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BOUNDEDNESS OF SOME SUBLINEAR
OPERATORS ON HERZ SPACES

XINWEI LI AND DACHUN YANG

1. Introduction

It is well known that Beurling [2] and Herz 11 introduced some new spaces that
characterize certain properties of functions. These new spaces are called the Herz
spaces. Many studies involving these spaces can be found in the literature. One of
the main reasons is that Hardy space theory associated with Herz spaces is very rich.
Actually, these new Hardy spaces are a sort of local version of the ordinary Hardy
spaces; the former, sometimes, are good substitutes of the latter when considering,
for example, the boundedness of non-translation invariant singular integral operators.
This paper is motivated by previous work of Lu, Hernfindez and the second author
(see 14] and 10]), and also by more applications, such as the boundedness ofbilinear
operators and the regularity of solutions of the Laplacian and the wave equations on
Herz-type spaces. See 12] and 16]. Our main interest is to study the boundedness
of some sublinear operators on these spaces under certain weak size conditions (see
(2.1) and (2.2) below). These conditions are similar to those introduced by Soria and
Weiss in 18], and are satisfied by most of the operators in harmonic analysis (see
18]). Let us first introduce some notations.
Let Bk {x E ]n. Ixl _< 2k} and Ak B \ Bk-1 for k E Z. Let ) XA for

k Z, where )e is the characteristic function of the set E.

where

Definitionl.1. LetotN, 0<p<cx3and0<q <

(a) The homogeneous Herz space/’P (]1n) is defined by

/,p(n) {f Loc(ln \ {0})" Ilfllzcg’’) < 1,

2kaP PIlfllt,(,) IlfxkllLq(n) <

with the usual modifications made when p cx and/or q .
(b) The non-homogeneous Herz space K’(n) is defined by

K’P(Nn) {f Loc(Rn) IlfllKg’() < },
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where

Ilfll/g.n) IlfxB011 p 2kP P
tq(n) "Jr- fxk IILq(rn)

k=l

with the usual modifications made when p o and/or q o.

Obviously,/p0,p (n) LP(n) Kp0,p (]n) for all 0 < p < o.

The spaces K(1-1/q)’l (n) =_ Aq are particular cases of the spaces introduced
by Beurling [2] with a different, but equivalent, norm The spaces Aq are the so-
called Beurling algebras The norm of the spaces Aq used in Definition 1.1 was first

’P (]Rn) are first introducedintroduced by Feichtinger [5]. In addition, the spaces Kq
by Herz 11] with different norms and notations. Flett [6] gave a characterization
of the Herz spaces which is easily seen to be equivalent to Definition 1.1. More
interesting accounts and applications of these spaces can also be found in 1 ].

In 2 of this paper, we will prove the boundedness of some sublinear operators on
the Herz spaces. These results are the complement of the corresponding, results in
14], 16] and 10], and are the best possible under the conditions of the theorems.

It is worth pointing out that our method is somewhat different from the one used in
[14], [16] and [10]. Some of our techniques are similar to those used by Soria and
Weiss in 18].

Let g(f) be the standard g-function in [19]. It is well known that

for all < p < x (see [19] or [20]). Notice that when p < q, [(l/p-/q,p (,n) U
K(1/p-1/q)’P(]n) C LP(]n) and, when p q, theyare just the space LP(IR").
It is natural to ask if we can generalize (1.1) to Herz spaces; that is, is (1.1) still
true if we replace the Lp (]R") norm by the Herz space norms if < p, q < cx
and ct n(1/p l/q)? In 3, we will give an affirmative answer to this question
using the results in 2. Moreover, we will use those theorems in 2 to establish the
generalized Littlewood-Paley function characterizations of Herz spaces. Our results
are, in some sense, best possible. Also the theorems in 2 allow us to determine the
relations between Herz spaces and Herz-type Hardy spaces that have been studied in
recent years; see [3], [7], [8], [13], [15], [17] and [22].

2. Main theorems and their proofs

Theorem 2.1 (below) in the case 0 < ct < n(1 I/q) can be found in [14]. In
[10], Herntirldez and the second author generalize the theorem in [14] to the case
-n/q < ot < n(1 l/q) with a :/: 0. Here, we use a different method to obtain
the case with ot 0. Actually, the same procedure works for all ct in the range
-n/q < ct < n(1 l/q).
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THEOREM 2.1. Let 0 < p < cx, 1 < q < oo and-n/q < ot < n(1- 1/q).
Suppose a sublinear aperator T satisfies the size conditions

(2.1) ITf (x)l < cllfllL,(,)/lxln,

when supp f c_ Ak and Ixl >_ 2/1 with k Z, and

(2.2) ITf (x)l < c2-knllfllL,,,
when supp f c_ A and Ixl _< 2k-2 with k Z. Then, if T is bounded on Zq (]n), T

u,P(nis also bounded on Kq ).

Proof. Because of the above remarks and the hypotheses of the theorem, we only
need to show the theorem in the case ot 0 and p q. We also assume 0 < p <
the proof of the case p oo is simpler. We write

lip

( I /p
p ]

lip

Lq(n)

1/p

Lq (Nn)

For 12, using the Lq (n)-boundedness of T, we obtain
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Here, as in other cases, the value of c can vary.
For I1, we use the facts that _< k 2 and x Ak; by (2.1), we have

(2.3) IT(fXe)(x)l C2-k’llfxellL’(n.

In what follows, if < p < cx, we let lip + lip’ 1. From (2.3) and HNder’s
inequality, we deduce

if 0< p<

if <p<

if 0< p< 1

if < p < x

For 13, we use > k + 2 and (2.2); we have

IT(fxe)(X)lXk(X) c2-enllfxell,(Nn < c2-e’/qllfXello(Nn.

From this and HNder’s inequality, it follows that

if 0< p<

if 1 < p < cx



488 XINWEI LI AND DACHUN YANG

o
Lq(n) } lip{ ,e=- IIfxe p

C

{ e=- IlfxeO
iiLq(n) k=--2 2(k_e)pn/(2q)) 1/p

Combining the estimates on I, I2 and 13, we obtain

the desired result. This finishes the proof of Theorem 2.1.

if 0< p<

if < p < x

We have a similar theorem for the non-homogeneous spaces whose proof is similar
to that of Theorem 2.1.

THEOREM 2.2. Let p, q andot be as in Theorem 2.1. Suppose a sublinearoperator
T satisfies the size conditions

(2.4) ITf (x)l <_ cllfll,rn)/Ixl,
when supp f

_
Bo and Ix > 2 or supp f c_ A and Ix _> 2/ with k r, and

(2.5) ITf (x)l <_ c2-nllf]l,<,),
when supp f Ak and Ixl _< 2-2 with k > 2. Then, if T is bounded on Lq (n), T

,P(.).is also bounded on Kq

COROLLARY 2.1. Let p, q and ot be as in Theorem 2.1. If a sublinear operator
T satisfies the condition

If(Y)l
(2.6) ITf(x)l < c

Ix yln
dy, x supp f

for any integrable function f with compact support and T is bounded on Lq (n),
then T is bounded on [(’p (JRn) and K’p (IRn

We remark that (2.6) is satisfied by many operators in harmonic analysis, such as
Calder6n-Zygmund operators, the Carleson maximal operator, C. Fefferman’s sin-
gular multiplier operator, R. Fefferman’s singular integral operator and the Bochner-
Riesz means at the critical index and so on; see [18]. In particular, the Hardy-
Littlewood maximal function M(f) also satisfies the hypotheses of Theorems 2.1
and 2.2. It is worth pointing out that Theorems 2.1 and 2.2 and Corollary 2.1 are best
possible. In another words, when c > n(1 l/q) or t < -n/q, these theorems are
false; see [14] for a counterexample in the case ot > n(1 l/q) and [10] for another
example when ot < -n/q.

Using the method in the proof of Theorem 2.1, we can prove the following exten-
sions of these results:
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THEOREM 2.3. Let 0 < < n. Suppose a sublinear operator Ie f satisfies

(2.7) IIe(f)(x)l <_ clxl-n-e)llfll,,),
when supp f A and Ixl >_ 2/ with k Z, and

(2.8) Ile(f)(x)l < c2-n-e)llfllL,,),
when supp f c_ A and Ixl _< 2-2 with k Z. Also assume < ql < n/e,
l/q2 1/ql e/n, -n/qi + e < c < n(1 1/q), 0 < p < P2 < cx and that
le(f) maps tq’(n) into tq2(]n). Then le(f) maps [(’P’ (n) into /p2 (n).

THEOREM 2.4. LetO < e < n, ct, q, q2, Pl and P2 as in Theorem 2.3. Suppose
a sublinear operator le (f) satisfies

(2.9) [Ie(f)(x)l < clxl-(n-e)llfllL,(,),
when supp f Bo and Ix >_ 2 or supp f c_ A and Ix >_ 2/ with k N, and

(2.10) IIe(f)(x)l < c2-(n-e)llfllL,(r,),
when supp f c_ A and Ixl _< 2-2 with k > 2. Also assume that Ie(f) maps Lq’ (n)
into Lq2(]ln). Then le(f) maps K’pl (n) into KP2(n).

Remark 2.1. If le(f) satisfies

If(Y)l(2.11) Ile(f)(x)l < c
Ix yln-e

dy, x supp f

for any integrable function f with compact support, then Ie(f) obviously satisfies
(2.7) and (2.10). In particular, if Ie(f) is a (standard) fractional integral, then le(f)
obviously satisfies (2.11) and, therefore, all the conditions of Theorems 2.3 and 2.4.
The fractional maximal function Me (f), defined by

Me f (x sup r -(n-e) f If(x)ldx,
r>0 ,] B(x,r)

also satisfies the conditions of Theorems 2.3 and 2.4, where B(x, r) {y n: lY
xl < r}.

Remark 2.2. If e 0, Theorems 2.3 and 2.4 are just Theorems 2.1 and 2.2.
Moreover, Theorems 2.3 and 2.4 are also best possible; that is, if a > n(1 1/q) or
ot < -n/q + e, Theorems 2.3 and 2.4 are false.

Notice that if p2 > P, then

(2.12) Jt’Pl(]ln) C /’P2(]ln) and Ka’Pl(n) C Ka’PE(n).
q2 q2 q2

Thus, we only need to show Theorems 2.3 and 2.4 in the case P2 P. Since Theorem
2.4 can be proved in a similar way to Theorem 2.3, we only show Theorem 2.3.
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Proofof Theorem 2.3. Just as in the proof of Theorem 2.1, we write

IIh(f)ll,e",,(.) 2p’ IIIh(f)lxllf.’o(.)

< C 2:ap Y Ih(fx)l x
j---o

q- C E 2kapt
k+l

j=k-1

+ c 2q’’ Ile(fxj)l
k=-oo j=k+2

clI1 + ci12 + cli3.

)(.k

Xk

p }
1/p

Lq2 (]n)
1/p

Lq2 (]I

Lq2 (]I{

For 1/2, using the fact that/e(f) maps Lq’ (I[{n) into Lq2(n), we obtain

For 111, notice that j < k 2; by (2.7), we have

IIe(fxj)(x)lxk(x) <_

From this, it follows that

111 <_ c 2k(-(n-e)+n/qz)p [[f xjI[L,(Rn)
k cxa \ xa

c 2J=llfxj IIq,(e.)2
k=- xj=-

< C 2JaPl [Ifxj p’
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where in the last inequality, we estimated as we did for Ii in the proof of Theorem
2.1 since ot < n(1 1/.ql).

For 113, notice that j > k + 2; by (2.8), we have

[Ie(fXj)(x)lxk(x) c2-J(n-e)llfxjll,(e, c2-Jn/q21lfxj{ILql(n).

From this, we deduce that

113 <_ c 2J fxj llLq, (e,)2(k-j)(n/q2+=)
k=-o j=k+2

Using the same argument as for 13 in the proof of Theorem 2.1, we obtain

}
1/pl

113 < c 2jp fxj
p
Lqi (]1n)

since n/q2 + ot > O.
Combining I I1, I/2 and I I3, we obtain

This finishes the proof of Theorem 2.3.

We can vary the index a in Theorems 2.3 and 2.4 and still obtain similar results.
More precisely, we consider the case where pl < ql, cg2 Otl -+- e(pl/ql 1) and
l/q2 1/ql ple/(qln). Then l/q2 > 1/ql e/n l/q0, and

K’p: (Nn) C K’p: (Nn) and K’m (][n) C K’m (,n).

These inclusions, together with Theorems 2.3 and 2.4, easily imply the following
result:

COROLLARY 2.2. Let 0 < g. < n. Suppose that a sublinear Ie(f) satisfies
(2.7) and (2.8) or (2.9) and (2.10). If 1 < ql < oe, 0 < Pl < min{ql, P2},
-n/ql + < al < n(1 l/q1), l/q2 1/ql(1 epl/n), 2 al + e(pl/ql 1),
and Ie(f) maps Lql(][’n) into Lq(]n), where 1/qo 1/ql e/n, then le(f) maps

ot ,p or2, p2a,P 2,P2 (Nn) or (Nn) into (n).Kq (n) into Kq2 Kq Kq2

Remark 2,3. If h(f) is a (standard) fractional integral, then Theorems 2.3 and
2.4 and Corollary 2.2 with 0 < or1 < n(1 1/ql) have been obtained by Lu and Yang
in [16].
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3. Some applications

Using Theorem 2.1 and 2.2, we are able to characterize those Herz spaces of
Banach type in several ways, especially, by means of the (generalized) Littlewood-
Paley g-function, the Lusin area function and the Littlewood-Paley g-function.

Recall the following definitions (see [19] and [20]). Suppose p is integrable on
]1n and

(i) frn @(x) dx O,
(ii) 17(x)l _< c(1 / Ixl) -<n+), for some ct > 0,
(iii) fn [[(X + y) tf(X)] dx clYln, all y n, for some y > 0.

Let @t (X) t-n@ (x/t) with > 0 and x n. For f in L2(n) with compact
suppoa (these functions are dense in Herz spaces), the Littlewood-Paley g-function
of f is defined by

1/2.(3 1) g(f)(x) If * (x)l
dt

the Lusin ea function of f is defined by

( )1/2If t(x)12t-n dy(3.2) S,a(f)(x)
an B0l a<X

where ]B0l is the Lebesgue measure of the unit ball B0 of, and Fa(X) {(y, t)
n+l.+ IX Y < at }’, and the Littlewood-Paley g-function of f is defined by

(3.3) g,x(f)(x) f t(y) dt

+
It is well known (see 19]) that, in the classical situation where is related to the

gradient of the Poisson kernel, all those functions have Lp (Rn) norms equivalent to
Ilfllgo( when f in LP(Rn) for 1 < p < . This equivalence actually holds for
any general Littlewood-Paley function defined in tes of such . See Torchinsky
[20] for details.
We will show, in the next theorem, that this equivalence holds also for the spaces

"n(1/p-1/q)’P(Nn) and Kg(1/p-1/q)’P(Nn) with < p, q < and, therefore, we
answer the question posed in 1. Actually, we will show the equivalence for more

"’P(R)andK’p(R)with < p < ,1 < q < andgeneral Herz spaces Kq
-n/q < < n(1 l/q); within these ranges of p and q, the coesponding Herz
spaces are Banach spaces (see [10]).

It is known, by [20], for example, that for any general Littlewood-Paley function
associated with , the inequality

(.4 so,(fl(x cg,(fl(x, x



SUBLINEAR OPERATORS ON HERZ SPACES. 493

holds for all a, . > 0. Wilson in [21] proved that, for any compactly supported p
satisfying (i), (ii) and (iii), there is another compactly supported radial function/9 of
this type, such that

(3.5) g(f)(x) < cSp,2(f)(x), x . ]1n.
This inequality is also true if go(f) and Sp,2(f) are replaced by the standard g-
function and Lusin-function, respectively. See 19]. However, it is not known whether
(3.5) is true or not for general (not necessarily compactly supported) functions ap and
p satisfying (i), (ii) and (iii).

THEOREM 3.1. Let < p < cx, < q < cx, -n/q < ct < n(1 1/q) and let
satisfy (i), (ii) and (iii). Then there exist absolute constants c, c2, c3 and c4 such

that

(3.6) Ilfllgg,<re.) Clllgo(f)llgg,<.) <_ c211So,a(f)llgg,re.}
<_ c31lg,;(f) l[RZ,p(n <__ callfllR,p(n)

t,pfor all a > 0 and > 3n/2. The same is truefor the spaces Kq (]n).

Remark 3.1. From the proof below, we can deduce that the boundedness of
g0(f), SO,a(f) and g,(f) on R’P(Rn) holds for all p such that 0 < p < cx.
When ot 0, p q > 1, we recover the classical results.

Proof. We only prove the case for the homogeneous Herz spaces. The other case
is similar. The main effort in this proof is devoted to showing

, < cllflleg,,(3.7) IIg (f)II gq (n)

and

(3.8) IIg,x (f :g’P (rn) <-- cllfllt2,().
Once this is done, we obtain IISo,a(f)lle,,(N,) c]lflle$,,(N,) from (3.4) and (3.8).
Standard arguments give Ilflle$,,(.) cllgo(f)lle,p(Nn) and Ilflle,,(,)
c2llSo,a(f)llR,’(N). Using (3.4) again, we obtain IIflIR$,o(N) c311g,x(f)llR$,,(N).
The reader can see that the chain of inequalities (3.6) follows easily from these.

(1) The case go(f).

Assume supp f

___
Ak and Ix 2k+l. We then have

(3.9) If * t(x)l <_ - lf (x y)[ [ ()[ dy

f dr<- ct If (x Y)I
(t -+-lyl)"+
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by (ii) in the definition of @. Notice that Ix Yl _< 2k implies lYl >_ Ixl/2. We write

go(f)(x) < If * lift(X) T
I (x) + I2 (x).

+ If * t(x)l2

For ll (X), by (3.9),

If* ,(x)l < c
Ix[n+= f IIL’(n).

Thus,

c
I1 (X) < llfllZl(n)(fo0 Ixl cllfllt,(Nn)t2 dt 1/2

For/2(x), from (3.9), we obtain

If * t(x)l < Ixln-1

Thus,

i2(x) <
c"f’lL’(n) (fx dt)l/2 c"f"L,(.)
i?r i-

<
ixln

Hence we have verified (2.1) for go (f).
Next we consider the case when supp f

_
Ak and Ix _< 2-2, In this case,

lYl >_ 2-. We write

fo
2k-2 )

1/2

go(f)(x) < [f * !Pt(x)[2dtT
=-- Ill(x) + II2(x).

)
1/2

+ If * t(X)l2dt

In I I1 (x), we obtain

cta

If * t(x)l < 2/(n+)IlfllL’n).
Thus,

Ill (x) < c
2{n+a

< c
2n

In I/2 (x), we have

If * t(x)l < c
2k(n-1)
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Thus, similarly, we obtain

IlfllL’(Nn)
II2(x) < C

2kn

Therefore (2.2) is verified, and, by Theorem 2.1 for T go, we obtain (3.7).

(2) The case g,x (f).

Let supp f c_ Ak and Ix 2k+l. We write

, (fo f ,f.pt(y),2 dt )1/2g,,(f)(x) (t + IX yl)2
dy

tn+l_2z

(folXlf If.apt(y), 2 dt )l/Z<
(t + Ix yl)2x

dy
tn+l_2z

(fx=f + If * apt (Y)I 2 dt 1/2

(t + Ix y[)2;
dy tn+l_2.

=- El(x) + E2(x).

Recalling (3.9) we now have

If * t(Y)l < ct f If(Y(3.10) z)[

Furthermore, we write

dz
(t + Izl)n+c

Ixl If * apt (Y) z dt
El(X)

I_< (t + Ix yl)2
dy

Ixl If * Ot(Y)le dt
+

I> (t + Ix yl)2
dy

tn+l_2

V (x) + Fz(x).

For V(x), Ix Yl Ixl- [Yl > , and, we obtain If * t(Y)l
from (3.10). Consequently,

Ilfll,,) Ixl dt
dy < cEl(x) <_ c

ixlZ I-<L t3n+l_EZ

whenever . > 3n/2.

Ixl n

For the estimate of F2(x), we use (3.10) with Izl lYl/3 which gives us

ct
If * aPt(Y)l _< llfll’r.
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This relation Izl > lyl/3 follows from lY zl < 2k and Ixl > 2k+l, which give us

lY-zl _< Ixl/2 _< 21yl/3.
Thus,

Ixl dt
F2(x) < cllflll(.)

I> (t + Ix yl)2x lyl2n+2
dy

tn+l_2;k_2a

Ixl dt
cll/llL,)

<lyl2lxl (t + Ix yl)2z [yl2n+2a
dy

tn+l_2Z_2a

1/2

)1>2121 Y Y tn+l-2X-2
J1 (x) -q- J2(x).

For Jl(X), we choose such that 0 < < 2 and n 2or < < n, and, since

Ix Y _< Ix / Yl _< 31xl, we obtain

Jl(X) < cllfll’"(folXl
cllfllt(n)

dt )
1/2

<lYl<21xl x yle
dy

tn+l_2a_

For J2(x), noting that Ix Yl >_ lYl/2 we have

J2(x) < cllfllz,(en) (foIXl fy dy dt )1/2l>21xl [y[2n+2ot+2z tn+l-2Z-2a
cll/ll,.<

[xln

since . + ot > n/2.
Now for Ez(x), we use If * t(Y)l < ct-nllfllLt(.) and obtain

--= KI(X) + K2(x),

where

(fx ) x/2cllfllL’(Nn)
KI(x) < c[[fllL,(n)lx[n/2 -3n-1 dt <

Ix[n
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and

K2(x) < cllfll,) <
[>21xl lYl 2e t3n+l-e

since Ix Yl > lYl Ixl > lYl/2 and we can choose such that n/2 < < 3n with
0 < < 2). Therefore, (2.1) holds for g/,x(f).*
Now we verify (2.2) for g,x (f). Suppose Ixl _< 2-2, We write

2k-2 If * t (Y)I 2 dt
g.x(f)(x) <

(t + Ix yl)2’
dy

If . t(y).2 at )1/2+
k-2 (t + Ix y[)2,

dy tn+l,2z------- L l(X) + Lz(x).

Furthermore, we have

For M1 (x), since Iz Yl > 2- we have Izl > Iz Yl- lYl > 1/2" 2k-1 > c2k. Thus,

IlfllL’"(fo2-2M (x) <_ c

2kn

dy dt )
1/2

I-< ’2- IX y ’+l-2-e

whenever n 2c < < n. For M2(x), Ix Yl > lYl Ixl > 1/21Yl. Consequently,

2k-2 dy dt
M2(x) < cllfll’(r.

1>.2’-2 lyl2x t3n+1-2,

<
2n

whenever . > 3n/2.
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Finally, for L2 (X), we have

dt )1/2L2(x) < cllfllL’(,n) t3n+l_2Xk-2 (t+lx-yl)zxdy

(f27 fy dt )1/2< cllfllL’(n3
-2 1_<2k- dYt3n.+

(;y dt
+ cllfll,() - >2-, lyl dYt3n+i_

where we use Ix Yl > lYl/2 to get the second summand. Both summands above
are dominted by cllfll,() whenever n < < 3n Therefore we have verified (2.2)2n
for g.x (f) also.

Theorem 3.1 is proved.

In recent years, several authors have considered the theory of Hardy spaces as-
sociated with the Herz spaces (see [3], [7], [8], [13], [15], [17] and [22]). First, we
introduce the following definitions.

Let q 6 C(]n), supp 4 _c B1 and f. 4(x)dx 1. And we set that )t(X)
t-"4 (x/t) with > 0. For f 6 S’(/I"), we define the vertical maximal function
qb*(f)(x) and the local vertical maximal function qb*(f)(x) by

*(f)(x) sup I(f * qt)(x)l
t>0

and

*(f)(x) sup [(f Ct)(x)[.
0<t<l

The Herz-type Hardy spaces are defined as follows.

Definition 3.1. Let 0 < p < o, 0 < q < cxz, ot 6/I and 4 be as above.
(a) The homogeneous Herz-type Hardy spaces n[(,’p (n) and h[[’p (n) asso-

ciated with/’P(n) are defined by

H’P(n) {f St(]ln); c*(f) /,p(]n)}
and

h,p(n) {f ,.q,(n): ,(f) /,p(n)}.
Moreover, we define IIfIIHRg,,(,) ll4*(/)ll/tg,,(r,)and II/llhRg,,(,)

(b) The non-homogeneous Herz-type Hardy spaces HK’p (") and hK’P(n)
,P(nassociated with Kq are defined by

t,P (]ln)HK’p (]1n) {f S’ (][n) (]), (f) Kq
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and

hg"p (n) {f S’ ([n). ,(f) K,p (]in)}.

Moreover, we define Ilfll/Kg,,(.) 114*(f)ll/ff,,(. and Ilfllhgg,O(rn

O.p(]n) hp(n)Obviously, Hlp’P(n) HP(]n) HKp’P(n) and hKp
hKp’P(n) with 0 < p < oo. Here the spaces HP(n) and hP(]n) are the standard
Hardy spaces and local Hardy spaces respectively studied by Fefferman and Stein [4]
and Goldberg [9]. Moreover, by the characterizations established in [7], [8], [10],
[13], [15], [17] and [22], we know that Definition 3.1 is independent of the choice of
the function b.

THEOREM 32. Let 0 < p < o, 1 < q < cx and-n/q < ct < n(1- 1/q).
a,p [,p(n) and Hg’p (]n) KqThen H[(’p (]n) Kq (]n) h ’p (n)

hg’P (]n).

Proof. Notice thatK’p (n) C Loc(n) C Lo (]ln). From the simple inequality

If(x)l _< min{q*(f)(x), q*(f)(x)} a.e. in Nn,

we obtain

(3.11) Kq’P(]n) {HKqa’P(]n) U hK’P(]n)}.
On the other hand, by the definitions of 4* (f) and 4* (f), we easily verify that 4* (f)
and 4* (f) satisfy the conditions of Corollary 2.1. Thus; we have

Ilck*(f) llgg,p(n) + [Iq*(f)llgg’p(rn) < cllfllg,p(n),

where C is independent of f. From this, we deduce that

(3.12) K,p (]n) C_ HK’p (Nn) fq hK’p (Nn) }.

By (3.11) and (3.12), we obtain

’P (]ln).HK’p (]n) K,p(n) hKq

Similarly, by Corollary 2.1, we easily prove

Kq" ’P (]n) H Kq" ot,p (]ln) [.-) h Kq" ot,p (]n)

To see the converse, we only need to show that if f 6/’P("), then f
for0 < ql < q andq < n/(ot +n/q). Therefore, if-n/q < c < n(1 l/q), then
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f Loc(]n). In fact, we only need to verify that f Lqt (B1). By Definition 1.1,
we have

since n(1 ql/q) aql > O.
This finishes the proof of Theorem 3.2.

Remark 3.2. For g, the conclusions of Theorem 3.1 with ot 0 and
a, p (n) and HK’p (]n), if tC(n) can be found in [10]. For the spaces HKq

n(1/p I/q) with < p < o, Theorem 3.2 can be found in [14]; if 0 < t <
n(1 l/q), Theorem 3.2 can be found in [15]; if-n/q < ot < n(1 I/q) with

0, Theorem 3.2 has been obtained by Hernindez and Yang in 10].

We also remark that if < q < o, ot > n(1 l/q) and 0 < p < cx, then
a, p (]1n /,P (]n) andhK’p(n) also equals K’p (n); but, h’p(n) :/: Kq :/: H

HK’P(n) K’P(n). We also remark that H’P(n) C h’P(n); see [7],
[8], [13], [15] and [22] for the details.

Remark 3.3. As we pointed out before, inequality (3.6) holds, in particular, for
a n(1/p- l/q) and < p, q < o. We remark that Theorem 3.1is best
possible under this restriction on or. In fact, if ot n(1/p l/q) and 0 < p < 1 <
q _< 2, Theorem 3.1 fails. Otherwise, H/’p(n) /,P (]ln) and HK’p (]1n)
K,p(n) by the characterizations established in [8] (see also [3], [7], 13] and 15]).
But this is not possible by the above remark.

Remark 3.4. By the results of Fefferman and Stein [4], we know that (1.1) is still
true if we replace Lp (n) by the standard Hardy space np (]n) when 0 < p < 1.
In another words, the standard Hardy space Hp(n) can be characterized by the
Littlewood-Paley g-functions. It is natural to ask if this is still true for Herz-type Hardy

n/2 1 nspaces ? Lu and Yang [13] obtained such a characterization on H/2 (/I) and
HK/2’ (,,). Later on, Garcfa-Cuerva and Herrero [8] obtained the characterization

for H(1/p-1/q)’P(]n) and HK(1/p-1/q)’P(]n) for 0 < p < < q < 2. The
methods used in the above papers can be trivially adapted to the spaces H/’P(]n)
and HK’P(]n) with ot > n(1 l/q) < q < 2 and 0 < p < o. However, it
is still not known if there is such a characterization on Herz-type Hardy spaces with
q>2.
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