma 3.8,
fC(P) -= fC(F) -= fC(U). Now suppose, in addition, that K 4. 0. To complete
the proof of (i), it suffices to show that ,/is a surjection.
By (3.5.1) there are decompositions

(3.9.1) P P1 * P2 and U U’ P" (U’ of finite length)

where f(P1)= U’ and f takes P_ isomorphically onto P". Since U does not
have finite length, P" and P2 are nonzero, and since K is nonzero, so is P1.
Since all projective F-modules are direct sums of uniform modules, and since
all uniform modules are in the same genus, Lemma 1.2 shows that by suitably
varying the nonzero module P" we get an arbitrary isomorphism class in
gen(U). Then, by suitably varying the nonzero module P1 we get an arbitrary
isomorphism class in gen(P). This completes the proof of (i).
The proof of (ii) is obtained by letting P1 0 or P2 0 in the proof of (i).

4. Restricted genus of a presentation

In this section we introduce the restricted genus, r.gen(f), consisting of all
elements of gen(f) that become equivalent over I’. Our main result uses the
associated restricted genus class group r.f(f) to construct a Mayer-Vietoris-
like sequence that shows that f(f) is built from (F) and K(F/IF), where I
is a conductor ideal from F to A (Theorem 4.8). As a consequence, we obtain
an explicit formula for presy(P, U) in certain situations (Theorem 4.11).
Actual computations with these results are delayed until the next two sections.

4.1 Notation. Throughout this section, let A be an indecomposable, non-
artinian ring-order R-algebra in a semisimple artinian ring A Q(R)A, and
let F be a maximal R-order in A such that F A.

Since a A-lattice means a (finitely generated) submodule K of a free
A-module, we can always view K as a A-submodule of an A-module AK
Q(R)K which, in turn, we can identify with A (R)A K Q(R) (R)R K whenever
convenient. Hence we can view the A-endomorphism ring E(K) as a subring
of the A-endomorphism ring E(Q(R)K).

Let K and L be A-lattices. Then every A-homomorphism f: K L extends
naturally to a F-homomorphism FK FL (because 1 (R) f is an A-homomor-
phism Q(R)K Q(R)L whose restriction to K coincides with f). Hence, as
with orders over Dedekind domains, we write E(K)c_ E(FK), and make
other, similar identifications without further comment.

Consider presentations of A-modules

(4.1.1) K--P U, L--S V.
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The restricted genus r.gen(f) means the collection of all presentations
gen(f) such that

(1 (R) f" r e -, r v) (R) g. r -, r v)

as presentations of F-modules.
We use the notation gen(K, P) for the genus of the inclusion map K P,

and we often identify gen(f) with gen(K, P).
Then r.gen(f), which we also call r.gen(K, P), becomes the collection of all

inclusion maps L
__
S in gen(K, P) such that (FL

__
FS) (FK

__
FP) as

inclusions of F-modules. The proof of this uses the fact that F (R)A P FP
(canonical isomorphism) since P is projective.
We caution the reader that, usually, F (R) K FK for A-lattices K. Of

course, isomorphism holds if K is projective.
To resolve a conflict between two potentially different meanings of

r.gen(K, P), let be the inclusion map K
__

P. We claim that we can identify
r.gen(K, P) with the collection of all inclusion maps j" L

__
S in gen(K, P)

such that 1 (R) 1 (R) j, where (R) refers to F (R)A (.-.).
To prove this, it suffices to show that F (R) K -- FK W for some F-module
W that is annihilated by a regular element of R (hence hom(W, FK) 0) and
whose F-isomorphism class is determined by the A-genus of K. (Recall that
F (R) P FP.)

Since no element of FK is annihilated by any regular element of R, it is a
projective F-module. (Write F as a direct sum of maximal orders in simple
artinian rings. None of these has an R-submodule of finite length, by (2.1.2).
Now apply Lemma 3.1(iii) and (3.2.1).) The canonical surjection z" F (R) K
FK therefore splits, yielding the summand W. To see that W ker z is
annihilated by a regular element of R, note that I. ker z 0, where I is any
conductor ideal from F to A, as in Notation 2.2, Since IW 0 and R has
Krull dimension 1, W has finite length as an R-module. Hence its F-isomor-
phism class is determined locally.
To set up some notation for our double-coset description of r.gen(f), we fix

a decomposition of F-modules:

(4.1.2) FP X Y where X
__
FK and R(X/FK) has finite length.

To see that such a decomposition exists, let X (Q(R)K) FP. Then no
nonzero element of (FP)/X is annihilated by a regular element of R. So
FP/X is F-projective, as in our discussion of F (R) K. Hence the canonical
surjection FP --* FP/X splits, yielding Y. Since R(X/FK) is annihilated by
regular elements of R, it has finite length.
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Now let L
_
S be A-lattices such that L and S are full A-lattices in

Q(R)X and Q(R)P respectively, that is,

(4.1.3) Q(R)L= Q(R)X (= Q(R)K) and Q(R)S= Q(R)P

Let E(X,,, FP,) be the ring of all endomorphisms of the F,-module I’P, that
take X, into itself, and E*(X,, FP,) the group of units of E(X,, I’P,). (See
Notation 2.2.)

For a E*(X,), let L. a be the unique full A-lattice M in Q(R)X such
that M,, L,,a and Mmo Lmo for every maximal ideal rrt ff ,r. (Here mo
denotes "regular localization" as in 2.3.) This is possible by (2.4) and the
Strong Consistency Theorem 2.6. Note that this makes sense even if L
because we always consider such an a to be an element of E*(Q(R)X).
Similarly, for a E*(FP,,), we define S. a by replacing S, by Sa and
leaving Smo unchanged when rrt ,r. Finally, for L, S as in (4,1.3) we set

(4.1.4) (L,S).a=(L.a,S.a) forasE*(X,,,FP,,).

Thus we have defined a group action of E*(X,, FP,) on all inclusions L c_ S,
where L and S satisfy (4.1.3). In particular, L. a and S. a again satisfy
(4.1.3), and

(4.1.5) (L, (L, S).

as is easily checked locally at r and at rap, rrt

For readers familiar with [G ’87] we note that, in the notation of that paper,
P, P.a, but usually L,, 4: L. a if FL, X,.

4.2 LEMMA.
ules ). Then

Suppose that FP/FK is uniquely presentable by FP (as F-mod-

(K, P). a r.gen(K, P) for all a E*( X,,, FP,)

Proof To see that the inclusions (K, P) and (K, P). a are in the same
genus, check separately at r (where the desired equivalence is a) and at m0,
m ,r, where the two inclusions become the same inclusion. Thus the crux of
the lemma is to show (FK, FP) F((K, P) a) (FK, FP) a.
As before, the equality is checked locally, at ,r and at rap, m $ ,r. For the

equivalence assertion we claim it suffices to verify

(4.2.1) FP/FK = FP a/FK. a

To see this sufficiency, first note that FP equals FP.a, as is easily checked
locally, then invoke the unique presentability hypothesis.
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To prove (4.2.1) first note that

(4.2.2) FP/FK = X/FK , Y and FP/K a -- X/FK. a $ Y.

The first isomorphism follows rfrom (4.1.2). For the second isomorphism, first
check locally that FK. a __. X,,, remembering that a E*(X). Since X/FK
is annihilated by a regular element of R (Lemma 3.1(iii)), so is X/FK. a
(check locally); hence (X/FK. a) has finite length. Since R-modules of finite
length are the direct sum of their localizations at maximal ideals of R, the
desired F-isomorphism X/FK--- X/FK. a can be checked locally, where it
becomes obvious because, at r, a acts as an automorphism of X,, while at
m r, tx can be ignored, r

4.3 LEMMA. Keep the notation of 4.1.
(i) F(P. a) FP for every a E*(FP,).
(ii) E*(K, P) c_ E*(FK, I’P,)

_
E*(X, FP).

Proof. By (4.1.2) there is a regular element d R such that

(4.3.1) dX

_
I’K.

Statement (i) of the lemma is verified locally, first at r, then at regular
localizations rap, m r.

Consider (ii). The first inclusion is obvious. Take x X,, and a

E*(I’K,,, I"P,). Since (x)a FP,, X,, Y,, we have (x)a w + y with
w X,, and y Y,,. Multiplying by the element d in (4.3.1) puts both terms
(dx)a and dw into X,,. Hence dy 0. Since d is regular in R. hence is a unit
in A Q(R)F, and since Y is F-projective, we get y 0. So a E(X, FP,).
Giving the same treatment to a -1 that was just given to a completes the
proof. []

Let (for "torsion") denote the set of all maximal ideals m ,r such that

X : I’K. The set is finite, by (4.1.2).

4.4 DOUBLE COSET THEOREM. Let f be as in (4.1.1), and suppose that
FP/FK is uniquely presentable by FP. Then the correspondence a ---, ( K, P) a
yields a bijection between the set of double cosets

(4.4.1) E*(K,, P,,) \E*(X,,, FP)/[E*(X, FP) N E*(FK,p, FP,p)]

and the set of equivalence classes in r.gen(K, p) r.gen(f).
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Proof
Then

Suppose (K, P) a (K, P) /3, and let 3’ be such an equivalence.

(4.4.2) (K, P) 8 ((K, P) a)3’.

Left-multiplying (4.4.2) by F and using Lemma 4.3(i) shows that 3’ E(FP).
Giving ,/-1 the same treatment then shows that 3’ E*(FP).
Next we show that 3’ E*(X). Localizing (4.4.2) at r gives

(4.4.3) K,,/9 Ka3".

Since n(X/FK) has finite length, it is annihilated by a regular elementof R,
by Lemma 3.1. Therefore QX QFK QK, where Q Q(R). Left-multi-
plying (4.4.3) by Q and remembering that r is a regular localization (Lemma
2.4) therefore shows QXfl QXa3’. Since a and fl are automorphisms of X,
hence of QX, we have QX QX3’. Hence X3" (QX) N FP X (since X is
a direct summand of FP). Similarly, X3’ -1 __. X, so 3’ E*(X), hence 3’
E,(x, r’).
We claim that 3’ belongs to the group o= E*(X, FP) N E*(FK,, FP,) at

the extreme right of (4.4.1). When rrt r we have ((K, P) a)mp (K, P)mp
((K, P)"/3)m. So (4.4.2), together with the fact that A, F,, shows

(4.4,4) 3’m e*(K, e) e*(rK, when

This verifies, locally, that 3’ E*(FKCp, FP), hence 3’ o.
Returning to (4.4.3), we see that a3’-1 E*(K, P) as claimed in the

theorem.
Conversely, if a3"-1 E*(K, P) with 3’ o, then reading backwards

establishes (4.4.2), so 3’ is an equivalence, as desired.
Lemma 4.2 proves that (K, P) a r.gen(K, P). Before proceeding to the

converse of this, we note that if an inclusion (L, S) is in the genus of (K, P),
then (L,,, S,,) (K, P,) (equivalent inclusion maps). To see this, let and j
be the original two inclusion maps. Then, in the notation of Remarks 1.8, the
T2(A)-modules M(i) and M(j) are in the same genus. Hence so are the
T2(A,,)-modules M(i) and M(j). Since T(A’) is a module-finite algebra
over the semilocal ring R,, the T(A,)-modules M(i) and M(j) are
therefore isomorphic, as claimed.
Now suppose (L, S) r.gen(K, P). Then (FL, FS) (FK, FP). So we can

suppose (FL, FS) (FK, FP). In particular, (Lm, Sm) (K,, Prop) when
m or. By hypothesis (L, S) gen(K, P). So, as shown in the previous
paragraph, (L,, S,,)- (K,,, P,,). Letting a be such an equivalence we get
(L, S)= (K, P).a, completing the proof of the theorem provided we can
show that a E*(X,,, FP,). Since FL FK, this follows from Lemma 4.3(ii).
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Let 8 be an endomorphism of some module, or of some inclusion of
modules, and suppose that 82= 0. Then e 1 + 8 is an automorphism of
that module or inclusion. We call such an e an elementary automorphism.

4.5 COROLLARY. (K, P) e (K, P) for (K, P) as in (4.1.1) and e
1 + i any elementary automorphism of (X,,

Proof The R-module X/FK has finite length as an R-module. So does
FK/K, since it is annihilated by regular elements of the ring R of dimension 1
(namely, regular elements of any conductor ideal from F to A). So X/K has
finite length, and hence is the direct sum of its localizations at maximal ideals
of R. Each of these localizations is annihilated by a power of a maximal ideal
of R. Therefore X/K is annihilated by an ideal of the form IeH where I is
the conductor ideal in Notation 2.2, and H is a product of maximal ideals
none of which belongs to rr. By the Chinese Remainder Theorem, there is an
element s H such that s R U,. We have

(4.5.1) IesX K.

We have i E(X,, FP,) so ri E(X, FP) for some r R U r. Since r
is the set of all maximal ideals containing I, rs has a reciprocal modulo Ie.
So 1 rst Ie. We have

(4.5.2) e= 1 + 8 (1 + rstS)(1 + [1 rst]8).

It now suffices to prove that the factors in this commutative factorization
belong to the subgroups from which cosets were formed in (4.4.1) of the
Double Coset Theorem.

Since rst8 belongs to E(X, FP) and has square zero, we have

+ rst ) e*(x, re).

Localizing (4.5.1) yields sXp c_ K,o. Hence

(Kw, Pw)rst8 c_ (X,o P,o)s c_ (Kw, Pw)
so (1 + rsti) E*(K,o, Pw)" Since A,0 F,0 we have

(1 + rstS) E*(...) E*(...)

as required.
On the other hand,

(K,, P,)[1 rst]a (IeX,, IeFp,r) (K,, P,,) (by (4.5.1))

so the last factor in (4.5.2) belongs to E*(K,, P,). []
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4.6 LEMMA. Let W, X be locally free F-modules of ranks
vE*(W) vE*(X) in Kl(l’r), where v denotes "natural image".

> 2. Then

Proof If rank X > rank W then W is isomorphic to a direct summand of
X, by Lemma 1.2. Since F, has 1 in its stable range, we conclude that
vE*(X)

_
vE*(W). Hence, if rank X > rank W > rank W’ and vE*(X) c__

vE*(W’), then we have vE*(X) vE*(W).
The proof is therefore completed by repeated use of the special case of the

lemma in which

(4.6.1) rank X rank W + 1.

We now prove this special case.
Since W is isomorphic to a direct summand of X, we can suppose that

X W V. Since rank V 1 < (rank X) 2, Lemma 2.12 yields 8 kerv
(since F,, has 1 in its stable range, so that the abstract elementary automor-
phisms in that lemma become products of actual elementary matrices) with
V8 Va. Thus fl a8 -1 has a 2 x 2 block upper triangular form when
viewed with respect to the decomposition X W V. So

l*(a) V(8) V(811)V(22 ).

We have fl E*(W). Since rank V= 1 < rank W, V is isomorphic to a
direct summand of W. So 22 E*(V) can be extended to an automorphism
3’ of a module W such that
vE*(W), as desired.

4.7 Notation. We now set up some notation for use in stating the Mayer-
Vietoris-like sequence in the next theorem. As usual, let f be as in (4.1.1).
Write I’ % Fk where each F is a maximal order in a simple artinian ring.
Let FP X Y as in (4.1.2) and set

(4.7.1) F(X) (FkIF,X 4= 0} and F(Y) {FIFY, 0}.

Let r.(f) be the subgroup of (f) consisting of all [g] with g gen(f)
such that [1 (R) g] [1 (R) f] in f(1 (R) f), where (R) refers to F (R)a (.-.). When
full stability holds in gen(f) and gen(1 (R) f), r.fC(f) consists of all equiv-
alence classes [g] of presentations g r.gen(f). As in Notation 2.2, I denotes
a conductor ideal from F to A, rr denotes the set of maximal ideals of R that
contain I; and we set

r r/ r, r(x) r(x)/i, r(x),
Y(Y) r(Y)/i, a(Y) and X ALIA.
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4.8 THEOREM.
an exact sequence

For every presentation f of a A-module, as in (4.1.1), there is

(4.8.1) x,(r(x) r(r)) x,(r(x) (Y))
o) if(f) fC(F(X)) fc(r(Y))

in which im o r.((f).

Proof Recall that (f)= (ff(fd) (canonical isomorphism) for every d.
Thus, replacing f by f2, we can assume that full stability holds in gen(f) and
gen(1 (R) f) where (R) refers to F (R)A (.-.) (see Corollary 1.12). In what follows
we shall use even larger values of d to achieve further simplification. Note that
this never changes F(X) or F(Y).

Consider the decomposition FP X (9 Y in (4.1.2). Replacing f by a
suitable fd, and applying our Stable Invariant Factor Theorem 3.3 to each Fk
(which is a maximal order in a simple artinian ring, and is not artinian by
(2.1.2) and Lemma 3.1), we get a pair of compatible external direct sum
decompositions of the form (4.8.2) and (4.8.3), in which each T is a two-sided
ideal, 0, of some Fk and X gen(Fk). Moreover, each Y gen(Some F).

(4.8.2)
(4.8.3)

with X X (9 X2 (9 (gX, and Y Y1 (9 Y2 (9 (9 Y.
Moreover, by doubling the previous d if necessary, we can ensure that each

distinct ideal T that appears in (4.8.3) appears there at least twice.
Finally, identify each (X), and (Y),r with the (Fk) to which it is isomor-

phic. Then (T/Xi) (T/). We now have

where each ring E(FX,,, FP) is a 2 2 block lower triangular matrix ring
over (I’k),, acting by right multiplication on the direct sum of those terms in
(4.8.2) that are (Fk),,-modules. The blocks in this 2 2 matrix ring result from
viewing F,P as (X-summands)(9 (Y-summands), and the (1,2)-blocks of
zeros result from the fact that FkXr -- FkXr in E(FkX,, ’kPr).
Thus we can view each element a E*(X,, FP) as a tuple of 2 2 block

lower triangular matrices a(k), one for each coordinate ring (F), of F.
We are now ready to begin dealing with the maps v, o, V in (4.8.1).

DEFINITION OF t,. This denotes "natural image in KI" of the appropriate
ring. So the definition of r on the factor Kx(F(X) F(Y)) is clear. To define
r on E*(K,,, P,), recall that E*(K,, P,r)C_ E*(X,,FP,), by Lemma 4.3.
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Hence, for a E*(K,,, P,,), we can use the 2 x 2 block triangular form of
each E(Fk X,,, FkP,,) to define

(4.8.4) v(a)(k) natural image of (a(k)ll, a(k)22) in KI(F(X) , F(Y))

By the local freeness of X,, and Y, (due to using fd in place of the original
f) this definition suffices for the present proof.

However, for use in applications of the theorem, we give a more general
definition of "natural image" in (4.8.4) that shows that im(v) is independent
of the value of d that produces local freeness, and can be applied to the
original E*(K, P), even when Xk and Yk are not locally F-free. Each ring
(F), is a full matrix ring over a (noncommutative) PID A g(vr), as explained
in Notation 2.8. Therefore a(k)l and a(k)22 can be viewed as right multipli-
cations by matrices over Ak(r), and hence have natural images in Kt(Ag(rr))

KI((Fk),, ) which has a natural image in Fk. This is the natural image that
we use in (4.8.4). Since Ak(rr ) has 1 in its stable range, the image of v is
independent of the uniform ranks of FkX and FY, whenever they are
nonzero.

DEFINITION OF ]t. For [g: S V] ’(f) let ,/’([g]) [1 (R) g] where (R)

refers to F (R)A (...). Then ker 3,’= r.fC(f). By using Proposition 3.9 sep-
arately for each Fk we get an isomorphism 3’": if(1 (R) f)--fC(F(X))
(I’(Y)). Then let /= 3’"V’.

DEFINITION OF O. We do this by means of the following commutative
diagram, in which o’(a) is the equivalence class of the inclusion (K, P) a, x
and 0 denote "natural image in KI" and o" and o are the unique homomor-
phisms that make the diagram commute.

(4.8.5) E*(X,,, rP) -- K(I’(X) F,,(Y)) -- KI((X) if(Y))

r.(K, P)

By our Double Coset Theorem, im(e’) is the restricted genus of (K, P) as
desired. We claim that ’ is a group homomorphism.
We want to prove that (K, P) a (K, P) fl (K, P) (aft) (K, P)

for every a, ft. By Corollary 4.5 it suffices to prove

(4.8.6) a /3 (a/ 1)e
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for some e in F E((X,, FP.) (X,, FP,)) that is a product of elementary
automorphisms in F. We can view F as the ring of 2 x 2 matrices over
H E(X,,, FP,). Since H is a module-finite algebra over the semilocal ring
R,,, one is in the stable range of H. Therefore (4.8.6) reduces to the well-known
(and easily proved) formula diag(a, fl)= (diag(afl, 1))e that holds in the
2 2 matrix ring over any ring H with one in its stable range, where a and fl
are units of H and e is a product of elementary automorphisms that come
from elementary column operations.
To define the homomorphism x in (4.8.5) we view each a E*(X,, FP) as

a tuple of block lower triangular matrices a(k), as explained above, and let
x(a) be the natural image, in KI(F,,(X) F,(Y)), of the matrix pair
(a(k)n,a(k)22). Since F,(X) and F,,(Y) are rings with 1 in their stable
range, x is a surjection.
To show the existence of a unique map o" making the first triangle in

diagram (4.8.5) commute, it now suffices to check that ker(x)
_

ker(o’). Each
nonzero (Fk),-module F,X,, and FkY, is free of rank > 2. So, by the "stable
range 1" condition in the previous paragraph, ker(x) is generated by coordi-
natewise elementary matrices [B ’68, p. 240]. Every such matrix is an element
of ker(o’) by Lemma 4.5. Thus o" exists.
To complete the definition of o, and the proof of the theorem, it now

suffices to establish the following facts. The following sequence is exact:

(4.8.7) E*(K,, P,) K(F(X) r(Y)) -- K(F,(X) F,,(Y))
, r.N(f)

where r again denotes "natural image in Kx", the map to in (4.8.5) is a
surjection, and ker to

___
ker o", so that o" induces the required map o in

(4.8.1).
Our Double Coset Theorem 4.4 gives ker o’ E*(K,,, P,,)H, where

(4.8.8) rn.)

so the description (4.8.7) of ker(o") will be proved if we show that for each k
we have

(4.8.9) xH(k) xE*(X, I’P)(k) ,KI(Fk(X) F(Y))
(natural image in coordinate k of KI(Fr(g) ( 1-’r(Y))

For the first equality it suffices to establish the inclusion __..
For et E*(X, FP) we have x(a)(k) (a(k), xa(k):2), so we can sup-

pose that et(k)2 0. It suffices to find fl E*(X) c3 E*(FK) such that, for
each k, x(fl(k)) x(a(k)). For then (fl(k), a(k)::) is the desired element
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of H(k). So fix a value of k.
We use the fact that every T that occurs in (4.8.3) occurs at least twice. Let

X and Xj be a pair of terms in (4.8.3) that are Fk-modules and such that
T Tj., which we now all T. We have

by Lemma 4.6. Take fl(k) E*( X Xj) such that x(fl(k)) xa(k)11. Then

so fl satisfies the required conditions. Thus we now know that (4.8.7) is exact.
The map o in (4.8.5) is a surjection because the rings involved have 1 in

their stable range, and units can be lifted where necessary.
Finally, we show that ker oa c_C_ ker o". Since F has 1 in its stable range, ker 0a

is generated by the images of all 2 2 elementary matrices [B ’68, p. 240]. For
such an elementary matrix e we have (K, P) e (K, P) by Lemma 4.5. So
o"x(e) o’(e) 1, and this completes the proof of the theorem. []

We now begin working toward our explicit formula for presf(P, U). The
relation between this group and restricted class groups is given by:

4.9 LEMMA. Let

Kpf---U

be a presentation of a A-module where P is a progenerator. Then

(4.9.1) presf(P, U) ker(r.ff(K, P) r.fC(K A, P A))

Proof Replacing f by f2 and A by A2 we can suppose that full stability
holds in gen(f). Let (f, 0) map P A2 --* U. Then full stability also holds in
gen(f, 0). We claim that presf(P, U) ker(f(f) (f, 0)).
By Lemma 1.10 every presentation g: P --* U is in gen(f); and by Lemma

1.13, we have (g, 0) (f, 0) 0 f(f, 0). This establishes the inclusion _c
For the opposite inclusion, suppose

(g,O) (f,O) for (g" S -->> V) f(f).

Then, by full stability, V -= U and S A2 -= P A2. Since P is a progenera-
tor, we have p _= A X for some n and X. Hence S p2n pEn+l.
Stability in gen(P) and Lemma 1.3 now give S -= P, completing the proof of
the claim.
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Since presf(P, U) __. r.f#(f) by Corollary 3.7 to our unique presentability
theorem for maximal orders, we have

presf(P, U) ker(r.f#(f) r.f(f,0)),

and the lemma follows.

We now assume that K is faithful. Then I’(X)= I’ in the notation of
(4.7.1). In this situation we have:

4.10 LEMMA. vE*(K, A,, P_ A) vE*(K,, P,r)v(KI(A ) 1),
where v denotes "natural image in KI(F F(Y)).

Proof. Note that vKI(A)= vKt(A,) (natural image in K(F)) since all
three tings have 1 in their stable range. We use the latter form in this proof.
We have

(4.10.1)
(4.10.2) r. (/c, A) r/c, r.

We establish the lemma by means of two opposite inclusions. The inclusion
holds because right multiplication on A, by each unit of A, is an element

of E*(K,, A,,, P,, A,).
For the opposite inclusion, note that we have

e(/c.. A., P. h.) e[(g., P.) (h,,, h.)].

So each element a E*(K,, A,, P,, A,) can be considered to be right
multiplication by a 2 2 "matrix" with a22 an element of
with a2 a map from (K,,, P,,) to (A,, A,), and so on.

Let /3 a -x. The (2,2)-entry of aft is 1 a21fl2 + a22f122. Here, the
product a2xflx2 as well as the factors a22 and fl22 belong to E(A,, A,,) A,,
a ring with 1 in its stable range. So there is an expression

a2112X + a22 U

with x, u A,,
operation

and u a unit. Therefore we have the elementary column

1 12X
0 1

Now our new matrix a has a22 equal to the unit u. So an additional pair of
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elementary row and column operations puts a into diagonal form without
changing its image in K1, as desired. [

We now give our explicit formula for presf(P, U), with notation as in 4.7.
The computations of specific presentation class groups in Section 6 will be
applications of this result.

4.11 THEOREM. Let

Kpf--U

be a presentation of a A-module, with K faithful, and P a progenerator. Then

(4.11.1) presf(P, U)

--- image of K (A) 1 in .e*(/c., e.).(r r(r))

where v denotes "natural image in KI(F F(Y))".

Proof. Applying (4.8.1) gives

(4.11.2) r.(K, P) -= Kl(r (Y))/rE*(K, e.)(r r(r)).

Applying (4.11.2) to the inclusion (K A, P A) and using Lemma 4.10 we
get

(4.11.3) r.f#(K A, P, A)

K(r r(Y))/rE*(K,,, P.)r(K(X) x 1)rK(I’ r(r))

Isomorphism (4.11.1) now follows immediately from Lemma 4.9.

4.12 COROLLARY. Let

Kpf--U

be a presentation of a A-module, with Kfaithful and P a progenerator. Then
pres,(P, U) is a homomorphic image of (A)*.

Proof. A AlIA is artinian, hence has 1 in its stable range. So K(A) is a
homomorphic image of A*. r
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5. Global fields

5.1 Notation. In this section R denotes a Dedekind domain whose field of
quotients Q(R) is a global field, and A denotes an R-order in a semisimple,
separable Q(R)-algebra A Q(R)A. As usual, I’ denotes a maximal order in
A, containing A, and I denotes a nonzero ideal of R such that IF A.

5.2 THEOREM. There is an integer n n(A) such that, for every presenta-
tion f: P U of a A-module, I(f)l < n. In particular, [presf(P, U)I < n.

Proof This is an immediate consequence of the Mayer-Vietoris sequence
in Theorem 4.8, since the group at the extreme right is finite (by the Jordan-
Zassenhaus Theorem) and K of a finite ring is again finite. []

Theorem 5.2 is most interesting when it applies to actual, rather than stable
presentation classes, that is, when full stability holds (see Definitions 1.9). Our
results about full stability require an "Eichler condition" which, for the orders
considered here, is more general than the Drozd Condition in Theorem 2.18
and its corollary.

5.3 Eichler condition. Let U be a A-module, with A as in Notation 5.1.
We say that U satisfies the Eichler condition (relative to R) if for each simple
A-module S that appears exactly once as a composition factor of the A-mod-
ule Q(R)(R)R U, the endomorphism ring E(S) is not one of the division
algebras B listed in (i) and (ii) below. (We sometimes refer to these division
algebras B as exceptional.)

(i) (if Q(R) is an algebraic number field) A totally definite quaternion
algebra B; that is, a division algebra B such that, for all valuations v arising
from embeddings of Q(R) in the complex numbers, the completion B is
isomorphic to the division algebra H of real quaternions (hence B itself has
dimension 4 over its center).

(ii) (if Q(R) is a function field of characteristic 4: 0). A division algebra B
such that, for every nontrivial valuation v of Q(R) whose associated valuation
ring is not a localization of R, the completion B is a direct product of
noncommutative division algebras.
The Eichler condition places no restriction on composition factors of

Q(R) (R)R U that occur more than once.
This definition is taken from Swan [Sw ’80, p. 174], and yields a sharper

cancellation result than some earlier definitions of the Eichler Condition.
Our stability result is:

5.4 JACOBINSKI CANCELLATION THEOREM (presentations). Let

Kpf---U
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be a presentation of a A-module, and suppose that K and U satisfy the Eichler
condition. Then full direct-sum cancellation holds in the genus off.

Proof Let Q Q(R). The proof of the Drozd Cancellation Theorem 2.16
reduces the proof of the present theorem to showing that direct-sum cancella-
tion holds for locally free E’-modules, where E’ is an R-order (defined in the
proof of Theorem 2.16) in the semisimple artinian ring E(QK) E(QU).

In the situation that Q is a field of characteristic 4: 0, we need to know that
the semisimple Q-algebra E(QU) is separable over Q. But since U is a
A-lattice, the division algebras associated with E(QU) are among those
associated with A QA, and hence their centers are separable over Q.
Now the Eichler Condition for K and U allows the use of the Jacobinski

Cancellation Theorem for locally free E’-modules [S ’80, 9.3]. []

5.5 JACOBINSKI CANCELLATION THEOREM (modules). Let U be a A-module
that satisfies the Eichler condition. Then direct-sum cancellation holds in the
genus of U.

Proof This is proved in [G ’87, 6.7]. Alternatively, copy the proof of the
Drozd Cancellation Theorem 2.17 for modules, but use the Jacobinski Cancel-
lation Theorem for Presentations in place of the corresponding Drozd theo-
rem. t
As an immediate consequence, we have:

5.6 THEOREM (full stability). Let

Kpf---U

be a presentation of a A-module, and suppose that K, P, and U satisfy the
Eichler condition. Then full stability holds in gen(f).

5.7 COROLLARY. Suppose no division algebra of A Q(R)A is one of the
exceptional algebras listed in the Eichler condition. Then full stability holds in
gen(f), for every presentation f: P - U of every A-module.

Proof For every simple A-module S, E(S) is among the division algebras
of A. Hence K, P, and U satisfy the Eichler condition, and Theorem 5.6
applies, ffl

5.8 Examples. Examples of specific integral group rings A of finite groups
G to which the preceding corollary applies are A ZG where G has no
elements of order 4 [I ’76, p. 165, Theorem 10.9], or is a commutative group, or
is any group (e.g., a symmetric group) for which Q is a splitting field. On the
other hand, if R is the ring of integers in any number field Q(R) such that
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Q(R) has at least one valuation o such that the completion Q(R)o is the
complex numbers, then the corollary applies to A RG for every finite
group G.

To complete this section, we take a brief look at what happens when the
Eichler condition fails, hence presy(P, U) might not consist of actual equiv-
alence classes. Briefly: the number of presentations of any U by any P
remains finite; but, in the case of number fields, the uniform bound n n(A)
never exists.

5.9 PROPOSITION. Let

Kpf--U

be a presentation of a A-module. Then the genus off is finite.

Proof. It suffices to show that the order E’ in the proof of Theorem 2.16
has only finitely many isomorphism classes in the genus of E’ itself. This is
done by the Jordan-Zassenhaus theorem, r

Let #(P U) denote the number of presentations of the A-module U
by P.

5.10 THEOREM. Let Q Q(R) be an algebraic number field, and suppose
that some division algebra of A QA is a totally definite quarternion algebra.
There is no uniform bound n n (A) such that :#: (P U) < n for every P and
U.

Proof We first consider the case that A F, a maximal order, and
produce an infinite sequence of presentations" P-* U of presentations of
F-modules such that

(5.10.1) #(P-* U,,) asa o

with P cyclic of uniform rank 1 and each U simple.
Since the maximal order F is a direct sum of maximal orders in the simple

artinian ring-direct summands of A QF, we can suppose that F is itself an
order in the simple artinian ring A whose associated division ring is the given
totally definite quaternion algebra D. Moreover, F is Morita equivalent to a
maximal order A in D, and we claim it suffices to consider the case F A.

Let P be the projective A-module that satisfies (5.10.1). The image P’ of P
under the Morita equivalence is clearly projective and of uniform rank 1. Thus
it only remains to show that P’ is cyclic when F : A. But, in this situation
(F A) every uniform projective F-module P’ is cyclic, because rF is



PRESENTATIONS OF MODULES 641

isomorphic to the direct sum of at least 2 uniform projective modules one of
which can be chosen arbitrarily. Thus P’ is isomorphic to a direct summand of
I’, hence is cyclic.

Let Z Z(A), the center of A.
Since D is a division algebra of characteristic zero and dimension 4 over its

center Q(Z), we have D Q(Z)[i, j, k] where 2 a, j2 b, k ij -ji,
and a and b are nonzero elements of Z.

Let 02 (M} be any infinite sequence of maximal ideals of Z such that
the characteristic of the finite field Z/M,, approaches c as a ---, o0. We can
suppose that none of these fields has characteristic 2. Let A’= Z[i, j, k].
After deleting a finite number of terms of 9X, we can suppose that A
A_/(MA)_equals (Z/M,)[i, j, k] for all a, and i, j, k are nonzero elements of
A. Thus A is a quatemion, hence simple, algebra over the field Z/M,,, and is
noncommutative since Z/M,, has characteristic 4: 2. So A is a 2 2 matrix
ring over Z/M,. Let U be the simple A,-module. We prove (5.10.1) by
showing that #(A U) o0.

We have U,---ALL,, for every maximal left ideal L containing M.
Moreover, (L A U) (Lt A U) if and only if there is a unit u
of A such that L,u L/.
The number of maximal left ideals _L containing M equals the number

Z/M,I + 1 of maximal left ideals of A, hence c as a . Hence it
suffices find a bound, independent of a, to the number of left ideals in each set
(L,ulu A*).

Since L,o L,, for every v Z*, the existence of this bound follows from
the known finiteness of the index [A*" Z*] for maximal orders in totally
definite quaternion algebras. (Sketch of proof: Let N denote the reduced norm
from A to Z. A topological argument shows N(8) 1 for only finitely many
$ A because of the total positive definiteness of D. Then [A*" Z*] <
Iker NI[N(A*) NZ*] < Iker NI[Z* "(Z*)2] which is finite since Z* is finitely
generated.) This completes the case A F.
Now let A be any R-order such that one of the division algebras of A QA

is a totally definite quartemion algebra D. We have F , I’, with each F, a
maximal order in a simple algebra A, and we can suppose that the division
algebra associated with Ax is D. We showed, above, that there exists a cyclic
projective F-module P of uniform rank 1, and a sequence of simple F-mod-
ules U,, such that (5.10.1) holds. Since F is a maximal order, we have
F P S for some left ideal S. This gives an infinite sequence of F-modules
V,, U S for which #(F --* V) --, o.
Let z be any nonzero (rational) integer such that zF _c A. After deleting a

finite number of terms of the sequence (U) we have zU 0 hence z U,, U
for every a. For each of the above presentations f: F --* V we have f(A)

__
f(zF) U so, letting f’ be the restriction of f to A we have

(5.10.2), f’(A) U Sy with S; a A-lattice and zS c_ S/c__ S.
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Since A/zA is a finite ring, only finitely many modules Sf arise in this way, as
t varies. So, passing to a subsequence of (U), we can suppose they are al!
equal; say S/= S’ for all f.
We complete the proof by showing #(A -* U S’) c as ct . To

do this it suffices to show that f’-- g’ implies f-- g. The nontrivial part of
this is to show that every A-automorphism tp of W U S’ can be
extended to a F-automorphism of FW U S. this is well known in the
analogous situation where U is a lattice, and false for modules in general; but
we prove it is true here.
We can think of tp as left multiplication by a 2 2 upper triangular

"matrix" where 11 E*(AU), etc. To see that ,11 E*(rU), take x U,,
3’ F, and let z be the integer defined above. Then

since zF
_

A. Since multiplication by z is one-to-one on U, we have i11
E*(rU). Next consider 22 E*( AS’)- Since S’ is a A-lattice and S IS’,
we can extend q922 to an element of E*(rS ). We deal with %2 by combining
the previous two situations" Choose an integer y such that yz 1 modulo the
annihilator of U. Then (for x S’ and 3’ F) define q921(3’X ) yq912(z3’x ).
This completes the proof of the theorem. []

We conclude this section with the nonuniqueness example, promised in the
introduction, related to Nakayama’s matrix problem.

5.11 Example. Let A be the ring of integral quaternions,

A Z[i, j,k,(1 + +j + k)/2],

which is a PID (in fact, Euclidean). Then A is a maximal order in a totally
definite quaternion algebra. By (5.10.2) we can choose left ideals
Axe, Ax2,... Ax of A (with n as large as we wish, by suitable choice of
such that the presentations

(c fixed) are all inequivalent.
Hence the 1 1 matrices [xo] are all inequivalent despite the fact that they

all present the same left A-module U.

6. Commutative case

When A is a commutative ring-order, full stability (see Definitions 1.9)
holds in every genus of presentations of F-modules, by Corollary 2.19. Thus
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elements of fg(f) are always actual equivalence classes of presentations of
modules.
We ask what kinds of groups can occur as presf(P, U) in this situation.

Perhaps the most surprising of our results is that, if A is a finitely generated
algebra over an algebraically closed field of characteristic 0, then presf(P, U)

0 whenever U has finite length; that is, every A-module of finite length is
uniquely presented by every projective module that presents it. Moreover, this
becomes false if the field has nonzero characteristic.

6.1 Notation. Throughout this section we assume that A R is an inde-
composable, nonartinian ring-order. Then the maximal order I" becomes the
normalization of R, and F Fk where each F is a Dedekind domain. Let

(6.1.1) K-- P-f U

be a presentation of an R-module. Throughout this section we assume

(6.1.2) K (hence P) is a faithful R-module.

Before proceeding, we note that (6.1.2) always holds if R is an integral domain
or U has finite length. Here is a sketch of the proof of the assertion involving U
of finite length. Since R is indecomposable and of Krull dimension 1, every
projective R-module P is a direct sum of faithful ideals of R. On the other
hand, since U has finite length, dU 0 for some regular element d of R, by
(2.1.2). Hence K

_
dP =- P, so K is faithful, too.

As in (4.1.2), there is a decomposition

(6.1.3) FP X Y where X
___
FK and R(X/FK) has finite length.

Let F F/I and R R/1. As in Notation 2.2, r denotes the (finite) set of
maximal ideals of R that contain I. We write v(F*) for the natural image of
the group I’* of units of F in the group I’* of units of I’. Recall that
E(f) E(K, P) denotes the endomorphism ring of f, which consists of all
elements of a E(P) such that Ka c_ K.

Next, we define the natural image vE*(K,, P,) of E*(K,, P,r) in 1-’*. Take

Then

by Lemma 4.3. So a ka(k) where each a(k) E*(FkX,, FkP,). More-
over, each FkX, is a free module over the principal ideal ring (I’k),. Hence
each a(k) can be viewed as a 2 x 2 block lower triangular matrix, acting by
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right multiplication, where

a(k)n E*(FkX,) and a(k)22 E*(FkY,).

We can therefore define v(a) by

(6.1.4) v(a)(k) image of (deta(k),deta(k)22)in F-k* F*

Thus we have r(a) F* F(Y)* where F(Y) denotes the direct sum of
those l’k such that FkY q O.
The above notation and assumptions remain in force throughout this

section.

6.2 PROPOSITION. For every f as in (6.1.1) and (6.1.2) we have

presf(P, U) R*/D

where
(6.2.1) D (a R*l(a, 1), considered as an element of F* F(Y)* be-

longs to the subgroup rE*(K,,, P,,)r[F* F(Y)*])

Proof. Recall that every faithful, projective R-module is a progenerator
(becaus_e, when localized at any maximal ideal, it becomes free_ and_nonzero).
Since F is an artinian ring, it has 1 in its stable range. So K(I’) -= F* via the
determinant. Thus the proposition is an immediate consequence of Theorem
4.11.

6.3 COROLLARY. Suppose that U has finite length. Then

presf(P, U) R*/rE*(K, P,)r(R*).

Moreover, ,(a) r det(a) for a e E*(K, P).

Proof. When U has finite length we have F(Y) 0. So

D R* n vE*(K,r, P)vF*

Again, since F(Y) 0, we have vE*(K,, P) c_ v det E*(P) (v the natural
image in F*). Since R is an indecomposable ring, all projective R-modules
have rank. Hence P,, is a free R,,-module, so r det E*(P)c_ R*. Thus it
suffices to show

R* n rr* rR*
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For the nontrivial inclusion __c, take u F* such that fi R*. Then u
R + I R. Similarly, u -1 R, so u is a unit of R, as claimed, rq

Since scalar multiplications by units of R,, belong to E*(K,, P,) and P, is
a free R,-module, as mentioned above, we have’

6.4 LEMMA. Suppose that U has finite length. Then vE*(K,, P,) contains
(R*)" pwr, the set of nth powers of elements of R*, where n rank(P).

An immediate consequence of this and Corollary 6.3 is:

6.5 THEOREM. Suppose U has finite length. Then presf(P, U) is a torsion
group whose exponent divides the rank of P (even if all residue fields of R are
infinite).

Remark. In simpler language, this theorem states that if f and g are
presentations P U with U of finite length and P of rank n, then fn... gn.

6.6 THEOREM. Suppose R is a finitely generated algebra over an algebraically
closed field F, and

(i) F has characteristic zero; or
(ii) F has characteristic p 4: O, and p does not divide n rank(P); or
(iii) R has no nilpotent elements 4: O.

Then pres/(P, U) 0 whenever U has finite length.

_Proof In_view of Corollary 6.3 and Lemma 6.4, it suffices to show that
(R,)n pwr R* when any of the hypotheses is satisfied.__By algebraic closure of
F, we have (F*)npwr= F*. This property is lifted to R in [WW ’87, Lemma
2.3], provided (i), (ii), or (iii) holds, rq

Wiegand and Wiegand used their lemma, quoted above, to prove a cancella-
tion result for torsionfree modules over certain rings. As in their situation, we
show that the result can fail when the characteristic is nonzero and divides the
rank of P. The crux of the construction of this and other examples is to find a
presentation (6.1.1) for which we know detailed information about
vE*(K, P). We do this next.

6.7 Construction. Let F be a direct sum of Dedekind domains, none of
which is a field. Suppose that F has two maximal ideals rrt 4: rt, such that
F/me =- I’/rt e as rings, for some e.
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Let 0, q" F --* V be surjective ring homomorphisms with kernels m and
it respectively, so that V-- F/me F/li e. Let

(6.7.1) R {r riO(r) q(r)}.

Then R is a ring-order, Q(R) Q(F),

(6.7.2) the conductor from F to R is I m rt e, R -= V, and r is the
one-element set { R m n n )

To prove the statements in (6.7.2), first verify that the conductor is as
described, then note that R R/I is the "diagonal" subring of V V.
We claim that, for every n > 1 there is a presentation (6.1.1) of an

indecomposable R-module U of finite length, P is free, and

(6.7.3) pres, ( P U) =- *I[(*)"Pwr,(R*)] where n rank(P)

In view of Corollary 6.3, it suffices to define f and then prove that

(6.7.4) ,E*(K,, Pr) (,)npwr.

Note that (6.7.4) shows that Lemma 6.4 says as much as can be said about the
general group vE*( K,, P,).
For later use we note that

(6.7.5) m q R I rt O R.

Choose elements b and c in F such that

(6.7.6) b me- me+l, b ff n, c 12 e- lie+l b ff m

Consider the following elements of nR:

x (1) (b, c,O,O,...,O),
x (n-l) (0,0,...,0, b, c)

x (2) (0 b c 0 O)

We claim that the following R-module presentation, where f is the natural
homomorphism, satisfies (6.7.4) and U is indecomposable of finite length.

(6.7.7) K P ’R f- U ()’R)/(IP + Zi(Rx(i)))
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The module U has finite length because I contains regular elements of R.
Since (6.7.4) and indecomposability of U can be verified after localizing at
we can now suppose that rrt and rt are the only maximal ideals of F, and
R R,. Then (6.7.6) gives m e Fb and n e 1-.

Let a E(K, P)_ E(P). Then a is right multiplication by a matrix,
which we also call a, whose entries ai. are elements of R.
To complete the proof of (6.7.4), it suffices to show that aij I when :# j,

and that alX a22 ann(mod I), since R is now local with maximal
ideal 0 I.
To express the relation Ka c_ K, let E denote the row vector whose th

entry is 1 and whose other entries are zero. Then x(0 bE + cE+l. Hence
there exist elements ri. R such that

(6.7.8) (bE + cEi+l)ix ril(bE + cE2) + ri2(bE2 + cE3) +

+ri(n_l)(bEn_ + cE.) + IP

View this as a matrix relation with entries in F, remembering that IP
("Fbc. Reading (6.7.8) modulo c, and then cancelling b, which becomes a
unit in F/Fc we get

(6.7.9) (IX/l’ IXi2’’’" ) (ril, ri2,..., ri(n-1), 0) (mod He).

Then reading (6.7.8) modulo b and cancelling c gives

(6.7.10) (IX(i+ 1)1, IX(i+l)2,’’" ) (0, ril ri2,... r(n_l) ) (mod rrt )

Since (6.7.9) is a congruence with elements of R on both sides, we can use
(6.7.5) to conclude that the two sides are congruent modulo I. The same holds
for (6.7.10). The conclusion of this is that rows and + 1 of IX have the
following form:

row/ XN,NN xXqrow + 1

where entries connected by straight lines are congruent modulo 1 and the
corner entries are elements of I.
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Since this is true for every i, a is a "striped" matrix, and this concludes the
proof that aij I when 4: j, and all= a22 ann(mod I). Hence
(6.7.4) holds.
To see that U is indecomposable, note first that K

___
(rad R)P, so f is a

projective cover of U. Hence any decomposition of U can be lifted to a
decomposition of f, hence of the inclusion (K, P). But E(K, P) contains no
idempotent endomorphisms, because its striped form shows that E(K, P)
modulo an ideal contained in its radical is isomorphic to the local ring V. t

6.8 Example (See Theorem 6.6). Let F be any field of characteristic
p 4: 0. There exists an integral domain R, finitely generated F-algebra, and a
presentation (6.1.1) of an R-module of finite length such that presf(P, U) 4:

(0}.
In Construction 6.7, take F F[x], the polynomial ring,

mp= Fxp, rt t’= F(x- 1) p.

Then (6.7.3), with n p, gives

(6.8.1) presy(P, U)--- */[(*)ppwrF*] , (say)

By (6.7.2) we have R F[x]/(xP). Every unit of the right-hand side has the
form a + where et F and has constant term zero. Therefore (a + t) p
ap. Therefore the right-hand side of (6.8.1) reduces to R*/F* :/: (1 }.

6.9 Example. When U has finite length, the torsion group presf(P, U) can
be infinite. It can also be finite and nonzero.
The nonzero group R*/F* at the end of the previous example is infinite if F

is an infinite field, and is finite if F is a finite field.

6.10 Example. Let R ZG, the integral group ring of a cyclic group of
prime order p 4: 2. We show:

(6.10.1) The set of integers [presf(P, U)I, for U of finite length (hence
finite) is the set of all divisors of (p 1)/2.

Let F Z Z[’] (" a primitive pth root of unity) and V Z/pZ. It is
well known that there exist ring homomorphisms 0: Z V and p: Z[’] V
such that the ring R ((x, y) F: O(x) p(y)) is isomorphic to ZG. The
details are written out in [L ’81, 1.1, 1.13]. Since we can consider 0 and p to be
homomorphisms from F onto V, the results of Construction 6.7 apply to
R= ZG.
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We claim that v(R*)= (+ 1}. This holds since the map: R -* V whose
kernel is the conductor ideal I factors through the coordinate ring Z, whose
units are + 1.
Thus by (6.7.3), pres(P, U) is a cyclic group whose order divides (p 1)/2.

The fact that every divisor can actually occur is now an immediate conse-
quence of varying the value of n in (6.7.3). rn

It is interesting to see what happens to presf(P, U) when we take direct
sums of presentations of modules of finite length. At one extreme, we already
know (Corollary 1.12) that the presentation group of the direct sum of any
number of copies of a single presentation f is isomorphic to presf(P, U).
Another extreme is given by:

6.11 TrIEOREM. Let Pi Ui (i 1, 2,... ) be a finite number of presenta-
tions of R-modules offinite length, and suppose that the greatest common divisor
of the numbers ni= rank Pi is 1. Then U--- ,. U is uniquely presentable by

Proof vE*(K,,, P) :z each vE*((Ki),, (Pi)) which, by Lemma 6.4, con-
tains all nth powers of elements of R*. So by the given relative primeness, we
have that vE*(K,, P) R*. Corollary 6.3 now gives presy(P, U) {0}. []

6.12 COROLLARY. Let Pi - ( 1, 2,... ) be a finite number ofpresenta-
tions of R-modules offinite length, and suppose that some Pi has rank 1. Then
U i Ui is uniquely presentable by P i Pi.
We close this paper by showing that the situation for presentations of

modules of infinite length is completely different: pres/(P, U) can contain
elements of both finite and infinite orders, and can be nonzero even if R is an
algebra over a field of characteristic zero.

6.13 Example. Let k be any field with at least four elements and character-
istic 4: 2. We show that, for a suitable integral domain R that is a finitely
generated k-algebra, there is a presentation f of a torsionfree R-module U,
namely U F, such that

(6.13.1) pres! (R2, F) -= k*.

In particular, if k is not an algebraic extension of a finite field, this always has
elements of both finite and infinite orders.

Let R be a ring-order 4: I’ such that, for some F,

(6.13.2) F R + Rt.

We will further restrict the choice of R as this example proceeds. In this
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example, I denotes the full conductor ideal from F to R. Let f be the following
presentation of I" by a free R-module of rank 2"

(6.13.3) KP=RuRvF wheref(u) =landf(v) =t.

We begin by proving

(6.13.4) K I( tu v ).

The inclusion

_
follows immediately from (6.13.3). For the opposite inclu-

sion suppose 0 f(xu + yv)= x- yr. Then yt R. Since y R, (6.13.2)
shows that yF __. R. Since I is the full conductor ideal, this gives y I.
Hence

xu + yv -ytu + yv I( tu- v)

as claimed.
The next step is to find a decomposition FP X Y where X _z K and

X/K has finite length. In view of (6.13.4) the following decomposition
accomplishes this"

(6.13.5) rP r(tu- v) Fu.

Now take a E(K, P) c_ E(FP). With respect to decomposition (6.13.5),
is right multiplication by a 2 2 lower triangular matrix, say

(6.13.6) a= a ] witha b dF

We seek a necessary and sufficient condition that a E*(K, P).
To begin, we determine when Pa c_ P. This is equivalent to ua and va P.

The expressions for u and v in decomposition (6.13.5) are

u=O(tu- o) + u and v= -(tu-o) + tu.

Therefore

ua=[0 1][ ab d0] =[b d]

and

va=[-1 a
b Od =[-a+bt dt].

In other words, ua=b(tu-v)+du and va=(-a+bt)(tu-v)+dtu.
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Equating coefficients shows that Pa c__ P Ru Ro if and only if

(6.13.7)
b R, bt + d R, -a + bt R and (-a + bt + dt)t R

Now we make some additional restrictions on the ring R. Let F be a
Dedekind domain. Suppose the following condition holds.

(6.13.8) There exists a ring homomorphism v from F onto F, F, for
some ring F. Let R v-ldiag(F, F). Choose F such that v(t) (1, 0).
(The conductor ideal is thus I kerv.)

Here, diag(F F) denotes the set of elements of the form (x, x) in F F. R
is a ring-order. In fact R is a Dedekind-like ring, in the sense of [L ’85]. To
verify (6.13.2), note that R __. ker(v). So it suffices to verify that v(F) v(R)
+ v(R). (1, 0), which is obvious. Thus the characterization (6.13.7) of the
condition Pet

___
P applies to R.

For local such rings R we now obtain a quite explicit description of the
matrices ct E*(K, P). This will suffice for our needs, since we will apply the
description to R, rather than to R itself.
For x F let v(x) (xl, X2).
Since ker(v) _c R, conditions (6.13.7) are equivalent to the conditions ob-

tained by applying to them and determining when the resulting elements
belong to diag(F F). After some straightforward manipulations we see that
Pa __c P if and only if v(a) has the form

(al, a2) 0 ](6.13.9) v(ct) (al a2, al a2 ) (a2, a)

As a check on these computations note that the determinant of v(a) belongs
to v(R) diag(F F); and it is a unit of v(R) if and only if each a is a
unit. Since we are supposing that R is local, this makes det(a) a unit of R.
Then a is invertible; moreover its inverse also has the form (6.13.9), so
Pa P. We also have Ka K by (6.13.4), since I is an ideal of F and a is a
unit of F. Thus (6.13.9), with al and a 2 units, displays the general form of all
a E*(K, P), when R is local.
We now further specialize R and F. Let F k[x], the polynomial ring. Let

F be any local, finite dimensional k-algebra such that there is a surjective
k-algebra homomorphism v: F F F. Let R and be as in (6.13.8).

Since the conductor from F to R is the ideal I ker(R -* diag(F F)) of
R,, the set r of maximal ideals of R containing I consists of the single
maximal ideal I.
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Localizing at r we see that the three tings F,, R,, and F F and the
element satisfy the conditions in (6.13.8). Therefore the matrices a

E*(K,,, P,) are those matrices such that ,(a) has the form displayed in
(6.13.9).
We now show that

(6.13.10) presy(P, F) -= F*/k*
using Proposition 6.2. We have R* v(R)* diag(F F)* -= F*. It there-
fore suffices to show that the group D in (6.2.1) is diag(k k)*.
We have F(Y) F since Y Fu. (See (6.13.5) and the paragraph preceding

it.) Moreover F* k[x]* k*. We write elements of F F F as ordered
pairs, so the elements of F* F* in (6.2.1) become 4-tuples. Thus an element
(g, g) R* diag(F F)* belongs to D if and only if there is an expres-
sion

(6.13.11) (g, g,1,1) (at, a2, a2, al). (h, h, j, j)

where h and j belong to k and (at, a2) appears in a matrix of the form
(6.13.9). Looking at the last two coordinates shows that each a belongs to k
and a a 2. So g diag(k k)*, hence D

___
diag(k k)*. For the oppo-

site inclusion, we can take each a; g and h j 1.
Finally, let F to be the k-algebra k k. Since k has at least four elements.

F k[x] can be mapped onto F F k k k k by taking the kernel
to be generated by the product of four linear polynomials. So we can apply
(6.13.10), with F k k, getting (6.13.1). o
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