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SOME RESEARCH PROBLEMS ABOUT ALGEBRAIC
DIFFERENTIAL EQUATIONS 1I

BY

Lee A. Rusgr!
Dedicated to my son and daughter, Mark and Natasha

In 1983, I published (see [RUB-I]) a collection of research problems about
ADE’s. Since then, some of the problems have been solved, some have
resisted all attacks, and a number of new ones have been generated. In this
paper, which I have titled as Part II of the original one, I bring the project as
up to date as I can. We refer the reader to the “Explanatory section” of Part
I for some of the definitions and notation, as well as for specific problems
described there. I also pose a number of new problems. As in Part I, 1
surround the new problems with descriptive material, including background
and partial solutions, where they are available.

I repeat here the closing paragraph of Part I.

“In summary, these are some aspects of the subject as I have expressed
them in problems. I hope not too many of them turn out to be embarrassingly
easy. At any rate, I have hard going making limited progress on a few. I hope
people who find complete or partial solutions will communicate them to me
and to others. Finally, I hope I have shown that, just a little off the beaten
track in differential equations, there lies a fascinating vein of mathematics.”

1. Problems that have been (partially) solved

(Numbers of problems in this section refer to Part I of this paper [RUB-I1.)
Of course, Problems 1 and 3 were already solved in Part I. We recall:

ProBLEM 2. What kind of gaps can the power series of a solution of an
ADE have?

Several partial solutions to this problem were later given in [LIR-I]. The
most complete of these results goes as follows. Let {n,} be an increasing
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660 LEE A. RUBEL
sequence from N. Define
Ay =npyy —ny,
and let d(k) be the largest integer < k such that
Ay = nyy,
if such an integer exists, and 0 otherwise.

TueOREM. Let f(2) = L% _of, 2" with the f, € C, f, # 0, and suppose
that

(1.1) lim d(k)/k = 1.

Then f is not differentially algebraic.

(Note. We abandon the term ‘“hypotranscendental” for the more usual
term “differentially algebraic”, (DA). They both mean that the object in
question satisfies a non-trivial algebraic differential equation.) A series with
Hadamard gaps (lim n,_,/n, > 1) certainly satisfies (1.1) so that a DA
power series cannot have Hadamard gaps (unless it is a polynomial). For
handling smaller gaps, there is a convenient condition which implies 1.1.
Suppose that |n, — ¢(k)| < €, where € is some constant, and suppose that
¢o(x) = exp p(log x), where p'(x)1 and p'(x)/x — ». Then condition (1.1)
holds. A special case of this is

)2 +e

p(x) =B &> 0.

Going now to Problem 7, there is an example in [GOL], of which I was
unaware until recently, of a DA function that is analytic exactly on the
complement of a certain Cantor set, so that the answer to Problem 7 is “yes”,
contrary to what I initially expected. This throws new light on Problems 5
and 6.

We recall:

_
ProBLEM 8. Ifw(z) = L%_,a,z" satisfies an ADE, P(z,w(z)) = 0, must
—_—
there exist another ADE, Q(z,s(z)) = 0, that is satisfied by every partial sum
s(z) = 5,(2) = T} _oa, z*?

Some definite progress was made in [BRU], in which examples were given
where the answer is “no”. In the special case, though, where P is linear (i.e.,
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of degree 1), then it was shown there that the answer is “yes”. It was shown
there also that if the partial sums do all satisfy one and the same ADE, then
the sequence (a,) of coefficients, even when the index set is restricted to an
arbitrary arithmetic progression, must satisfy an algebraic difference equation.

Problem 9 asked whether there exists an algorithm to decide whether a
given ADE has a global solution on a given open interval I. A partial answer,
depending on the context, was given in [DEL-I, II]. (Much earlier, [JAS]
outlined a proof of a related result.) First of all, Denef and Lipshitz provided
an algorithm to decide when a given system of ADE’s, say with rational
coefficients, has a formal power series solution. Singer earlier proved in [SIN]
that there exists no algorithm to decide whether it has a non-zero power
series solution. [DEL-I] shows that there is no algorithm to decide whether it
has a power series solution that converges in some neighborhood of the
origin, but it does provide an algorithm to decide whether the system has a
solution that is'C* in some neighborhood of the origin. They show [DEL-II]
that there is no algorithm for deciding whether the radius of convergence of
a solution is < 1 or > 1. Moreover, they have related results about systems
of algebraic partial differential equations that we won’t describe here.
Finally, we mention an earlier undecidability result of Adler in [ADL].

An affirmative answer to Problem 12 was given in [RUS], in a much more
general form. This requires the notion of a DA function of several variables,
say F(xy,...,x,). This means that it is DA as a function of each variable
when the others are held fixed.

Taeorem [RUS]. Let G(t_,, ¢ty ty,...,t,) be a non-trivial analytic dif-
ferentially algebraic function of its n + 2 variables, and let y(x) be an analytic
solution, on an interval I, of the differential equation

G(x,y(x),y(x),...,y™(x)) = 0.

Then y(x) solves some algebraic differential equation on I.

An extension of this result to the C® case is given in Corollary 3.1., p. 50,
of [HORJ].

Problem 16 has been partially answered in [LAO], the Ph.D. thesis of
Vichian Laohakosol, written under my direction. Problem 17 is partially
answered in [LIR-I]. Problem 19 has not been solved yet, but an ADE with
“almost” the required properties has been described by Boshernitzan in
[BOS]. Namely, for every compact interval I in R, and for every real
continuous function ¢ on I, and for every £ > 0, there exists a polynomial
solution p of the ADE such that |p(x) — ¢(x)| < & for all x € I. Problem
23 was partially answered in [LIR-I], but most of it remains untouched.
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2. New problems

A theme that runs through many of these problems is—what would
classical complex analysis look like in the context of differentially algebraic
analytic functions only? Thus for example, Problem 33 asks for a differen-
tially-algebraic form of the Riemann mapping theorem.

The first three questions are closely related. The second and third ap-
peared in Part I as Problems 21 and 20, respectively, but I renumber them
here because of their importance and apparent difficulty—1I have a lot to say
about Problem 28 especially, although I am no closer to a solution. I rephrase
Problem 21 in a more emphatic form.

Let & denote the space of all entire functions in the topology of uniform
convergence on compact sets in the complex plane. Let £ N DA denote the
space of those entire functions that are differentially algebraic. It is easy to
see that a subset S of & is o-bounded (a countable union of bounded sets) if
and only if there exists a countable number ¢, ¢,, ¢3, ... of positive continu-
ous functions on C such that for each f € S, there exists an » € N such that
If(2)] < ¢,(2) for all z € C.

ProBLEM 26. Is &N DA o-bounded in &7
We rephrase this more colloquially.

PrOBLEM 26'. Is there any a priori restriction on the growth of a differen-
tially algebraic entire function?

We now go to specific conjectured bounds. Let e,(x) = exp x, e, (x) =
exp(e,(x)).

ProBLEM 26”. If f€ &N DA satisfies an n-th order ADE, must there
exist constants n, A, and a such that

(2.1) |f(2)| < Ae,(121%)?

On page 47 of [BOR], a weaker statement than this is apparently asserted.
But it is not clear in [BOR] just what is proved, what is asserted to be proved,
or what is just asserted. Suffice it to say that counterexamples have since
been found to one of the major assertions there—see [BAN], [BBV], [RUB-
I1], and [VIJ].

A function that violates all the bounds (2.1) is called “transexponential”.
So our question is whether there exists a transexponential DA entire func-
tion. Given an entire function f, we define the iterates of f by fI'(z) = f(z),
fint1(z) = f(f")(z)). One approach to a “no” answer to Problem 26 would
be to produce a reasonably large f whose iterates all satisfy one and the
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same ADE. In the terminology of [BRU], the iterates of f form a coherent
(or uniformly differentially algebraic) family. The “Bourbaki polynomials” z™
have this property, as well as the Tchebycheff polynomials 7,(z) =
cos(m arcos z), and A.E. Eremenko has communicated a proof to me that
these are the only (suitably normalized) polynomials whose iterates are
coherent. (See [BRU] for the quadratic case.)

ProBLEM 27. Does there exist a transcendental entire function whose iter-
ates are uniformly differentially algebraic?

Some work related to Problem 27 can be found in [KNE]. Let us return to
Problem 26. For reasons that are probably improper, I entertain from time to
time the possibility that it is independent of the ZFC axioms of set theory.
One reason why such independence is not too implausible is the close
connection (see [SHA], [POE], [LIR-II]) between ADE’s and analog comput-
ers. Be that as it may, a positive answer to Problem 26 would settle Problems
28 and 29 which we now state.

ProBLEM 28 (Old Problem 21). Given a sequence (z,,) of distinct complex
numbers such that z, — », and any sequence (w,) of complex numbers, does
there exist a differentially algebraic entire function f such that f(z,) = w, for all
n=1273..7

This problem is associated with corresponding problems for functions
holomorphic on other domains than the full complex plane. It is a classical
result that the answer is “yes” if the “differentially algebraic” requirement
on f be dropped.

Remark. The problem in Problem 28 is one of simple interpolation. The
corresponding problem with the multiplicites counted has a negative solution,
as we now show. The (z,) are as before, but the (w,) now become (w, ),
n=123,..., j=0,1,...,j, and the condition on f is that fUX(z,) = w, ;
for all n and j as above. Now choose (w, ;) so that the set of (p + 1)-tuples
Wy 05 W15 - s Wy, ) With j, >p of course, is dense in C?*!, for p =
0,1,2,... . Suppose now that there was an interpolating function f that was
DA. Then f would satisfy not only an ADE but an autonomous one:

P(f(2), f'(2),...,f®(z)) = 0.
Consequently
P(W, 0sWy 15--+5W, ) =0

for all large n. Thus P vanishes on a dense subset of C?*! and thus P = 0,
and the result is proved by contradiction.
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ProBLEM 29 (Old Problem 20). Given a sequence z, (counting multiplici-
ties) that approaches « in the complex plane, must there exist a DA entire
function f whose zero-set is exactly (z,)?

We remark again that even the case z, =n for n =1,2,3,... is still
undecided. For the present, we will discuss Problem 28 in extenso. First, we
rephrase the problem. Let D = &N DA and let T = {f € &: f(z,) = 0 for
n=1,2,3,...}. Then we have, equivalently to Problem 28:

ProBLEM 28. Is &= D + T (as a sum of subspaces)?

This may seem unlikely since T is just an “average” closed subspace of &,
while D is a very small (non-closed) subspace of &. It was shown in
[RUB-III] that D is of Baire category 1 in &. Here we prove a stronger
result.

DeriNiTION. Let V' be a topological vector space and D a linear subspace
of V. We say that D is of Baire category zero in V' to mean that the
intersection of D with any infinite-dimensional subspace E of V' is of Baire
category one.

TueoreM. DA is of Baire category 0 in &.

Proof. Let M be a subspace of &. We must prove that either DA N M is
Baire-1 or is finite-dimensional. Suppose that, dim(M N DA) = ». By the
Ritt-Gourin Theorem, every function in DA satisfies an algebraic differential
equation P = 0 where P is a differential polynomial with integer coefficients.
We can enumerate such P. Let .#” be a neighborhood in DA N M. Then N
has the form

N ={feDANM:|f(z) — fo(2)| <&,z €K},

where ¢ > 0 and K is a compact set in C. Let P+ be the set of entire
functions annihilated by P. Clearly P * is closed. It is enough to prove that
for any differential polynomial P, P+ contains no neighborho_gd 4. Sup-
pose it did. Then f € M N DA, |f — f,| <& on K, implies P(f) = 0. Take
g € M N DA and |e| really small. Then P(f,+ e£g) = 0. But this is a
polynomial in ¢ that vanishes on a disc in C, and hence vanishes identically.
So P(f, +¢eg) =0 for all ¢ € C, and g € M N DA. Hence P(f) vanishes
for all f € M N DA. The desired result follows from the next lemma. (We
call a differential polynomial P autonomous if P(f) = P(f(z2), f'(2),
oy, FA(2)) (ice., P does not explicitly mention the independent variable z)
and we call N the order of P. It is a well-known fact (involving resultants),
that we may take the polynomials P in the conclusion of the Ritt-Gourin
theorem to be also autonomous.)
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LemMA. If P is an autonomous differential polynomial such that P*
contains an infinite-dimensional vector space in &, then P = 0.

Proof. Call the vector space V, and take f, f;,..., fy linearly indepen-
dent in V, where N is the order of P. (So we will actually prove that
dimV < N). Let

W(z) = det[fi(j)(z)] i=0,1,...,N+

j=0,1,...,N

Since we are dealing with analytic functions f;, we know (see [KOL]) that
W(z) is not = 0. Let 2= {z:W(z) = 0}). For z € C\ @ and any complex
numbers wy, Wy, ..., Wy, solve

gofo(2) + o+ enfn(z) =w
eofo(z)  + o+ enfi(z) =wy

N
eofM(z) + o+ enfiV(2) =wy
where ¢y, 4,...,&y € C. We then have P(wy, wy,...,wy) = 0. Let

f(z) =eofo(2) + -+ +enfn(2),

supposedly a solution of P = 0. Since wy, w,,...,wy are arbitrary, we have
P=0.

Remark. Jean Saint-Raymond has written to me that in case V is a
separable metrizable vector space and D is an analytic linear subspace of V,
then D is of Baire category zero if and only if D contains no complete
infinite-dimensional subspace of V. At one time it seemed to me that one
could not have &= D + T where D is an algebra of Baire category zero and
T is a closed subspace of infinite codimension in &, the space of all entire
functions discussed above. However, Saint-Raymond has sent me an example
of this, where T={fe &: f(n) =0,n=0,+ 1, + 2,...}. So the approach
by category seems to be a false lead.

Here is what seems to be a promising approach, but, so far, nobody has
been able to make it work. The idea is to consider a DA function as a
function of the initial conditions of an ADE satisfied by the function. To
make matters simpler (and a Baire category argument reduces it almost to
this), suppose (z,) given and suppose that there is one differential polyno-
m1al P such that for any sequence (w,) there is an entire solution of
P(f £) = 0 such that f(z,) =w, for n =1,2,3,... . For simplicity, we will
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take z, =n for all n = 1,2,3,... . Let p be the order of P and let N be
much larger than p. Along with the equation P(g) = 0 consider the initial
conditions g(0) = ¢,, g'(0) = cy,..., g"X0) = c,. Putting aside certain dif-
ficulties for the moment, consider g as a function of c,cy,...,c,, say

g =g(z:¢q,cy,...,c,). Look at the mapping F: C?*1l » C¥ given by
F(cy,cp5-..5¢,) = (8(1),8(2),...,8(N)).

By the interpolation hypothesis, F maps onto CN—in other words, F is a
dimension-raising map. This seems extremely implausible. True, there do
exist dimension-raising maps (think of a space-filling curve), but they cannot
have any of the analyticity properties we would expect F to have.

Let us be a little critical of the “argument” just sketched. First of all, F
need not be defined everywhere. Here is an extreme example of this, due to
Leonard Lipshitz. Consider the functions

where A is a parameter. It is easy to write down a first-order ADE whose
solutions are exactly the functions f,, and f,(0) = 1 — Ae™! = u, say. But f,
is entire exactly for one value of A (A =1 or u =1 —e™!), and for no
others. Moreover, even if we suppose that there is a unique solution to our
initial-value problem for every (p + 1)-tuple ¢ = (¢cq,cy,...,c,), it is not
clear what kind of a function it is of c. So we state:

ProBLem 30. Let G(zy,..., z,) be an analytic function of (z,,...,z,) in
a neighborhood of (0,0, .. .,0) that is differentially algebraic as a function of z,.
Define p = p(z,, z3, ..., z,) to be the radius of convergence in the z,-plane of
the Taylor series for G as a function of z,. Can you say something stronger
about p in this case than if you drop the hypothesis about G being differentially
algebraic?

We note what is known in the unrestricted case (see [LEL]). If we let

R(z,,...,2z,) =logp(z,,...,2,),

then the lower-semicontinuous regularization of R is a plurisuperharmonic
function of (z,,..., z,). In particular, its set of discontinuities is a pluripolar
set. In the case where G is DA in z, (perhaps supposing G to be DA in
Zy,...,2, as well), must the set of discontinuities of p be contained in a
countable union of varieties of dimension less than p? Here is an illuminat-
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ing example from [DEL-I]. Let

0

f(x,a)= Y a(a—1) - (a—n)x".

n=0

It is easy to see that, as a formal power series, f(x, a) is DA in x for each a.
But for a & N it has zero radius of convergence, while for @ € N it has
infinite radius of convergence. Another example would be F(z,w) =
f(z2)g(w), where, say, f(z) = (1 — z)~! and g is a DA entire function. If w,
is a zero of g, then F(z,w,) has infinite radius of convergence, otherwise
radius of convergence one.

ProBLEM 31. Given a “nice” initial-value problem for a system of algebraic
differential equations in the dependent variables y,,...,y,, must y(x,) be
differentially algebraic as a function of the initial conditions, for each x,?

We won’t say more about what “nice” means except that the problem
should have a unique solution for each initial condition in a suitable open set.
Even a very simple version of the problem, due to Lou van den Dries, seems
very elusive.

ProBLEM 31. Consider the initial-value problem

{ y' =P(x’Y)
y(0) =1,

where P is a polynomial in (x, y). Suppose that it is “nice” so that there is a
unique and well-behaved solution on the interval [0, 1). Write

e(1) =y(1).
Must ¢ be differentially algebraic?

About Problem 28, I have proved in [RUB-IV] that if simple interpolation
is possible in DA then DA is not elementarily equivalent (as a ring) to &.

Consider the following Bezout problem about DA.
ProBremM 32. If f and g are differentially algebraic entire functions with no
common zeros, must there exist differentially algebraic entire functions a and b

such that af + bg = 1?

Note that if we choose f = cos wz and g = cos wAz where A is extremely
Liouvillean—i.e., has very close rational approximations, then b would have
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to be extremely large on some of the zeros of f. This reflects on Problem 26.
Problem 32 is closely related to Problem 28 since af + bg = 1 will hold if
b interpolates 1/g (counting multiplicities) on the zeros of f. (Choose a =
- bg)/f).

We now turn our attention to some unrelated problems.

ProBLEM 33. Let G be a “nice” region, say G = {(x + iy) € C: y < p(x)},
where p(x) is a given polynomial, and let f map G conformally onto the lower
half-plane {(x + iy) € C: y < 0}. Must f be differentially algebraic?

Here, the meaning of “nice” is that the boundary of G is given by
algebraic conditions. We mention in this connection the oval of Cassini

G={(x,y)eC:x*+y* <1}

for whose mapping function f Lummer in his 1920 Leipzig thesis found an
explicit formula which implies that f is DA. Even the case

G={(x+iy) eC:y<x?

has not been settled.

Hilbert’s 13th problem, (see [LOR]) about superpositions of functions,
turned out to be stated too broadly. After all, Hilbert was principally
interested in nomograms for certain seventh-degree algebraic functions so
that the positive solution of Kolmogorov-Arnold in the context of merely
continuous functions may not have too much bearing on Hilbert’s actual
intent. The following problem is due to Leonard Lipshitz.

ProBiem 34. If F(x,y) is a differentially algebraic (and real-analytic?)
function of x and y, can we write F as a superposition of differentially algebraic
functions of one variable, with + being the only allowed function of two
variables?

The restriction to just two variables x and y is only for simplicity.

ProBLem 35. If f(zy, 2,,...,2,) is an entire function on C" that is
irreducible as a differentially algebraic function, must it be irreducible as an
entire function?

Lou van den Dries has shown me a proof that if f(z,...,z,) is an
irreducible polynomial, then it is irreducible as an entire function.

The next cluster of problems has to do with different kinds of convolutions
of DA functions. The first kind, Hadamard convolution, is defined by

Ya,x" * Y. b,x" =Y a,b,x".
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In [LIR], two DA power series Ya,x” and Xb,x" were given whose
Hadamard convolution was not DA.

ProBLEM 36. Describe the class of Hadamard convolutions of differentially
algebraic power series.

This is closely related to the next problem, about diagonals—the diagonal
of Xa,,,x"y" is La,,,x™. In [LIP], it was proved that the diagonal of a
linearly differentially algebraic power series in two variables is linearly
differentially algebraic, but in [LIR-I] this assertion was shown to be false if
the word “linearly” is omitted in both places.

ProBLEM 37. Describe the class of diagonals of differentially algebraic
power series in several variables.

ProBLEM 38. The same as Problem 36, but with f, g real analytic and
differentially algebraic functions on [0, ) and

(f*g)x)= foxf(x —t)g(t)dt.

The next problem concerns the general-purpose analog computer (GPAC)
(see [SHA] and [POE]) which may be presented as an initial-value problem,

dy,
i,j,k=1,2,...,n kT dx

y(0) = ¢, i=23,...,n
with y,(x) = x.

ProBLEM 39. If all the c; ; , and the c; are rational, is there an algorithm
to decide whether the machine runs for a positive length of time? (That is,
whether there is an interval [0, €], € > 0, with a solution existing on it.)

It was shown in [DEL-II] that the answer is “no” for general systems of
ADE’s but the above system is special—it is quasilinear and first-order.

We now turn to a version of Church’s Thesis that all reasonable definitions
of computability boil down to the same notion. It was originally intended in
the context of discrete (i.e. digital) computers, but has recently been broad-
ened to include continuous (i.e. analog) computers. In [RUB-V], it was
shown that digital simulation of a large class of GPAC’s is always possible.

ProBLEM 40. Is analog simulation of digital computation always possible?

This problem can be interpreted in various ways. One of them is, given a
recursive sequence &;, €,, €3,... of zeros and ones, to construct a GPAC
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with rational data one of whose outputs u(x), defined for all x > 0, satisfies
|u(n) —e,| <1/10 forn=1,2,3,....

Leonard Lipshitz has shown me a proof that one can, given &,, ¢;, €3,...,
always choose a A € R so that

u(x) = sin Ae®

works. The trouble with this is that A may be some crazy irrational number.

We now turn our attention to the (non-separable) Banach space H*(D),
consisting of all bounded analytic functions in D = {z € C: |z| < 1}, with the
norm

Ifll = supf| f(z)|: z € D}.

ProBLEM 41. Is H” N DA dense in H*?

Here “H” N DA” is shorthand for “the differentially algebraic functions
that are bounded and holomorphic in D”. The non-separability presents us,
for example, from simply taking the polynomials (which are certainly DA)
with rational coefficients as a countable dense subset of H*(D). Problem 41 is
due to Alan L. Horwitz and me, jointly.

Fatou’s Theorem (see [HOF)) says that for each f € H*(D)

£*(e) = lim f(re®)
r—
(the “radial boundary value of f) exists for almost all 8 € [—, 7).

ProBLEM 42. If f € H*(D) N DA, must f*(e’) exist with at most count-
ably many exceptional 0?

If the answer to Problem 42 is “yes”, then the answer to Problem 41 is
“no”, for the class of all f in H*(D) with at most countably many exceptional
0 is closed in the H”-norm. With a little work, I have produced an f €
H>*(D) N DA where the exceptional set is countably infinite. This problem
may be related to the result in [GOL] mentioned earlier in connection with
Problem 7. It may also be related to the following problem, which also came
up in connection with my work on Problem 30.

ProBLEM 43. Let u be a singular but continuous measure in the plane. Can
the logarithmic potential ji of u be differentially algebraic?
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Here

N =

a(x,y) = fff nlog 1 5 dé dn.

(x=&)"+(y—n)
Similarly:

ProBLEM 44. Let u be a singular but continuous measure on the unit circle.
Can the Poisson integral P, of u be differentially algebraic?

Here,

1 1-r?
P(r,0) = 5— .
ur-0) 2"'[—771 —2rcos(8 — ¢) +r? du(e)

Special cases of this, where u is a Cantor measure, lead to:
ProsLeM 45. Is f(x) = T1%_o(1 + x*") differentially algebraic?
Note that this f satisfies the functional equation f(x3) = f(x)/(1 + x).

Note also that f(x) = Le,x" where ¢, = 1 if the triadic expansion of n
involves only 0’s and 1’s: otherwise ¢, = 0.

Since this paper was written, Bernard Randé of Bordeaux has solved
Problem 45, as well as some closely related problems, in the negative.

ProBLEM 46. Can a Riesz product

f(x)=T11@1 +a,cosn,x)
: v=0
-1<a,<1,a,#0 forallv,n, /n,=>3
satisfy an algebraic differential equation?

Consideration of the g, in connection with Problem 45 leads to the
following problem.

ProBLEM 47. Let f(x) = X%_qe,x", €, = 0,1, and suppose that every
initial block of €,’s occurs infinitely often in the sequence of €,’s. If f(x) is
differentially algebraic, must it be a rational function?

Notice that for the f(x) of Problem 45, we have ¢, = 0 for 2 - 3% <n <
3k+1 Except for an irksome side condition, a theorem in [OSG] would show
that f(x) could therefore not be DA. This side condition could be handled
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easily if the discussion of Problem 8 in this Part II could be favorably
resolved.

ProBLEM 48. If S is the spectrum of a differentially algebraic power series,
must S then be a finite union of arithmetic progressions, give or take a set of
arithmetic density zero?

(The spectrum of Xa,x" is S = {n: a, # 0}.) This is related to the
Skolem-Mahler-Lech Theorem (see [LAO] and our remarks about Prob-
lem 16).

ProBLEM 49. What can you say about the spectrum of a differentially
algebraic Laurent series?

(You must put some convergence restrictions on the series in order to be
able to meaningfully plug it into an ADE.)

ProBLEM 50. Suppose 3, is a system of algebraic partial differential equa-
tions for which every C* solution on R" is real-analytic. Then must every
solution which is differentiable enough to plug in be real-analytic on a dense
open set in R*?

Example. Let the system 3, be

(u, —2x)(u, +2x) =0, u,=0.

y

The C* solutions are u = x> + ¢, u = —x? + c, which are certainly real-ana-
lytic. But 3, has the C'-solution

x%, x>0
u= 5
-x°, x<0

which is real-analytic off {x = 0}.
For the next cluster of problems, I suppose some familiarity with

(Nevanlinna) value-distribution theory (see [HAY].)

ProBLEM 51. What does Nevanlinna theory look like if we restrict it to
differentially algebraic entire or meromorphic functions?

To be more specific:

ProBLEM 52. Does there exist a differentially algebraic entire function of
non-rational order, say w or V2?2
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ProBLEM 53. How about the defects of a differentially algebraic entire or
meromorphic function? Can 8(a, f) = 1/V2 say, for such a function?

Since this paper was written, I discovered that it is possible to have 8(0, f)
transcendental for a differentially algebraic entire function. Consider Dugué’s
function

(see R. Nevanlinna, Eindentige Analytische Funktionen, 2nd edition,
Springer-Verlag, Berlin, 1953, pp. 274-275, §230). Let f(z) = w(z — 1). It is
shown that

1-50,1) _
T=5(=,f)

so that at least one of 8(0, f) and 8(x, f) must be transcendental. (If it is
8(e, f), replace f by F = 1/f to get 8(0, F) transcendental.)

ProBLEM 54. Suppose f is a differentially algebraic meromorphic function
on C. Can we write f = g/h where g and h are entire and differentially
algebraic?

This is related to Problem 20. The answer is classically affirmative if the
adjective “differentially algebraic” is dropped entirely.

We now turn to a question about orthogonal polynomials. Let w(x) be a
positive weight on [0, 1], say, and let { p,} be the orthogonal polynomials with
respect to w, i.e.

[ pu(X)p(x)W(x) dr = 5,,.,.
0

ProBLEM 55. For what weights w(x) will there be a single algebraic
differential equation satisfied by every p,, n = 0,1,2,...?

A famous theorem of Bers (see [LUR]) says that if G and G’ are two
regions in C, then G is conformally (or anticonformally) equivalent to G’ if
and only if H(G) is isomorphic to H(G’), where H(G) is the ring of
holomorphic functions on G. This has been extended to M(G), the field of
meromorphic functions on G, in [ISS] by Hironaka.

ProBLEM 56. Suppose DA(G) is isomorphic to DA(G’'). Must G be
conformally or anticonformally equivalent to G'? In the conformal case, must
the mapping be differentially algebraic?
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Here, DA(G) is the ring of all differentially algebraic holomorphic func-
tions on G. There is a companion problem for meromorphic functions.

The following result (Lemma 3.2 on page 142 of [BHR]) has proved useful
(see [NAN)) in dealing with ring homomorphisms of algebras of holomorphic
functions. It is a minor variant of a result in [NIT].

THE “DutcH” Resurt. If B € R and a € C\ R, then there exists an
entire function f such that f(B) = B, f(a) #+ a, and f maps Q onto Q, and the
restriction of f to R is strictly increasing.

(Q is not essential here—any countable dense subset of R will do.)

ProBLEM 57. Can we moreover make f differentially algebraic?

ProBLEM 58. Suppose f and g are entire and differentially algebraic func-
tions and suppose that h = f/g is entire. Can we find a non-trivial entire and
differentially algebraic function k so that gk is “simpler” than fk?

To say that G is “simpler” than F is to say that G satisfies a simpler ADE
than any satisfied by F. An illuminating example, due to Ozawa, is f =
sinwz?, g =sinmz.

PROBLEM 59. Does there exist an entire function f such that f(z%)/f(z) is
differentially algebraic, but f(z) is not differentially algebraic?

ProBLEM 60. Does there exist a differentially algebraic entire function f
such that the sequence f, f', f", ... is dense in the space of all entire functions,
in the topology of uniform convergence on compact subsets of C?

This was done, without the DA requirement, in [MAC] (see also [BLR-I]
and [BLR-II].) Notice that if f(z) = e~ then the n-th derivative of f is just
e " multiplied by the n-th Hermite polynomial, so that the span of
£, f', f",... is dense, while e % is certainly DA.

For the next problem, we require the notion from [RUB-VI] of an
N-solution of an ADE. We say that u(x) is locally an N solution of P = 0 at
x, if there is an open interval I containing x, such that, for some differential
polynomial Q = Q,, u is on I an actual solution of Q = 0 and P < Q, which
means that every analytic solution of Q = 0 is a solution of P = 0. By the
differential Nullstellensatz, (see [RIT-1]) P < Q iff P belongs to the radical
differential ideal generated by Q, which means that

Pr- A0
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where the sum is over a finite index set,

da
Q(a) = dx® 0,

and r is a positive integer. (In reality, one should consider, in place of Q, a
system 3, of differential polynomials.) We say that u is an N-solution of
P = 0 on an open interval J if it is locally an N-solution at each x, € J.

PrOBLEM 61. Describe all N-solutions of y™ = 0 or, more generally, of
L(y) = 0 where L is a linear differential operator with constant coefficients.

It was shown in [RUB-1V] that every N-solution of P = 0 is a spline of
actual solutions, and that in the case of y© = 0, the knots of the spline can
form an arbitrary nowhere dense closed set. In [RUB-VII], the N-solutions of
y"” = 0 were studied, and it was shown that the knots can have a finite limit
point.

ProBLEM 62. In the case of y" = 0, can there exist limit points of limit
points of the knots?

Also in [RUB-VII] an example was constructed of two N-solutions u, and
u, of y" =0, such that u; + u, is not an N-solution of this equation.
However, u; + u, is not DA in this case.

ProBLEM 63. If u, and u, are N-solutions of y™ =0 and if u, + u,

satisfies some algebraic differential equation, must u, + u, be an N-solution of
m = 07
y 07?

Even the case n = 3 has not been resolved.

We now turn to an investigation of DA forms of Runge’s theorem. We
recall (see [BRU]) that a sequence (p,) of functions is called “uniformly
differentially algebraic”, or “coherent”, if there is one and the same ADE
satisfied by all the p,.

ProBLEM 64. Given a region G in C without holes, and a differentially-
algebraic function f that is holomorphic on G, must there exist a sequence (p,)
of polynomials, that is uniformly differentially algebraic, and such that p, — f
uniformly on compact subsets of G?

PROBLEM 65. The same problem, but you let G have holes, and you take
the p, to be rational functions with poles in the holes.

Problem 64 is challenging even in case G = D, the open unit disc. In
general (see our remarks on Problem 8), we may not, in general, take p, to
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be the n-th partial sum of the Taylor series of f, as the example f(z) =
z/(e* — 1) shows. However, in this particular case, suitable p, can be
constructed.

The following special case of Problem 64 seems almost doable.

ProBLEM 64*.  Given two disjoint compact sets K, and K, in C, with no
holes, construct a coherent sequence (p,) of polynomials such that p, converges
uniformly to 0 on K, and uniformly to 1 on K,.

I thought I had such a construction but there was a gap in my argument.

PrOBLEM 66. Given a curve f(x,y) = 0, where f is differentially algebraic
(or even a polynomial), when is there a global parametrization x = ¢(t),
y = (t), where ¢ and  are differentially algebraic functions?

ProBLEM 67. Study DA manifolds.

A DA manifold is one for which the coordinate transformations between
coordinate patches are (uniformly?) differentially algebraic. For example:

PrROBLEM 68. Are there DA spheres that are exotic?

Ritt showed in [RIT-II] and [RIT-III] that if

f(az) = R(f(2))

where R is a rational function, and if f is differentially algebraic, then f is
essentially cos z, e? or /o(z), where 4 is the Weierstrass p-function.

ProBLEM 69. How about

f(rz) = R(z, f(2)),
where R is a rational function of two variables?

It turns out that both A. Erememko and I have graduate students working
on this problem.

My final topic is coercive ADE’s. We say that an ADE is coercive on an
interval I, if the limit of solutions is again a solution. There are dozens of
precise notions of “coercive’”, depending on the kind of convergence, and on
what properties the limit function is supposed to have. One could even
interpret “solution” in different ways (see [RUB-VI].) The simplest notion of
coercivity, say of P = 0, is that the pointwise limit of solutions is again a
solution, provided only it is differentiable enough to plug into P. The
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equation y’ —y = 0 is clearly coercive in this sense. The universal ADE’s of
[RUB-II] or [BOS] are very far from being coercive, since “every” function is
a uniform limit of solutions.

ProBLEM 70. Develop the theory of coercive algebraic differential equa-
tions.

For example, give reasonable conditions on an ADE that it be coercive, or
see whether one kind of coercivity implies another. A step in the first
direction is the following.

THEOREM. Let

(¥)  Pu(x)y"(x) +D,_(¥)y"7O(x) + -+ +po(x)y(x) =0

be a linear algebraic differential equation, and let f(x), f,(x),... be solutions
of () on an interval I, with f,(x) converging pointwise on I to a function f(x).
Then f(x) is a solution of (*).

Proof. Let I = (—,) for convenience of exposition, and let V' denote
the vector space of all solutions of (). Put two topologies on V. The first, T},
is the topology of pointwise convergence. The second, T, is the topology of
uniform convergence of the function and its first n derivatives on compact
subsets of R.

LemmMma. Vis finite-dimensional.

Given the lemma, which we shall prove at the end, we observe that 7 and
T, must coincide, because (see [RUD]) any two linear topologies on V' must
be the same. Now suppose that f,, f,, f,... is a sequence of solutions of (*)
that converges pointwise to f. Then (f,) is a T,-Cauchy sequence and
therefore a T,-Cauchy sequence. Since the f; are analytic off the zeros of
p,(x), we see that f', f”,..., f exist on R and that, uniformly on compact
subsets of R, f/ = f', f/ = f",..., f\ = f. We may therefore take limits
in (%) to see that f is indeed a solution.

Proof of the lemma. Suppose that there are k distinct real zeroes of
p,(x), and let N = (k + 1)(n + 1). Suppose there were N + 1 linearly inde-
pendent solutions g,..., gy of (x). Let I, I,,..., I, ,, be the open inter-
vals of R left after the zeros of p, are removed from R. Choose x; € ; for
each j. Then there is a non-trivial linear combination g = a,g, + -+ taygy
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of the g; so that
g(xj)=g/(xj)= =g(")(xj)=0 forj=1,...,k + 1.

This is because we are placing N linear constraints on a vector space of
dimension N + 1 (the linear combinations of g, g,,.-.,&y)- By a funda-
mental theorem, g must = 0 on each of the I;, and hence by continuity
g = 0 on R, a contradiction.

ProBLeM 71. If f and g are differentially algebraic functions of k variables,
and if there exists a non-trivial entire function F of two variables such that
F(f, g) = 0, then can we choose F to be moreover differentially algebraic?

One can prove, via the Jacobian matrix that if f and g are polynomials,
then we can choose F to be moreover a polynomial.

I will stop here.and begin saving problems for a possible third installment,
who knows how many years from now.
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