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MIXED AUTOMORPHIC FORMS ON
SEMISIMPLE LIE GROUPS
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1. Introduction

Let ' be a discrete subgroup of PSL(2,R) and let x: I' — SL(2,R) be a
homomorphism of groups. Then both I'' and x (I'") operate on the Poincaré upper half
plane H by linear fractional transformations. We assume that there is a holomorphic
map w: H — H satisfying w(gz) = x(g)w(z) forall g € T" and z € ‘H. Given a
pair of nonnegative integers k and / with k even, a holomorphic function f: H — C
satisfying the condition

f(82) = (cz + d)(cyw(@) +dy) f(2)
for all z € H and

_fa b _f(ay by
g—(cL d)el", x(g)_<cX dx)eSL(Z,R)

is aholomorphic mixed automorphic form of one variable of type (k, [) associatedto I,
w and y if f satisfies an additional condition of regularity at the cusps of I' (see [16]).
Certain types of such mixed automorphic forms occur naturally as holomorphic forms
of the highest degree on elliptic varieties which are fiber varieties over an arithmetic
variety with generic fiber a product of elliptic curves (cf. [10], [15]). Holomorphic
mixed automorphic forms of several variables were also introduced in [17] and [18],
and it was proved that a certain class of such automorphic forms can be interpreted as
holomorphic forms on some families of abelian varieties over an arithmetic variety.

The purpose of this paper is to describe mixed automorphic forms in the setting of
representations of semisimple Lie groups following such descriptions for the usual
automorphic forms initiated by Selberg and Langlands (e.g., see [3], [4], [9], [21]).
More specifically, we define mixed automorphic forms on semisimple Lie groups
which generalize holomorphic mixed automorphic forms, and construct Poincaré
series and Eisenstein series for such automorphic forms.

2. Mixed automorphic forms on a semisimple Lie group

First, we shall review the definition of the usual automorphic forms on semisimple
Lie groups (e.g., see [3], [4], [5], [6]). Let G be a semisimple Lie group, and let g be

Received May 5, 1995.
1991 Mathematics Subject Classification. Primary 11F55; Seconadary 11F70, 22E46.

© 1996 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

464



MIXED AUTOMORPHIC FORMS ON SEMISIMPLE LIE GROUPS 465

its Lie algebra. If V is a finite-dimensional complex vector space, then g operates on
smooth functions f: G — V by

d
¥ e =+ f ((exptY)g) .
=l

forY € gand g € G. Let Z(g) be the center of the universal enveloping algebra U (g)
of the complexification gc of g. Then a vector-valued function f: G — V is said to
be Z(g)-finite if Z(g) - f is a finite-dimensional vector space. If : G — GL(W) is
a finite-dimensional complex representation whose kernel is finite and whose image
is closed in End(W), then we can define a norm || - ||, on G by

1/2
b

gl = (Tr(@()" - a(s))

where x denotes the adjoint with respect to a Hilbert space structure on W invariant
under a maximal compact subgroup K of G. If 8 is another such representation, then
there is a constant M > 0 and a positive integer m such that

lxlle < Mllxlg

for all x € G. A vector valued function f: G — V is said to be slowly increasing if
there is anorm || - || on G, a constant C > 0, and a positive integer m such that

If(®l <Clgl™,

where | - | isanormon V.

Definition 2.1. Let K be a maximal compact subgroup of G, I" a discrete sub-
group of G, and 6: K — GL(V) a representation of K in a finite-dimensional
complex vector space V. A smooth vector-valued function f: G — V is an auto-
morphic form for I" and o if the following conditions are satisfied:

(i) ftkgy)=o0k)f(g) forallk € Kandy €T.
(ii) f is Z(g)-finite.
(iii) f is slowly increasing.

Let G, K, I, and the representation 0: K — GL(V) be as in Definition 2.1, and
consider another semisimple Lie group G’. Let K’ be a maximal compact subgroup
and I'” a discrete subgroup of G’. Let p: G — G’ be a homomorphism such that
p(K) C K'and p(I') C TV, and let 6": K’ — GL(V’) be a representation of K’
in a finite-dimensional complex vector space V'. Then we obtain the representation
o®(c'oplk): K> GL(V®V')of KinV ®V’, where p|x denotes the restriction
of pto K.
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Definition 2.2. A mixed automorphic form for T’ of type (p, o, ¢’) is an automor-
phic form for I' and the representation o ® (o' o p|k).

Let f: G — V (tesp. f..: G' — V') be an automorphic form for I" (resp. I'')
and 0: K — GL(V) (resp. 6': K' — GL(V')), where V (resp. V') is a finite-
dimensional complex vector space. We denote by f, ., the function from G to
V ® V' given by

foo0(8) = (fs @ (fy 00))(8) = f-(8) ® f..(0(g))

forall g € G.

PROPOSITION 2.3.  The function f, 5.0 G = V ® V' described above is a mixed
automorphic form for T of type (p, o, 0").

Proof. We must show that f, ;. satisfies the conditions (i), (ii) and (iii) in
Definition 2.1 for the discrete group I' and the representation o ® (0’ o p|k). For
g€G,ke Kandy €T, we have

fp,a,a’ (kgy)

flkgy) ® f'(pk)p(g)p(¥))
= o (k) f(g) ®c'(pk) f'(p(g))
= (0 Q0 oplg))k) - (f ® f o p)g),

which shows the condition (i). Now, given Y € Z(g), we have

d
Y. fp,a,a’(g) = Efp,a,a’((expty)g)

t=0

=[ fa((exptY)g)] ® f,(0(8))

+ fo(®)® [ o((exptY )g))]

t=0

o (
= [ fo (exptY)g] ® fo(p(g)
fol

+ fo(8) ®[ o ((exptdpY )p(g))]

t=0

Thus the condition (ii) follows from the fact that f, is Z(g)-finite and f, is Z(g')-
finite. As for the condition (iii), since f, and f,, are slowly increasing, we have

| o008 = 1fo(8) ® fo(p(g)] < Cillgly" - Callp(®)IIg?
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for some constants C;, C,, positive integers m;, m,, and representations ¢: G —
GL(W), B: G - GL(W’). However, we have

0@l = liglop < Callgle”

for some constant C3 and positive integer m3. Thus we have

| foaa @ < CLCC3 g™,

and f, 5, is slowly increasing. [

Example2.4. Let p: G — G’, K, K’, V, V' be as above. Assume that the
symmetric spaces D = G/K and D' = G’/K’ have G-invariant and G’-invariant
complex structures, respectively. This assumption implies that D and D’ are equiv-
alent to bounded symmetric domains (e.g., see [8]). Let J: G x D - GL(V) and
J’: G’ x D' - GL(V’) be automorphy factors, andlet t: D — D’ be a holomorphic
map satisfying

1(g2) = p(g)T(2)

for all g € G and z € D. Then we can define a mixed automorphic vector bundle
M (see [18]) on the Shimura variety X = I'\ D whose sections can be considered as
holomorphic mappings f: D — V ® V' satisfying

f(g2) = (J(g,2)®J (p(g), T(2)) f(2)

for all g € G and z € D. Given such a bundle M associated to J, J’, p and t, we
define mappings 6: G —» GL(V)ando’: G’ — GL(V') by

ak)=Jk,0), o'k)=JK,0),

where 0 € D and ' € D’ are the fixed points of K and K’, respectively. Then o and
o’ are representations of G and G’, respectively, and the sections of M are mixed
automorphic forms for I' of type (p, 0, o’).

Remark 2.5. InExample 2.4, if G’ is a symplectic group and if I' is cocompact,
then it was shown in [18] that for some specific automorphy factors J and J' the
sections of the mixed automorphic vector bundle M can be identified with holomor-
phic forms on certain families of abelian varieties parametrized by a Shimura variety.
In the elliptic modular case, that is, when G = SL(2, R), various results have been
obtained concerning the corresponding mixed automorphic forms (e.g., see [10], [15],
[16]). Similar geometric aspects for the Siegel modular case were treated in [17].
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3. Poincaré series

In this section, as our first examples of mixed automorphic forms, we shall construct
Poincaré series. Let I' (resp. I'’) be a discrete subgroup of a semisimple Lie group
G (resp. G'), and let K (resp. K’) be a maximal compact subgroup of G (resp. G').
Let p: G — G’ be a homomorphism such that p(K) Cc K. If f: G —> Visa
vector-valued function and if 4 is an element of G, we denote by /(h) and r(h) the
translation operators given by

Ih)f(g) = f(h'g), rh)f(g) = f(gh)
forall g € G.

Definition 3.1. A vector-valued function f: G — V on G is said to be left (resp.
right) K -finite if the set of left (resp. right) translations

{lk)f | ke K} (resp. {r(k)f | k € K})

of f by elements of K spans a finite-dimensional vector space.

PROPOSITION 3.2. Let V and V'’ be finite-dimensional complex vector spaces,
and assume that the following conditions are satisfied:

() fR(fop) e LY(G)®(V® V'), where L'(G) denotes the set of integrable
Junctions on G.
(i) f is Z(g)-finite and f' is Z(g')-finite.
(iii) f is right K -finite and f’ is right K'-finite.

Then the series P, 7 1/(g) defined by

Porr(@ =) _(f®(f op)g-¥)

yel

converges absolutely and uniformly on compact sets. Furthermore, the series

D@ oo )l

yer’

is bounded on G where | - | denotes the normonV Q V'.

Proof. As in the proof of Proposition 2.3 we can show that the function f ® (f'o
p): G > V ® V'is Z(g)-finite using condition (ii). For k € K and g € G, we have

rk)(f®(f'op)(®) = (fF®(f op)
(8k) = f(gk) ® f'(p(g)p(k))
= rk)f(8) @ r(pk)) f'(p(k)).
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Hence condition (iii) implies that f ® (f’ o p) is right K-finite. Therefore the
proposition follows from [1, Theorem 23], [2, Theorem 5.4], or [3, Theorem 9.1].
O

Definition 3.3. The series

Porr(@) =) (f®(f op)g v)

yel
is called a Poincaré series associated to p, f and f’'.
COROLLARY 3.4. Leto: K - GL(V)ando’: K' — GL(V’) be finite-dimen-

sional representations of K and K', respectively. Assume the [ and f'satisfy the
conditions (i), (ii) and (iii) of Proposition 3.2 together with the condition that

flg)y=0ak) f(g), f'(K'g)=0"K)f'(g)
fork e K,g € G, k' € K'and g’ € G'. Then the Poincaré series P, s is a mixed
automorphic form for T of type (p, 0, 0").

Proof. Since f ® (f' o p) is Z(g)-finite on the left, so is the Poincaré series
P, ¢ . From the definition of P, f (g) the right I'-invariance of P, ; ; follows
immediately, and P, s ¢ is slowly increasing by Proposition 3.2. As in the proof of
Proposition 2.3, we have

(f®(f op)(kg) = (0 ® (0" o plkNK)(f ® (f' 2 p))(8);

hence it follows that

P, s.r(kg) = (o ® (0" 0 plk))(K) Py 1,5 (8),
and the proof of the corollary is complete. [
Let G, G/, K, K’, p, and 7 be as in Example 2.4. In particular, D = G/K and

D' = G'/K’ are symmetric domains, and 7: D — D’ is a holomorphic mapping
satisfying

7(gz) = p(g)T(2)

forallge Gandz e D. Let J: G x D — GL(V) (resp. J': G’ x D' — GL(V'))
be the canonical automorphy factor (see [2, §1.8], [20, §I1.5]),andlet j: Gx D — C
(resp. j': G’ x D' — C) be the corresponding Jacobian determinant function.

LEMMA 3.5. Ifl and m are nonnegative integers with | > 2, then the mapping

g+ j(g0)®j'(pE,0)": G- C
is in L'(G).
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Proof. The mapping g — |j(g, 0)|" (resp. g’ — |j'(g’, 0')|™)is left and right K -
invariant (resp. K'-invariant) (see [2, §5.8]); hence it can be considered as a function
on D (resp. D’), and we have

/G 178, 0" (p(g), 0)"| dg = fD i@ 01 (2 @), )"du(),

where d . (z) denotes the invariant Bergmann measure on D (cf. [1, §4.3]). If dz is
the usual Euclidean measure on D, then we have

du@) = 1j(z,0)|%dz

up to a positive factor. Thus we have
[ 130/ 6@ 0m1dg = [ 170121 @ 0.
G D

However, both | j (z, 0)| and | j (t(z), 0')| are bounded by [2, Proposition 1.12]; hence
the lemma follows. O

LetF: D — Vand F: D’ — V’bemappings suchthat FQ(F'ot): D - V@V’
is a polynomial mapping. Given nonnegative integers /, m with [ > 2, we define the
functions f: G — V and f': G' - V' by

f@) =i 0 Fmg), f(g)=jE 0)"F@x'g)

forg € G and g’ € G', where 0 € D and 0’ € D’ are the fixed points of K and K’,
respectively, and 7: G — D and n’: G’ — D’ are canonical projection mappings.
We set

ok) = jk,0), o'(K)=jK, 0"

fork € K and k' € K’'. Then o and o' are representations of G and G’ in V and V',
respectively. We set

Pl () =Y (f ® (f o p)(g¥)

yel

for g € G, which is the Poincar€ series P, s in the sense of Definition 3.3.

THEOREM 3.6. The Poincaré series P,l,',';', (&) is a mixed automorphic form for
T of type (p, 0, 0').

Proof. Foreach g € G we have

(fR(f op)g) = (j(g,0)F(g)) ® (j'(p(g), 0)"F'('(p(8))))
= (j(g, 0 j'(0(g),0)")(F(rg) ® F'(w(ng))).
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Thus from Lemma 3.5 and the fact that F ® (F’ o w) is a polynomial mapping on the
bounded symmetric domain D it follows that

/G (f ® (' 0 0))(g)] dg < o0

hence f ® (f'op)isin L'(G)® (V ® V’). Since f(kg) = o (k) f(g) and f'(k'g") =
o'(k") f'(g") fork € K, k' € K', g € G and g’ € G, it follows that f is Z4-finite and
f'is Zy-finite. Fork € K and g € G we have j(gk, 0) = j(g, 0)j(k, 0), and the set
of right translates r (k) F (w (gk)) are polynomials of the same degree as F'; hence f is
right K - finite. Similarly, f is right K’-finite. Thus it follows from Proposmon 32
that the series 3~ . |(f ® (f' © p))(gy)| is bounded on G. In particular, P} ;. is
slowly increasing. As in the proof of Proposition 2.3, f ® (f' o p) is Z,-finite, and
fork € K and g € G we have

(f®(fop)kg) = (o ® (a0 plx))K)(f ® (f 0 p))(8);

hence it follows that
P . (kg) = (0 ® (0" 0 plK)KI P, ;1 (8).

Therefore P,l,‘,’;" j,(g) is an automorphic form for T" of type (p, o, 0”’) in the sense of
Definition 2.1. [

4. Eisenstein series

In order to discuss Eisenstein series, instead of the usual semisimple Lie group G
we shall first consider an algebraic group whose set of real points will coincide with
G. Let G be a connected, semisimple, linear algebraic group defined over a subfield
k of R, and let P be a k-parabolic subgroup of G containing a maximal k-split torus
S of G. Let Py be a minimal k-parabolic subgroup of G such that S C Py C P. We
define an ordering on the set X; of k-roots of G with respect to S as follows: A k-root
a € X is positive if and only if the subgroup of G generated by the a-eigenspace of
the adjoint representation of S is contained in Py. We denote by A, the set of simple
positive k-roots in .

If E is a subset of Ay, we set

0
Sg = (ﬂ Kera) s
aEE

where ()° denotes the connected component of the identity. Let © be the subset of
A such that P is generated by the unipotent radical Uy of Py and by the centralizer
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Z(Se) of Sg. Let Ug be the unipotent radical of P, and let Mg be a subgroup of G
such that Zg(Se) = Se - M with Sg N Mg finite. We set

P=P®R), A=Se®)’, M=Me®), U=Us).
Then we obtain the Langlands decomposition
P =MAU
of P and the corresponding decomposition
G=KP=KMAU

of G=GR). If g =kmau € Gwithke K,me M,ae Aandu € U, thenk -m,
a and u are uniquely determined. We write a = a(g).
Let {A4}aca, be the set of fundamental dominant k-weights of G that satisfy

(Aas B) = dadap

for all o, B € Ay, where 8,4 is the Kronecker delta and d,, is a positive real number
(see [3, §11]). Let u be the Lie algebra of U and let x = det Ad,, be the character of
P with pX = detAd,p for p € P. Weset ® = A; — ©. Then x is a positive linear
combination of the A, fora € ©, i.e.,

X = ZeaAa with ¢, > 0.

)

If {S¢}4e iS @ set of complex numbers s, € C associated to each @ € ©, and if
p € P, then we set

pY =TT

Pe)

LEMMA 4.1. Let " be a discrete subgroup of G and let ', be a subgroup of
' N MU. Suppose that there is a set {sy},.¢ Of complex numbers satisfying the
following conditions:

() a(y)** > € >O0forally eTanda € ©.
(ii) MU/ T has finite measure.
(iii) Resy > ey foralla € ©.

Then the series

E@gs)= Y a(gy)™

v€l/Te

converges uniformly on any compact subset of G.
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Proof. See Lemma 4 in [1] or Lemma 11.1 in [3] (see also [7]). O

Let G = G'(R) be another semisimple Lie group associated to a connected
algebraic group G’ defined over a subfield k of R. We consider the corresponding
subgroups K', P’, M', A’, U’, etc. defined in a way similar to the case of G above.
Thus we have decompositions

P'=K'AU, G =K'P =K'MAU
Let p: G — G’ be a Lie group homomorphism such that

p(K)YCK', p(P)CP, pA)CA.

THEOREM 4.2. Let " and 'y, be as in Lemma 4.1, and let f: G — V and
f': G' = V' be smooth vector-valued functions, where V and V' are finite-dimen-
sional vector spaces. Suppose that there is a set {54}, of complex numbers satisfying
the following conditions:

() a(y)* > € >0forally eT anda € ©.
(ii) MU/ T« has finite measure.
(iii) Resy, > e, foralla € e.
iAv) (f @ (f'op)(gy) =(f ®(f' op))(g)forally € Ix.
) |f (&Pl f (0(gp))|p?s is bounded for p € P and g in a fixed compact set.

Then the series

E,rp(@= Y. (f®(f op)igy)

vel/Te

converges absolutely and uniformly on any compact set of G.
Proof. Since G = K P, we have

(fFOf op)@-a@™ = (f ® (f o p))kp) - alkp)™
= (f ® (f' o p))(kp) - a(p)™
= (f ® (f o p))kp) - p™

for g = kp with k € K and p € P. Hence by (v) |(f ® (f' 0 p))(g) - a(g)™| is
bounded for g € G. Therefore, the series defining Ey, s , is majorized by a constant

times the series
D aky)™,
yel/ T

which converges uniformly on any compact set by Lemma 4.1. Hence the theorem
follows. O
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Definition 4.3. The series

E,rp@= Y. (f®(f ongy)

v€l/Te

is called an Eisenstein series for I' associated to p, f and f'.

5. Eisenstein series as mixed automorphic forms

In this section we discuss a special class of Eisenstein series and show that they
are mixed automorphic forms. Let G, P, M, A, and U be as in §4. Thus we have
decompositions

P=MAU, G=KP=KMAU.

Leto: K — GL(V)be arepresentation of X in a finite-dimensional complex vector
space V. Let m: MU — M be the natural projection, and let Ky = n(K N MU).
Then Ky is a maximal compact subgroup of M, and o induces the representation oy
of Ky given by

om((k)) = o k)

forallk € KNMU. Let I be an arithmetic subgroup of G, andletT"yy = n(T'NMU)
be the corresponding arithmetic subgroup of M. We denote by L2(M/ Ty, o) the
space of square-integrable functions ¢: M — V satisfying

pkmy) = oy (k)p(m)

forall k € Ky, m € M and y € T'yy. Any function ¢: M — V satisfying
p(km) = oy(k)p(m) for k € Ky and m € M can be extended to a function
¢g: G — V on G by the formula

g (kmau) = o (k)p(m)

forallk € K,m € M,a € Aand u € U. Then ¢g is c-equivariant; i.e.,

pc(kg) = o (k)pc(g)

for k € K and g € G. Although a decomposition g = kmau is not unique, the
extension ¢¢ is uniquely determined. We shall identify a o)/-equivariant function ¢
on M and the corresponding o -equivariant function ¢ on G. Thus each element of
L?(M/ Ty, oy) will be regarded as a function of G into V.

Let a be the dual space of the complexification ac of the Lie algebra a of A, and
let

(af)" ={Aca}|(ReA+p,a)<Oforalla € T%,
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where X0 is the set of simple roots of the Lie algebra g of G. For ¢ € L*(M/ Ty, o)
and A € ag, we set
PA(x) = p(x)eh=PHE

for x € G, where H (x) denotes loga(x). Then we have

oalkgy) = o (k)ea(g)

forallg € G,k € Kandy € U'NP). Giveng € L2(M/ Ty, op) and A € (ag) ™,
the series

E(A 0, x)= ) oaxy)
r/TnpP

is called an Eisenstein series (see [9]; also see [11], [12], [13], [14], [19]).
Let x be arepresentation of Z(g) in V. We denote by L2(M/ T'y;, o, x) the sub-
group of L*(M / T'm, ou) consisting of functions f: G — V satisfying the condition

Y- )= f(@x¥)

forall Y € Z(g).

LEMMA 5.1. Ifo € L2 (M/Ty,0um, x) and y € U(T N P), then there are a
positive real number C and a positive integer N such that

> leaten)l < Clix Y

r/TnP

forallx € G.
Proof. This follows from [9, Lemma 24]. [

Let G’ be another semisimple Lie group, and consider the corresponding objects
K',P',M' A, U &, ag, (af)” and the representation o": K’ — GL(V’) of K’
in a finite-dimensional complex vector space V’. Let p: G — G’ be a Lie group
homomorphism such that

p(K)CK', p(P)CP, pA)cCA.
As in the case of G, for ¢’ € L2(M'/ [yps0p) and A € (ag)™, we set

O () = @' ()N PIH)

for y € G’, where H'(y) denotes loga’(y).
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PROPOSITION 5.2. Let x and x' be representations of Z(g) and Z(g') in V and
V' respectively, and let g5 € L*(M/Ty, oM, x) and ¢, € L2(M'/ T}y, 04ps X'
with A € (ag)™ and A’ € (ag)~. Then there are a positive real number Cy and a
positive integer Ny such that

Y e ® (@ 0 NG < Collx))™
yel/TNP

forallx € G.

Proof. By Lemma 5.1 there are C, C’, N, and N’ such that
> leaten)l < Clix|l, > leh @Y = I Y

yel/TNP y' e/ T'np

forallx € G and x’ € G'. In particular, we have

D el = Y lepe@)p())

yer/rnp yel'/TnP
< Cle@I™ < Clpl™ 1™
for all x € G, since p(y) € I’/ T" N P’ whenever y € '/ " N P. Thus we obtain
D 1ea ® (@ 0 PV D leaGy)l- 1@y ()

1l

yel/TNP yel'/TNP
< ) lea@nl Y 1@h e
yell/TNP yel/TNP
< C-C - pIV - x| N+

hence the proposition follows. O

We set

Eppp (A, A, x)= Y (94 ® ¥ 0 0))(xy)
yel/TNP

for x € G, which is an Eisenstein series for I' associated to p, ¢, and ¢/, in the
sense of Definition 4.3 with'oo = ' N MU =T N P (see [9, p. 6]).

THEOREM 5.3.  The Eisenstein series E, , (A, A', x) is a mixed automorphic
form for T of type (p, 0, 0”).

Proof. Recall that ¢, can be regarded as a function ¢5: G — V on G satisfying
@a(kmau) = o (k)p, (m). Thus we have

oakg) = o (k)pa(g)
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forallk € K and g € G. Similarly, we have
Pp(k'g") =o' (k)¢ (8"
forallk’ € K’ and g’ € G’. Hence it follows that

(Pa ® (pp 0 P)(kg) = (0 ® (0" 0 plx)) (k) (pa ® (94 © P))(B)

and

Epppkg) = (0 ® (0" 0 plk))(K)E )40 (8)
forall k € K and g € G. By Theorem 5.2 we have

Yo @A® @ oG < Y Iga ® Py 0 PG| < Collx )™,
yelr/TNP yelr/TNP

and consequently the mapping g = E, , (A, A', x) is slowly increasing. Now
from the conditions

(Y - oa)(8) = ea(g)x (Y), X' o)) = op X' X))

for Y € Z(g), Y € Z(g'), g € G and g’ € G/, it follows that ¢, is Z(g)-finite
and ¢/, is Z(g')-finite; hence, as in the proof of Proposition 2.3, 5 ® (¢, o p) is
Z(g)-finite. Therefore E,, , s is also Z(g)-finite, and the theorem follows. O
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