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BOUNDEDNESS OF SOME SUBLINEAR
OPERATORS ON HERZ SPACES

XINWEI L1 AND DACHUN YANG

1. Introduction

It is well known that Beurling [2] and Herz [11] introduced some new spaces that
characterize certain properties of functions. These new spaces are called the Herz
spaces. Many studies involving these spaces can be found in the literature. One of
the main reasons is that Hardy space theory associated with Herz spaces is very rich.
Actually, these new Hardy spaces are a sort of local version of the ordinary Hardy
spaces; the former, sometimes, are good substitutes of the latter when considering,
for example, the boundedness of non-translation invariant singular integral operators.
This paper is motivated by previous work of Lu, Herndndez and the second author
(see [14] and [10]), and also by more applications, such as the boundedness of bilinear
operators and the regularity of solutions of the Laplacian and the wave equations on
Herz-type spaces. See [12] and [16]. Our main interest is to study the boundedness
of some sublinear operators on these spaces under certain weak size conditions (see
(2.1) and (2.2) below). These conditions are similar to those introduced by Soria and
Weiss in [18], and are satisfied by most of the operators in harmonic analysis (see
[18]). Let us first introduce some notations.

Let By = {x € R™: |x| < 2"} and A; = By \ By_; fork € Z. Let x; = x,, for
k € Z, where yx, is the characteristic function of the set E.

Definition 1.1. Leta e R,0< p < o0 and 0 < g < o0.
(a) The homogeneous Herz space K;'¥ (R") is defined by

KgPR") = (f € L R\ {OD): || fllg=r ey < 00},

where

0o 1/p
1l ger ey = { > 2"“P||kauiq(w)] < 0o,

k=—00
with the usual modifications made when p = oo and/or g = oo.
(b) The non-homogeneous Herz space K;'” (R") is defined by
K{P(RY) = {f € L, R"): || fllger@n < 00},
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where

1/p

0

ILf e ey = {Ilfx,,o W ony + 225711 £ X uzq(m} < 0.
k=1

with the usual modifications made when p = oo and/or g = 0.

Obviously, Kp'? (R") = LP(R") = Kp” (R") forall 0 < p < cc.

The spaces K;'(l“l/ ?-1(R") = A are particular cases of the spaces introduced
by Beurling [2] with a different, but equivalent, norm. The spaces A? are the so-
called Beurling algebras. The norm of the spaces A? used in Definition 1.1 was first
introduced by Feichtinger [S]. In addition, the spaces Kq°‘ 'P(R") are first introduced
by Herz [11] with different norms and notations. Flett [6] gave a characterization
of the Herz spaces which is easily seen to be equivalent to Definition 1.1. More
interesting accounts and applications of these spaces can also be found in [1].

In §2 of this paper, we will prove the boundedness of some sublinear operators on
the Herz spaces. These results are the complement of the corresponding results in
[14], [16] and [10], and are the best possible under the conditions of the theorems.
It is worth pointing out that our method is somewhat different from the one used in
[14], [16] and [10]. Some of our techniques are similar to those used by Soria and
Weiss in [18].

Let g(f) be the standard g-function in [19]. It is well known that

(L. cll fllicr@y < N8 (HllLr@ey = c2ll fliLr@e

forall 1 < p < oo (see [19] or [20]). Notice that when p < g, Kj/?~//9? Ry U
K(';(l/”*”q)’p(R") C LP(R") and, when p = q, they are just the space LP(R") .
It is natural to ask if we can generalize (1.1) to Herz spaces; that is, is (1.1) still
true if we replace the LP(R") norm by the Herz space norms if 1 < p, ¢ < o0
and ¢ = n(l/p — 1/g)? In §3, we will give an affirmative answer to this question
using the results in §2. Moreover, we will use those theorems in §2 to establish the
generalized Littlewood-Paley function characterizations of Herz spaces. Our results
are, in some sense, best possible. Also the theorems in §2 allow us to determine the
relations between Herz spaces and Herz-type Hardy spaces that have been studied in
recent years; see [3], [7], [8], [13], [15], [17] and [22].

2. Main theorems and their proofs

Theorem 2.1 (below) in the case 0 < & < n(1 — 1/q) can be found in [14]. In
[10], Hernandez and the second author generalize the theorem in [14] to the case
—n/q < a < n(l —1/q) with @ # 0. Here, we use a different method to obtain
the case with @ = 0. Actually, the same procedure works for all « in the range
—n/qg <a <n(l-1/q).
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THEOREM 2.1. Let0 < p < 00,1 < g <ooand —n/q < a < n(l —1/q).
Suppose a sublinear aperator T satisfies the size conditions

2.1 ITf)) < el fllgn/Ixl",
when supp f C A and |x| > 2! with k € Z, and
(2.2 ITf@)] < 27| f @,

when supp f C A and |x| < 2¥2 with k € Z. Then, if T is bounded on LY(R"), T
is also bounded on K3'" (R™).

Proof. Because of the above remarks and the hypotheses of the theorem, we only
need to show the theorem in the case « = 0 and p # g. We also assume 0 < p < o0;
the proof of the case p = oo is simpler. We write

0 1/p
1Tl gor @y = ( > ukafuiq(Rn)}

k=—00
o0 o0 p I/P
<{> (Z |T(fx0<x)|)xk(x)
k=—00 £=—00 La(R")
=

» /p
Li(R™)

k=2
( > |T(er)(x)I) X (%)
£=—00

00 k+1 p /p
+cp D (Z IT(er)(x)I) K@)
k=—00 l=k—1 L9 (R")
0o o0 p 1/p
+epl D (Z |T(fxl)(x)|) X ()
k=—00 L=k+2 L9 (R7)

= ¢p(l1 + I + B3).

For I, using the L9 (R")—boundedness of T, we obtain

00 k+1 1/p
cl > (Z IlT(er)IIZq(Rn))}
k=—00 \l=k—1
00 k+1 1/p
20 (Z nfxfuiq(m)}

k=—00 \€=k—1

0 1/p
c[ > ukan’zq(w)} = cll £ll gor -

k=—00

I4)

IA

IA

IA



SUBLINEAR OPERATORS ON HERZ SPACES. 487

Here, as in other cases, the value of ¢ can vary.
For I, we use the facts that £ < k — 2 and x € Ay; by (2.1), we have

(2.3) T (f X)) < 279 || f xell L oy-

In what follows, if 1 < p < oo, welet 1/p + 1/p’ = 1. From (2.3) and Holder’s
inequality, we deduce

00 k—2 p 1/p
L <ci > (Z ||f><e||u<m>) 275y, (x)
k=—00 £=—00 La(R™)
00 - P 1/p
l Z (Z "le"L'(R")) 2kn(1/‘1—1)1’]
k=—00 \{=—00
00 ryl/p
{ > (Z I Xellzsn 20"/ D) ]
k=—00 =—00
1/p
IZI(:i—oo ( =—oo "fxe"L‘l(]R )z(k On(l/g= 1)17)} if0<p<l1
< of T8 (T 1 el oy 260200 07)
x (22;2_00 2("“)"/2‘1/‘1‘1)1")”1)} ifl<p<oo
00 p 1/p .
< [Ze=_oo ”le"L‘i(lR”)] f0<p<li
<c

/p
| {Z?Z o I xellE,s (Rn)(zg‘;m 2(k—l)n/2(l/q—l)P)] ’ fl<p<oo

= CIlf"Kg'P(Rn)'
For I, we use £ > k + 2 and (2.2); we have
IT(f xe) )X (x) < 27N fxelliwny < €279 f xell Lomry.-
From this and Holder’s inequality, it follows that

o0 00 ryl/p
c[ > (Z Z(k_e)"/”lf)(z"u(w)) ]

k=—00 \£=k+2

I

IA

p
[ Zlc:i—oo (sz-n 2(k—=8)pn/q ||le||fq(Rn))} if 0<p<l1
(55 o (S 20700 ey

, p/P'yU/p .
X(EZ’O:HZ 2 (k=O)np /(2q)) ] if l<p<oo

IA
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1/p .
D PP [ if0<p=

- Vp .
[ S8 1 e (T 20-0m@) |7 i 1 < p < 00

C”f"['(f;'l’(Rn)-

IA

Combining the estimates on Iy, I, and /3, we obtain
||Tf"1"(2~”(Rn) =< C"f"[{'gvl’(]kn)»

the desired result. This finishes the proof of Theorem 2.1.

We have a similar theorem for the non-homogeneous spaces whose proof is similar
to that of Theorem 2.1.

THEOREM 2.2. Let p, q and o be asin Theorem2.1. Suppose a sublinear operator
T satisfies the size conditions

(24) ITf@)] < cllflln/IxI"
when supp f C By and |x| > 2 orsupp f C A and |x| > 2¥* withk € N, and
2.5) ITf @I < 27 fll@n,

when supp f C Ay and |x| < 22 with k > 2. Then, if T is bounded on L1(R"), T
is also bounded on Kg'¥ (R").

COROLLARY 2.1. Let p, q and a be as in Theorem 2.1. If a sublinear operator
T satisfies the condition

| f )
fx — yl

for any integrable function f with compact support and T is bounded on L9(R"),
then T is bounded on K;°" (R") and K" (R").

(2.6) ITf(x)| < C/Rn dy, x ¢ supp f

We remark that (2.6) is satisfied by many operators in harmonic analysis, such as
Calder6n-Zygmund operators, the Carleson maximal operator, C. Fefferman’s sin-
gular multiplier operator, R. Fefferman’s singular integral operator and the Bochner-
Riesz means at the critical index and so on; see [18]. In particular, the Hardy-
Littlewood maximal function M (f) also satisfies the hypotheses of Theorems 2.1
and 2.2. It is worth pointing out that Theorems 2.1 and 2.2 and Corollary 2.1 are best
possible. In another words, when o > n(1 — 1/g) or ¢ < —n/gq, these theorems are
false; see [14] for a counterexample in the case & > n(1 — 1/q) and [10] for another
example when o < —n/q.

Using the method in the proof of Theorem 2.1, we can prove the following exten-
sions of these results:
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THEOREM 2.3. Let 0 < £ < n. Suppose a sublinear operator I;( f) satisfies

2.7 L ()] < clx ™" O £l i woy,s
when supp f C Ag and |x| > 28! with k € Z, and
(2.8) e (F)@)] < 275D £l gy,

when supp f C Ag and |x| < 2572 with k € Z. Also assume 1 < q; < n/t,
1/ = 1/q1 —£/n, —n/q1 + £ < o <n(l —1/q1),0 < p; < p» < o0 and that
I,(f) maps L9 (R*) into L% (R"). Then I,(f) maps Kg'' (R") into K;’zm(]R")

THEOREM 2.4. Let0 < £ < n, «, q1, g2, p1and p; asin Theorem?2.3. Suppose
a sublinear operator 1,(f) satisfies

29) 1Te(H < clxl™" N fll@n,
when supp f C Bgand |x| > 2 orsupp f C Ag and |x| > 2¥*! with k € N, and
(2.10) 1L ()@ < 2759 f gy,

whensupp f C Ay and |x| < 272 withk > 2. Also assume that I,(f) maps L% (R")
into L% (R"). Then I,(f) maps Kg,”' (R") into Kg;”*(R").

Remark 2.1. If I,(f) satisfies

@11 He(f)(0)| = C/ S dy, x ¢ supp f

R X =yt
for any integrable function f with compact support, then I,(f) obviously satisfies
(2.7) and (2.10). In particular, if I,(f) is a (standard) fractional integral, then I;(f)
obviously satisfies (2.11) and, therefore, all the conditions of Theorems 2.3 and 2.4.
The fractional maximal function M,(f), defined by

M(f)(x) = supr="=9 /B ( |f(x)| dx,
Xx,r)

r>0

also satisfies the conditions of Theorems 2.3 and 2.4, where B(x,r) = {y € R*: |y —
x| <r}

Remark?2.2. If £ = 0, Theorems 2.3 and 2.4 are just Theorems 2.1 and 2.2.
Moreover, Theorems 2.3 and 2.4 are also best possible; that is, if « > n(1 —1/q;) or
a < —n/q; + £, Theorems 2.3 and 2.4 are false.

Notice that if p; > p;, then
2.12) ng"" R") C K;‘z"’z(R”) and K:;z"" @®R" C K;‘Z“’Z(R").

Thus, we only need to show Theorems 2.3 and 2.4 in the case p, = p;. Since Theorem
2.4 can be proved in a similar way to Theorem 2.3, we only show Theorem 2.3.
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Proof of Theorem 2.3.  Just as in the proof of Theorem 2.1, we write

0 1/p1
TAGIITrNE [ > 2P YL K ]

k=—00
o 2 n 1/p:
<ci D 2 ( > IIz(ij)l) Xk
k=—00 j=—00 L2 (R)
0 k+1 P W
> oen ( > m(ij)a) X
=—00 j=k-1 L2 (R*)
o 0 ” 1/p
+c Z Skapy ( Z |Il(fXj)|) Xk
=—00 Jj=k+2 L92(Rr)

=clly+cll, 4+ cll.

For 11, , using the fact that I,(f) maps L?' (R") into L%2(R"), we obtain

00 k+1 pryl/p
c{ Z 2kap: ( Z ||I£(fXj)"L”2(R”)) I
k=—00 j=k-1
00 k1 Pyt
Z 2kapr ( Z IIijIIan(mn)) }

=—00 Jj=k—1

15

IA

IA

IA

0 1/p
k
c[ > 2P el Do e } = cll fllg=n goy-

=—00

For 11, , notice that j < k — 2; by (2.7), we have
e (f x) ) xe () < 27570 £ xi 1111 oy

From this, it follows that

- k=2 piy/p
II] <c | Z 2k(d"(n—f)+n/q2)[71 ( Z ”ij "L‘(R”)) }
k=—00 j=_oo
- o piy U/p
= Z ( Z 21“ ” fXJ "qu (Rn)z(}_k)(”(l_l/‘h)*a)) }
=—00 \ j=—00
<c

1/p
{ > 2P f X e ey ] = cll fllger @eys

Jj=—00



SUBLINEAR OPERATORS ON HERZ SPACES. 491

where in the last inequality, we estimated as we did for /; in the proof of Theorem
2.1since @ < n(1 — 1/qy).
For 113, notice that j > k + 2; by (2.8), we have

e (f X)) xex) < 277 O fxillnigey < 2779 f Xl Lor oy

From this, we deduce that

00 00 piyl/p
thzef 5 (5 rgaare) |

k=—00 \ j=k+2

Using the same argument as for I3 in the proof of Theorem 2.1, we obtain

00 1/p
I < c[ > 2 ||ij||i:,.(Rn)} = cll fllgen g

j==o0

since n/q; + o > 0.
Combining 71, 11, and 113, we obtain

”Tf”K;‘z"" ®Y = C”f”Kf,’;’" ®"

This finishes the proof of Theorem 2.3.

We can vary the index « in Theorems 2.3 and 2.4 and still obtain similar results.
More precisely, we consider the case where p; < g1, ag = o1 + £(p1/q1 — 1) and
1/q2 = 1/q1 - pll/(qln). Then 1/q2 > l/ql —£/n = l/q(), and

K&P(RY) C K27 R") and K27 R") C K27 (R").

These inclusions, together with Theorems 2.3 and 2.4, easily imply the following
result:

COROLLARY 2.2. Let 0 < £ < n. Suppose that a sublinear I,(f) satisfies
2.7) and (2.8) or 2.9) and (2.10). If1 < q; < 00, 0 < p; < min{q;, p2},
—n/q1+L€ <o <n(l—=1/q1),1/q2 =1/q1(1 = £p1/n), ey = a1 + £(p1/q1 — 1),
and I;(f) maps L9 (R") into L% (R"), where 1/qo = 1/q1 — £/n, then I,(f) maps
K" (R into Kg7'”* (R™) or Kg,""' (R") into Kg7'"* (R™).

Remark 2.3. If I;(f) is a (standard) fractional integral, then Theorems 2.3 and
2.4 and Corollary 2.2 with 0 < & < n(1 —1/4;) have been obtained by Lu and Yang
in [16].
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3. Some applications

Using Theorem 2.1 and 2.2, we are able to characterize those Herz spaces of
Banach type in several ways, especially, by means of the (generalized) Littlewood-
Paley g-function, the Lusin area function and the Littlewood-Paley g3-function.

Recall the following definitions (see [19] and [20]). Suppose ¥ is integrable on
R”" and

@) fga¥(x)dx =0
(i) |[v(x)] < c( + |x|)~ @+, for some o > 0,
(iii) fpu ¥ (x +¥) — ¥ (x)|dx < c|y/¥", all y € R", for some y > 0.
Let ¥, (x) = t™¢(x/t) witht > 0 and x € R". For f in L2(R") with compact

support (these functions are dense in Herz spaces), the Littlewood-Paley g-function
of f is defined by

% dr )2
3.1) g(f)(x)={/0 |f*:/f,(x)|27] :

the Lusin area function of f is defined by

dt 1/2
(3.2) Sy.a(f)(x) = ( |f % i) Pr™ dYT) .

a"|Bo| Jr, )
where | By| is the Lebesgue measure of the unit ball By of R”, and ', (x) = {(y, 1) €
]R’fl: |x — y| < at}; and the Littlewood-Paley g;-function of f is defined by

172
2 d
(33) () = / f A > O dyS
n 1+x_!,_r

It is well known (see [19]) that, in the classical situation where  is related to the
gradient of the Poisson kernel, all those functions have L? (R") norms equivalent to
I flLegey when f in LP(R™) for 1 < p < oo. This equivalence actually holds for
any general Littlewood-Paley function defined in terms of such ¥. See Torchinsky
[20] for details.

We will show, in the next theorem, that this equivalence holds also for the spaces
Ky P=Yaprey and KJPTVOP (R with 1 < p,q < oo and, therefore, we
answer the question posed in §1. Actually, we will show the equivalence for more
general Herz spaces K;'?(R") and K;"P(R") with 1 < p < 00,1 < ¢ < oo and
—n/q < a < n(1 — 1/q); within these ranges of p and g, the corresponding Herz
spaces are Banach spaces (see [10]).

It is known, by [20], for example, that for any general Littlewood-Paley function
associated with v, the inequality

(34 Sp.a(F)(x) < cgy (), xR
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holds for all a, A > 0. Wilson in [21] proved that, for any compactly supported
satisfying (i), (ii) and (iii), there is another compactly supported radial function p of
this type, such that

(3.5 gy (F)(x) < cSp2(fHx), x €R"

This inequality is also true if gy, (f) and S, 2(f) are replaced by the standard g-
function and Lusin-function, respectively. See [19]. However, itis not known whether
(3.5) is true or not for general (not necessarily compactly supported) functions v and
p satisfying (i), (ii) and (iii).

THEOREM 3.1. Let1 < p <00, 1 <gq <00, —n/q < o < n(l — 1/q) and let

¥ satisfy (i), (ii) and (iii). Then there exist absolute constants cy, c;, c3 and c4 such
that

A

(3.6) Iflker@n < ctlgy(Dllgeran < e2llSy.a()l ke @
csllgy A (Dl ger@ny < call fllger g

IA

foralla > 0 and A > 3n/2. The same is true for the spaces K" (R").

Remark 3.1.  From the proof below, we can deduce that the boundedness of
8y () Sy.a(f) and g, ,(f) on Kg'?(R™) holds for all p such that 0 < p < oo.
When ¢ = 0, p = g > 1, we recover the classical results.

Proof. We only prove the case for the homogeneous Herz spaces. The other case
is similar. The main effort in this proof is devoted to showing

€X)) gy (I llgzr@ny < el fllger @
and
(3.8) gy (Pl ger@ny < cllfllger -

Once this is done, we obtain || Sy« (f)l K7 Rr) <c|fl K& @) from (3.4) and (3.8).
Standard arguments give ||f||Ka ) 5 c1 ||g,,, (f)||Ka p(Rn) and ||f||Ka PRy =
c2l15y.a(f)ll g2r - Using (3.4) again, we obtain || || g sy < 31185, (Y]l ko oy
The reader can see that the chain of inequalities (3.6) follows eas11y from these.

(1) The case gy (f).

Assume supp f C A and |x| > 2**1, We then have

A

(39) vl = 5 [ 1ra=nily (2)] o

dy
(¢ + |yhrte

IA

L OfG =y
Rﬂ
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by (ii) in the definition of 1. Notice that |x — y| < 2% implies |y| > |x|/2. We write

Il dr\ ' 00 dr\'?
27" 27"
([T 1rewer) +([1romeors)

I (x) + L(x).

gy (F)(x)

IA

For I,(x), by (3.9),

o

t
|f* Y (x)] < CM—,‘_H;"f"L'(]R")-
Thus,

x| 172
c dt cll flle ey
I X <K — 1 n t2d__ < _
1(x) < |x|n+ot”f"L (R)(/O ” NPT

For I;(x), from (3.9), we obtain

I * )l < 1 ;_ "f”j"“‘"

Thus,
0 1/2
L) < cll fllrwny (/ gf) < C“f"L'(]R").
x|

|x|n—1 13 len

Hence we have verified (2.1) for gy (f).
Next we consider the case when supp f € A and |x| < 2%~2. In this case,
|y > 22, We write

L ar\'"” dr\'?
80(H0) < (fo |f*~/ft(x)|2—t—) ([ eweord)

I15(x) + 1 L(x).

In I1,(x), we obtain

ct*
If * ¥ (x)] < W”f”L'(]R")'
Thus,

2k(n+a) t 2kn

k=2 1/2
1) < M lpan ( | ,zaﬂ) - My
0

In I1;(x), we have

N f Iz ey
—

1
|f * ‘//t(x)l =< c2k(n—1)
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Thus, similarly, we obtain
Nl @y
kn '
Therefore (2.2) is verified, and, by Theorem 2.1 for T = g, we obtain (3.7).

IL(x) <c

(2) The case g;, 2 ().

Let supp f € Ay and |x| > 2¢+1, We write
f“f [ * P dr 2
s Jee G+ 1x — g2 D i
. (/'X'/ fp)P o dr \"
- 0 . (4 |x — yl)ZA pn+1-22

N (/“’/ |f * Y ()2 iy )”2
Ixl " (t + |x —_ yl)ZA gnt1-2a

= E1(x) + Ez(x) .

8y (f)(x)

Il

Recalling (3.9) we now have

dz

(3.10) If * Y ()] < ct /R If(y—z)lml‘);ra‘

Furthermore, we write

|x| 2 1/2
f / \f* P, dt
0 Jy= @+ |x —yp> ytn+1—2A

Ix| 2 1/2
/ f If * ¥ 0 dt
ly|> 3 t+ |x —y]* ytn+1—2A

= Fi(x) + Fx(x).

Ei(x)

For Fi(x), |x —y| = |x| —|y| > "" , and, we obtain | f * ¥, (¥)| < ct™"|| fllL1wn)
from (3.10). Consequently,

1/2
Il (™ I fllL e
Fi(x) = e=——=— | |A <3 t3”+1 =2A =c¢ |x|n ’
4

whenever A > 3n/2.
For the estimate of F,(x), we use (3.10) with |z| > |y|/3 which gives us

ct?
[ f x| < |le_m||f||L'(IR")~
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This relation |z| > |y|/3 follows from |y — z| < 2* and |x| > 2¥*!, which give us
ly —z| < Ix1/2 < 2|y|/3.
Thus,

12
I 1 1 dt
F(x) < clfllo@e / f dy
A\ Jo s Tr =307 pivz @ mioa

1/2
£l f " / ! L
C LI(R® y ——
®NJo St o @+ I =y [y =2

I 1 1 a \"
n d
+ el fllu @ (/;, -/|.y1>2|x| (t + [x — y)?* |y|Prt2e ytn+1—2)»—2a)
J1(x) + Jr(x).

A

IA

For Jy(x), we choose £ such that 0 < £ < 2A and n — 2a¢ < £ < n, and, since
|x — y| < |x| + |y| < 3|x|, we obtain

12
|x]
c .
Jilx) = ”f”:iiR) f / T o
x| B py<2p 12— yI e

< cll flliwm .
- |x|"

For J;(x), noting that |x — y| > |y|/2 we have

x| st 12
B < el fllgn (/ [ )
ly1>21x| |}’|2”+2°‘+27~ fn+1-22—2a

< cllfllwm
|x|"

since A + o > n/2.
Now for E»(x), we use | f * ¥ (y)| < ct™"| fllL'®e) and obtain

o0 1 dr \'?
E < n d
2(x) < cllfllogny (/le f T+ x =y y,3n+1-2x)
o0 1 dr \'?
([ )
e ([~ armm s

o 1 dt 172
S|
NIl ey ( it Doz G+ =D Y i

Ki(x) + Kz(x),

I\

where

) 1/2
C n
K1) = el ol ([ rtar) - < Ul
X
X

9
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and

12
cllfllziwe
mm<dmmm(]‘/ ) <
il Jiyl>2ix l}’|2£ t3”+l'l x|

since |x — y| > |y| — |x]| = |y|/2 and we can choose £ such that n/2 < £ < 3n with
0 < £ < 2A. Therefore, (2.1) holds for gy , (f).
Now we verify (2.2) for g3, , (f). Suppose |x| < 2¢~2. We write

(/

f Lf * ()2 dt \'"*
2%=2 JRn (t + 'x yl)z}L ytn+l—2A

= Li(x) + La(x).

2k -2

IA

g5, (@)

f ifxvo . ar "
T = )P Yoo

k=2

Li(x)

IA

Furthermore, we have
1/2
/ Lf * ¥ () dy dt
y|<3 k=2 (t + |x — y|)2}» pn+1-22

(!

1/2
([ fx Y P | dr
0 yl>322 (¢ +|x — y|)2* Yt

= Mi(x) + Ma(x).

For M (x), since |z — y| > 2¥"! we have [z| > |z — y| — |y| > 3 - 27! > c2*. Thus,

k=2 172
Mi(x) < "f"L‘(]R" /2 dy dt
1 = 2k(n+a) lyl<}2¢-2 |x — y|¢ gntl-2a—t

C n
_ clf g

- 2kn

whenever n — 2a < £ < n. For My(x), |x — y| > |y| — |x| > élyl. Consequently,

1/2
/‘ dt
M>2_ k=2 |y|2A $3n+1-21

2k2

My(x) < C"f"L'(]R")( A

cllfliiwm
2kn

=<

whenever A > 3n/2.
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Finally, for L,(x), we have

00 1 . \'?
L n d
2(x) = c"f"L'(R)(/Zk_zfn (T x=yD> yt3n+1—2x)
%0 dr \'"
" dy——
cllflle @n (_/zk_l ./mszk-' yt3n+1>

%o 1 dr \'"*
: —dy
el e (./2k—2 ,/|y|>2k—l Iyl ytz’”“'l)

where we use |x — y| > |y|/2 to get the second summand. Both summands above

are dominted by ifgf,,'—(“‘—l whenever n < £ < 3n. Therefore we have verified (2.2)
for gy, , (f) also.
Theorem 3.1 is proved.

A

IA

In recent years, several authors have considered the theory of Hardy spaces as-
sociated with the Herz spaces (see [3], [7], [8], [13], [15], [17] and [22]). First, we
introduce the following definitions.

Let ¢ € C°(R"), supp ¢ € B; and fR,, ¢(x)dx = 1. And we set that ¢;(x) =
t™¢(x/t) witht > 0. For f € S'(R"), we define the vertical maximal function
¢*(f)(x) and the local vertical maximal function ¢*(f)(x) by

¢*(NHHx) = sup I(f * ) (x)]

and

P (Hx) = sup |(f * ) ().

O<t<

The Herz-type Hardy spaces are defined as follows.

Definition 3.1. Let0 < p < 00,0 <g < 00, « € R and ¢ be as above.
(a) The homogeneous Herz-type Hardy spaces H K,‘," 'P(R") and th "P(R™) asso-
ciated with Kg'¥ (R") are defined by

HESP(RY) = (f € S (R"): ¢*(f) € K27 (R")
and
hKSP(RY) = {f € S'R"): ¢*(f) € KFP(R™).
_Moreover, we define |l fllugzr@n = 16*(Hligzr@n and Ifllugzr @ =
16* ()l koo gy

(b) The non-homogeneous Herz-type Hardy spaces HK,'”(R") and hKg' ¥ (R")
associated with Kg 'P(R") are defined by

HKP(R") = {f € S'R"): ¢"(f) € k3" (RM)
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and
hKSPR™) = {f € S'R"): *°(f) € K&PR™).

Moreover, we define "f”HK:'p(R”) = l|¢*(f)”K:p(R") and ”f"hK:;'p(]R") =

16* ()l ke gey-

Obviously, HKp?(R") = H?(R") = HKp?(R") and hKy? (R") = h?(R") =
hK ,(,)”’ (R™") with 0 < p < o0o. Here the spaces H? (R") and 4” (R") are the standard
Hardy spaces and local Hardy spaces respectively studied by Fefferman and Stein [4]
and Goldberg [9]. Moreover, by the characterizations established in [7], [8], [10],
[13], [15], [17] and [22], we know that Definition 3.1 is independent of the choice of
the function ¢.

g <ooand —n/q <o < n(l —1/q).

THEOREM 3.2. Let0 < p < oo, 1'<
= th’p(]R") and HK;“”(]R") = K,‘;"’(]R”) =

Then HKJ?(R") = KgP(R")
RKSP(R™).

loc

Proof. Noticethat K5 (R") C LI _(R") C L} .(R"). From the simple inequality

[f ()| < min{g*(f)(x), ¢*(f)(x)} ae. inR",
we obtain
(3.11) Kq“”p(R”) > {HK;””(R”) UhK;"”(R”)}.

On the other hand, by the definitions of ¢*(f) and 5* (f), we easily verify that ¢*(f)
and ¢*(f) satisfy the conditions of Corollary 2.1. Thus, we have

1™ (Pl er @y + 16 (Pllger@ey < cll £ 1 ger gy,
where C is independent of f. From this, we deduce that
(3.12) K;P([R") S {HK;P(R") NhKSP(RM)}.
By (3.11) and (3.12), we obtain
HK;PR") = K P(R") = hK)P(RY).
Similarly, by Corollary 2.1, we easily prove
KPP(R") € {HK3P(RY) NRKZP(R)).

To see the converse, we only need to show that if f € Kg'”(R"), then f € L] (R")

loc

for0 < q) < q and q; < n/(x +n/q). Therefore, if —n/q < o < n(1 —1/q), then
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f e Llloc(R"). In fact, we only need to verify that f € L7 (B);). By Definition 1.1,
we have

0 0
1—-
W0y = O WXl < D 1 Xellfogu 200/

k=—00 k=—00

0
Q k(n(1-q1/q)—aq)
<c e, E 2 < 00
—_ ”f"Kq p(]Rn) .

=—00

since n(1 — q1/q) — aq; > 0.
This finishes the proof of Theorem 3.2.

Remark 3.2. For gy, the conclusions of Theorem 3.1 with @ # 0 and ¥ €
CS°(R™) can be found in [10]. For the spaces HKy'?(R") and HKy'?(R"), if & =
n(l/p — 1/q) with 1 < p < oo, Theorem 3.2 can be found in [14]; if 0 < @ <
n(l — 1/q), Theorem 3.2 can be found in [15]; if —n/q < o < n(1 — 1/q) with
a # 0, Theorem 3.2 has been obtained by Herndndez and Yang in [10].

We also remark that if 1 < g < o0, @ > n(l —1/q) and 0 < p < oo, then
hKg?(R") also equals Kg'F (R"); but, hKg'P (R") # Kg'P(R") # HKy'P(R") and
HK$?(R") # Kg'"(R"). We also remark that HK;'? (R") G hKg? (R™); see [7],
[81, [13], [15] and [22] for the details.

Remark 3.3. As we pointed out before, inequality (3.6) holds, in particular, for
¢ =n(l/p—1/g) and 1 < p, q < oo. We remark that Theorem 3.1 is best
possible under this restriction on . In fact, ifa = n(l/p —1/g)and0 < p <1 <
g <2, Theorem 3.1 fails. Otherwise, HKg'”(R") = Kg'”(R") and HKJ'?(R") =
Kq“ 'P(R™) by the characterizations established in [8] (see also [3], [7], [13] and [15]).
But this is not possible by the above remark.

Remark 3.4. By the results of Fefferman and Stein [4], we know that (1.1) is still
true if we replace L? (R") by the standard Hardy space H” (R") when 0 < p < 1.
In another words, the standard Hardy space HP(R") can be characterized by the
Littlewood-Paley g-functions. Itis natural to ask if this is still true for Hc;rz-tYpe Hardy
spaces ? Lu and Yang [13] obtained such a characterization on H K;/ 2 (R") and
HK ;’ /21 (R™). Later on, Garcia-Cuerva and Herrero [8] obtained the characterization
for HK;/P~1/DP(Rry and HKL/P~YOP(@RM) for 0 < p < 1 < g < 2. The
methods used in the above papers can be trivially adapted to the spaces H K,‘,’ PRy
and HK;""(R") withe > n(1 —1/g) 1 <gq <2and 0 < p < oo. However, it
is still not known if there is such a characterization on Herz-type Hardy spaces with
q > 2.
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