ON THE THEORY OF DIFFERENTIAL BOUNDARY PROBLEMS!

BY
MARTIN SCHECHTER

1. Introduction

In a previous publication [10] the author applied the method of negative
norms to elliptic boundary value problems. It was shown how inequalities
involving such norms led to solutions of boundary problems for distributions.
Existence theorems were easily obtained together with powerful regularity
results.

In this paper we extract the essential features of the method and apply
them to general boundary problems for arbitrary partial differential equations.
The problems are posed in such a way as to include all types of equations
and boundary conditions. We seek necessary and sufficient conditions for
the existence of classical, strong, and weak solutions. These conditions are
usually expressed by means of inequalities (a priori estimates). In applying
the theory one would have to show that a certain inequality is satisfied.
Existence then follows automatically. In some particular cases (e.g., the
Visik-Sobolev problems, cf. §5) it was discovered that the required inequalities
were already known, giving the desired existence theorems immediately.

Our main tools are representation theorems for bounded linear functionals
on the spaces H"?(G) and their subspaces, where ¢ is an arbitrary integer,
p an arbitrary real number greater than one, and G an arbitrary domain in
Euclidean n-space (cf. Theorems 2.1, 2.2, 6.2, 6.3, 7.1). Fort = 0, H"*(G)
is defined as the completion of C*(Cl @) with respect to the norm

lulo = ([T 10l o) ",

where summation is taken over all derivatives D" of order r < ¢. For ¢ < 0,
H"?(@) is the completion of C*(Cl @) with respect to the norm

| % llep = Lubuee=iol(w, 0)|/|| v | —tp »
where

(u,v) = fauz‘) dez and p’ = p/(p — 1).

Theorem 2.1 states that H %' (@) is the dual of H"?(@) and vice versa.
Other theorems give representations for various types of subspaces of H"?(G).
They require the introduction of other negative norms.

In §3 we consider boundary problems for partial differential equations.
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Let V be a linear subspace of C*(Cl G) which contains those functions with
compact support in G. Typical result: Given a partial differential operator
A and a distribution f, a necessary and sufficient condition that there exist
aueH"?(@) such that

(1.1) (u, Av) = (f,v)

for all v ¢ V, is that

(1.2) (£, 0)] = cll Av [|l—s.pr

for all v e V. Moreover, there is such a u for each f e H"*(@®) if and only if
(1.3) loll—ra S cll Av |-t

for all » ¢ V (more refined statements will be found in §3). Moreover similar
criteria are shown to hold when u is to be restricted to certain subspaces of
H"?(®@). TFor these and related results we refer to §3.

In §4 the theorems of §3 are applied to elliptic problems. They give rise
to new inequalities and existence and regularity theorems. For example if
A is properly elliptic and V is determined by differential boundary conditions
which cover A (cf. [2], [4], [9]), it follows from our results that for s = 0,

[0l = e(l 40 lem—sp + 11 [l-m—s.»)

for all v e V. Moreover, if h is a distribution and |(h, Av)| = ¢o || v ||, for
allv ¢ V, then h e H"**?'(@), and there is a constant, K independent of h such
that || & ||mes.r = K(co + || hlls,»r). Further results may be found in §4.

Another application is to the so-called Visik-Sobolev problems (cf. [5], [6],
[11]). In §5 we embed these problems into a very general framework and
then show how our theorems give the complete answers for them.

§6 is devoted to the spaces Hcoie which arose in connection with the Visik-
Sobolev problems. We prove a representation theorem due to Lions [5], [6]
and show that under mild assumptions on G that Hoi& and H "*(G) are
isomorphic. The proofs of the theorems of §5 are also given.

Proofs of the theorems in §§3 and 4 are given in §7. We note that Theorem
7.1, Corollary 7.1, and Lemmas 7.1-7.4 are of interest in their own right.
Proofs of the theorems of §2 are given in §8.

The author is thankful to L. Nirenberg and J. Peetre for several interesting
discussions.

2. Certain function spaces

Let G be a domain in Euclidean n-space E™ with boundary G and closure
ClG. Let C°(Cl1@®) be the set of complex-valued functions infinitely dif-
ferentiable on Cl G with compact support. If u = (w1, g2, -+, ua) is any
multi-index of length | u| = ps + p2 + -+ + pu, set

D* = 8™/ (50m1)" (40m)*? - - - (19zn)"™.
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For any nonnegative integer s and any real number p greater than one, we
define

(21) lulew = ([ T 12wl as)

(22) [lull-sp = Lubuee=cral(u )|/ 0 s, 2 =p/(p—1)
for functions u ¢ C*(Cl G), where

(u, v) = Lw‘; dx.

Denote the completions of C”(Cl ) with respect to these norms by H*'*(G)
and H “?(@) respectively. They are Banach spaces.

Let CT(E™) be the set of infinitely differentiable complex functions with
compact support in E*. For such functions we employ the norm

. 1/p
(23) Lol = ([, Z 10er i)
E™ |l =s

Denote the closure of C5(E") with respect to this norm by H*'?(E™). For
any function ¢ ¢ H*'*(E™) we let ¢ ¢ denote the restriction of ¢ to G. Clearly
Ve e H'7(G).

TueoreM 2.1. The spaces H*?(Q) and H *?'(G) are conjugate to ome
another.

CoroLLARY 2.1. For u e H'?(Q)

1% llo.p = Lubuec=ccra (% 0)1/1 v [0 -

Now let 5 (@) denote the set of all v e C°(Cl @) which vanish near 8G.
Let V be any linear space of functions such that C5(G) € V € C*(Cl@).
Corresponding to V' we define the norm

(2.4) | % |—p = LUbouer|(u, )|/l v lls.»

for functions u e C°(C1G). Complete C*(Cl G) with respect to this norm,
and call the resulting Banach space V""'?(G@). Let V*'?(@) be the closure
of Vin H"*(@).

TuEOREM 2.2. V*?(@) and V" (@) are dual spaces.
COROLLARY 2.2. For u ¢ V''*(Q)
% llsp = Luboer|(u, )|/ 0 |spr -

3. Boundary value problems

Let A = D4 <m au(x)D" be a partial differential operator of order m = 1
with coefficients’ au(z) € C°(Cl @). The formal adjoint A’ of A is defined by

2 Some assumptions are made for convenience only. Our results hold under less re-
strictive hypotheses.
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integration by parts, i.e., by
(3~1) (Aua 1)) = (u7 Alv);

holding when « or v belongs to C5(G@). We define V' as the set of those
v ¢ C*(Cl @) which satisfy (3.1) for all u ¢ V. Clearly V' is a linear space
containing Cy(GF). We set

(32) |4 |20 = Lubuer | (u, ) |/[] 0 [l

and denote the completion of C*(Cl @) with respect to | |2, by V' ""?(Q).
The closure of V’ in H*?(@) is to be denoted by V'*'?(Q).
Now by (2.2), (2.4), and (3.2) we have the following inequalities.

(3.3) I(u, )] = % [|eall ¥ llspr we H (@), veH"”(Q),
(3.4) |(u, 0)] S |0 =epll 0 e weVRG), veVP(Q),
(3.5) 1w, )| £ 1wl epll 2 o we VUG, veVOP(R).

Let N (resp. N’) be the set of those u ¢ V (resp. v ¢ V') such that Au = 0
(resp. A’v = 0). We shall assume that N’ is finite-dimensional. As before,
s will denote a nonnegative integer. The letters r, ¢ will denote arbitrary
integers, and p, ¢ will denote real numbers greater than one, with

p=p/(p—1), ¢ =4¢q/(¢g—1).

If L and L' are subspaces of H"?(@) and H "? (@), respectively, we let L/L’
represent, the set of all u ¢ L which satisfy (u, L') = 0 (i.e., (u, v) = 0 for
allveL’).

When ¢is positive, we set | % |sp = | % |ip = | 4 ||l1p. Wewriteu e H (G)
(resp. V"2(Q), V"°(@)) when u e H"?(®) (resp. V"?(@), V'"?(®)) for
some ¢ and p.

THEOREM 3.1. For f ¢ V'"°(Q) there is a u e H"?(@) such that

(3.6) (u, A) = (f, v) forallveV’
if and only if

(3.7) ()] S cll A ||=sp SorallveV'.
There is a u € V'*(@) satisfying (3.6) if and only if

(3.8) |(f,v)] S c| A |—s.» forallveV’.

In Theorems.3.2 and 3.4 below, when ¢ > 0 the spaces V'"'%(@)/N’ should
be replaced by H"*(G)/N'.

Tueorem 3.2. A necessary and sufficient condition that for each
feV'"G)/N' there exist a u e H'*(G) satisfying (3.6) s that

(3.9) Noll-ta < cll A ||—s,p forallveV'/N'.

A necessary and sufficient condition that for each such f a w e V'P(@) satisfy
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(3.6) is that

(3.10) o<t = | A |—s,p forallv e V'/N'.
TrEOREM 3.3. A u ¢ H "'?(Q) satisfies (3.6) if and only if
(3.11) [(f, )] S el A ||s.p forallv e V'.

TeEOREM 3.4. A necessary and sufficient condition that for each
feV'"(G)/N' there exist a u e H""(Q) satisfying (3.6) is that

(3.12) o=t S cll A |ls,» forallveV'/N'.

TuEOREM 3.5. Letfe V' ™(G) be given. Then the following statements are
equivalent:

(a) There is a u e V"™2(Q) satisfying (3.6).

(b) feH"?(Q)/N', and there are a w e V"' ?(G) and a sequence {u} < V
such that || we — U ||mts,p — 0 and || Aux — f|ls,p = 0 ask — .

(e) |(fyv) £ c| AW |—mes,r Sfor all veV'.

TrEOREM 3.6. The following statements are equivalent:

(a) For every f e H"?(Q)/N' there is a u e V"™?(@) satisfying (3.6).

(b) For every fe H"*(Q)/N' there are a ue V™" ?(Q) and a sequence
{ue} < V such that | wx — % ||mtsp — 0 and || Aux — flls.o = 0ask — .

(€) [|v]=sp = ¢| AW |om—s,pr for all v e V'/N'.

TuroreM 3.7. Let fe V' ™"(G) be given. The following statements are
equivalent:

(a) There is a u e H '*(@) satisfying (3.6).

(b) feV ™™ *?(Q)/N', and there are a uweH “?(Q) and a sequence
{u} < CF(Q) such that || ux — © ||—ep — 0, | Aty — f|-msp—0ask — .

(©) 10 0)| = cl| A llop for allveV".

TraroreM 3.8. The following are equivalent:

(a) For every f e V""""(Q) /N’ there is a u e H""*(Q) satisfying (3.6).

(b)  For every f ¢ V""""?(@)/N’ there are a u e H"*(@) and a sequence
{ue} < CF(Q) such that || ux — u||—s,p — 0, | Atr — f|-mesp— 0 as k — o.

©) Nvllmtsr =< cl|| A% ||s,pr Sfor all v e V'/N'.

4. Elliptic problems

We shall say that A is elliptic on V if
(a) N and N’ are finite-dimensional,
(b) for every f e C*(Cl G)/N’ there is a u ¢ V such that Au = f,
(¢) for some s and p,
| % |l mispr = coll AU [|o,pr for allw e V/N.

It can be shown that a properly elliptic operator A is elliptic on a wide
variety of spaces V satisfying homogeneous boundary data (cf. [2], [4], [9]).
In this section we shall assume that (a)—(c¢) hold and consider some conse-
quences.
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TuroreM 4.1. For each f e V" "?(G)/N there are a ue H *?(@) and a
sequence {uy} < Cy (@) such that

lur — ul|l—spo— 0 and | A'ux — f|om—s,p — 0.
TaEOREM 4.2. There are constants K and K’ such that
[oll-sp = KAV | mesp for allv e V'/N',
[2ll-0n = K'(J A% |-msip + [ 0 [l-m—s.0) forallveV’.

TaroreEM 4.3. Ifh e H °(G) and |(h, Au)| < ¢1 || % || mas,or for all u e V/N,
then h e H (@), and there is a constant K; depending only on N', m, s, and p
such that || b ||—sp < Ki(erco+ || B |l —m—s.0)-

THEOREM 4.4. Assume, in addition, that for every g e C*(Cl @) /N there is a
v e V' such that A'v = g. Then if h e H(Q) and |(h, A)| < ¢z || v || for
all v e V'/N', we have h e V™2 (@), and there is a constant K, depending
only on N, m, s, and p such that || b ||mts,»r < Ka(ezco+ || b ||s,0r)-

5. Visik-Sobolev problems

We introduce negative norms on E” as follows. Let

¥ = [ b
be the L’(E™) inner product. Set
o125 = Lub.yecsaml (e, I/ ¥ o -

Denote the completion of C7(E"™) with respect to the norm | |%, by
H™"?(E™). This space may be defined in other ways (cf. [5], [7]).

We shall say that the domain G satisfies Assumption (s, p) if there is a
linear mapping 6;,, of H**(G) into H"?(E™) such that

(a) (Ospv)e = v ae.,

(b) || 6spv ”f;‘» = R [P
for all v e H'"(@).

An element u ¢ H “?(E™) is said to be in Heig if {u, v) = 0 for all v in
H*®(E™) with v = 0. We shall show in §6 that Hcié® is isomorphic to
H*?(@) provided G satisfies Assumption (s, p’). We let M~ "? be the set
of all h e H*?(E™) which satisfy (h, v) = 0 whenever v ¢ H"?*(E") and
ve e VP (@). Clearly, M7 is a subspace of Hoie .

Now assume that the coefficients’ of A are in Cy(E™). For every
h e H*?(E™) there is an element g e H ™ " *(E™) such that

(5.1) (h, A'v) = (g, v)

for all v e H™™?(E™). We define Ah to be g. Let fe Hoig ~'* be given.
We shall say that an element u ¢ Hoig is a solution of the Visik-Sobolev

3 Cf. Footnote 2.
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problem if
(52) <u) A’U> = <f’ U)

for all v e H"™?(E™) such that vee V™™ ?(@). If (5.2) holds, then
by (5.1), (Au — £, v) = 0 for all v e H™ ™ ?'(E) such that vg e V"1 (@).
Hence Au — feM ™ "*. Conversely, if Au — feM ™ "% then (5.2)
holds. Therefore we may say that u is a solution of the Visik-Sobolev problem

if Au — feM ™™ "". For previous results on such problems, we refer to
Lions [5], [6] and Vi&ik-Sobolev [11].

TaroreMm 5.1. A4 sufficient condition that there exist a solution to the Vidik-
Sobolev problem is that

(5.3) If ol = el Avells,p

for all v e H™*"?'(E™) such that ve e V™% (@). Under Assumption (s, p')
on @, this is also necessary.

THEOREM 5.2. If G satisfies Assumptions (s, p') and (m + s, p’), then
the Vi%ik-Sobolev problem has a solution for every® f ¢ Hotg *'*/N' if, and only if,

2 lmtsr S ¢l A% [|ar for allv e V'/N'.

CoRrOLLARY 5.1. If A s elliptic on V, and G satisfies Assumptions (s, p')
and (m -+ s, p'), then the Visik-Sobolev problem has a solution for each
feHgie "7/N'.

6. The spaces Hgid

In this section we shall give proofs for the theorems of §5. We shall first
discuss some properties of the spaces Hered .

Tueorem 6.1 (Lions [5], [6]). If F(u) is a bounded linear functional on
H*?(@), then there is a unique f e Hoid such that F(vg) = (v, f) for all
veH"?(E™).

Proof. ForveH *(E"), set Fi(v) = F(vg). Then | F1(v)| = |F(ve)| =
cllvellop cllvllfy. ThusFi(v) isaboundedlinearfunctional on H*?(E").
By Theorem 2.1, there is an f ¢ H *'?'(E™) such that F1(v) = (v, f). More-
over, if ¢ e H'?(E™) and ¢ = 0, then (¢, f) = Fi(¢) = F(¢s) = 0. Hence
feHs# , and the proof is complete.

THEOREM 6.2. Given any bounded linear functional F(w) on Hgig , there
isan f ¢H” (E™) such that F(w) = (w, f). Moreover, another element f' has
this property if and only if fo = fo.

E

Proof. By hypothesis there is a constant ¢ such that | F(w)| < ¢ | w [|Z.»
for all we Hge'. Extend F(w) to be a bounded linear functional on the

4+ Here we mean that (f, ¢) = 0 for every y ¢ H™*?'(E") such that ¢ e N'.
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whole of H*?(E™). Then by Theorem 2.1, there is an f ¢ H**'(E") such
that F(w) = (w, f) for all w e H ""(E™) and a fortiori for all w e Hgie'. If
f' e H""(E™) and f¢ = fq, then (f/ — f, w) = 0 for all w e Hoi’. Hence
" can also be employed to represent F(w). Conversely, if f” ¢ H*? (E™) and
F(w) = (w, f”) for all w e Hoy&, then {f — f”, w) = 0and (f — )¢ = O,
since C5 (@) C Hgig .

THEOREM 6.3. There is a linear mapping 7—s,, of H "*(@) into Hoi& such

that
(w,v6) = (7, W, V), | 7—pw “—s » = |-
for all we H*"(@) and ¢ e H"?' (E™). If G satisfies Assumption (s, p'),
then 7_s.p 18 one-to-one, onto, and also satisfies
[ w oo < copr || 7 pw“—-s D

Proof. For each we H "*(@), (v, w) is a bounded linear functional on

H**(@). Hence by Theorem 6.1, there is an f e Hoig® such that

(007 w) = (vyf>
for all v e H"?'(E™). Thus

1517, = Lub, LB <y, L) |

. . . sy w —
veC g (B?) ” v ”spz - veC ¥ (EM) ” P) ”8,17, = “ ” 8,0 )

which also shows that fis unique. Moreover, if @ satisfies Assumption (s, p’),

l(w g)l |<f;08p’g>|

W -sp = Lub. Lub., 130w 9/

” ” ? aecu(ClG) ” g “sp 060}}(010) ” 05,00 9 “&p'
< ¢, lub LG b 9) | < 1FI%,.

‘ geC'w(.Cl'G) ” ] ”5"

Set 7_s,w = f. The last inequality shows that 7_,, is one-to-one. To
show that it is onto, we note that for any f e Hord’ and v e H?' (E™)

Loy V= ol 17150 £ e 1 120l e -

Hence (v, f) is a bounded linear functional on H**'(®) (since, under Assump-
tion (s, p’), every function in H*'” (@) is the restriction to G of a function in
H*®(E™). Thus by Theorem 2.1 there is a w ¢ H *'?(@) such that

<1),f> = (vG ’ ’I.U),

and hence f = 7, w. This completes the proof.
Proof of Theorem 5.1. Necessity. By Theorem 6.3,

1K, o) = 1w, A0)| = [(1Z 0w, A6)| S || 7=ap e | A6 [l

for all v e H™™'?(E™) such that vg e V"% (G).
Sufficiency. Let Y be the set of all w e H"?' (@) such that there is
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ay e H"™? (E™) satisfying ¢¢ ¢ V"% (@) and 4’¥6 = w. Clearly Y is a
linear subspace of H*'? (@). Set F(w) = (¢, f). Then F(w) is a bounded
linear functional on the subspace ¥ of H*?'(®). Extending it to be bounded
on the whole of H*?(G), we see that there is a ¢ ¢ Hoj# such that
F(te) = (&, o) forall ¢ e H? (@) (Theorem 6.1). In particular, this holds
if g e H" ™7 (BE™), Yo e V" (@), and A"y = ¢. Hence ¢, ) = (A"Y, o)
for all such ¢. Thus ¢ is a solution of the Visik-Sobolev problem.
Proof of Theorem 5.2. Clearly fe Hcig ~'?/N’ if and only if

s pf e H ™ ?(Q)/N".

Moreover, u € Hore’ satisfies (5.2) if and only if (775 ,u, A'u) = (12m—sp f, 0)
for all v ¢ V'. The theorem now follows immediately from Theorem 3.8.

Corollary 5.1 is an immediate consequence of Theorem 5.2 and the defini-
tion of an elliptic problem.

7. Further considerations and the remaining proofs

Before giving the proofs of the theorems of §§3 and 4, we shall discuss some
results of interest in themselves.

LemMma 7.1. Let S be a finite-dimensional subspace of H*'*(@) with s > 0.
Then there is a constant Cs,p, such that || v ||s,p = Cs,p|l v ||=s.r Jor all v e S.

Proof. We first prove that [|v o2 = ¢ | v |- for all veS. If this

were not so, there would be a sequence {v} < S such that || vx [0 = 1 and
|l v& ||=s,»» — 0. This means that for each w € S,

[(ve , w)| = || 0k [l—s,0r || w [s,0 = O.

Since S is a finite-dimensional subspace of L*(@), weak convergence is equiva-
lent to strong convergence. Hence || v [|o,, — 0, contradicting the hypothe-
sis. We next show that | v s, S c||v|oeforallve S. Let wi,---, wy be
a basis for S which satisfies (w; , wr) = 8z , where 5 is the Kronecker delta.
If our second assertion were not true, there would be a sequence {v;} C S such
that || vk ls,, = 1 while || v o, — 0. But v, = Y.;oxw;, and hence
ll e ll6e = 21l ew|’. Therefore ay; — 0 as k — o for each I. But this
means that
lonllor = 20l ol lwillo £ K220  anr| =0,

where K = max; || w;|[s,». This contradicts the second hypothesis, and
the proof is complete.

LemMA 7.2, Under the same hypotheses, every f e H "' (@) can be written
wn the form f = ' + f”, where f” € S and (f', S) = 0.

Proof. If feH (@), there is a sequence {f;} < C*(Cl @) such that
| f = fll—sr = 0. Since S is closed in L*(@), fx = fx + fr , where f¢ €S
and (fi, S) = 0 (projection theorem). But this means that

fe —11,8) = —fi,8) —0 ask,l — o.
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The equivalence of weak and strong convergence now tells us that there is
an f” ¢ S such that || fi — f” loe— 0. Setf = f — f”. Then

(f, 8) = lim (fp — f”, 8) = lim (fi —f”, 8) =0,
and the lemma is proved.
Lemma 7.3.  In addition to the above, for each t, g such that
H"*(G) S H"(G) S H"" (@)
there is a constant c"'* such that
1 llea = " 115 [0 Jor all f e H"(@).

Proof. Otherwise there would exist a sequence {fi} < C*(Cl Q@) such that
17 lee = 1 and || fi|lee — O as k — . In this case, || f¢ |4, — 1, and
hence || fz |1 = M for some constant M. Since S is finite-dimensional,
there are a subsequence of {f¢} (also denoted by {f¢}) and an f” ¢ S such
that || f — f” [lq—0. Nowfi+f" =fi 4+ =K +f" =fi — (fk — ),
and hence || fi + f” leq S 1S lle + 17 — " lleg — 0. But (f7, 8) =
(fe + f”, 8) — 0 which shows that f” = 0. Therefore || fi [|s,, — 0, which
contradicts the hypothesis. The lemma now follows.

Lemma 7.4. Under the same hypotheses
[0 ll—er = " Lub.gertacays [0, 9)I/1 g llea
for all v e H ' (G)/8.
Proof. For w e H"Y(@),

(v, W)/ w llt.g = 1(0, W)/ wlea = €™ [(v, w)I/]| 0" [|1.g

by Lemma 7.3. If ¢t = 0, our result follows from the definition of || v |[—¢, .
Otherwise, we apply Corollary 2.1.

TuroreM 7.1. Under the same hypotheses, every bounded linear functional
F(w) on H"*(@)/8 can be written in the form

) F(w) = (w,f),
where f e H "' (@)/8S.

Proof. For each v e H'*(@), v = v' + v” where v” ¢ S and (v, S) = 0
(Lemma 7.2). Let G(v) be the linear functional on H"‘(G) defined by
G(v) = F(v'). Then G(v) is bounded, since, by Lemma 7.3,

|G| = |F)| = v/ [l = e [0 ]leq-

Now by Theorem 2.1, there is an f ¢ H "% (@) such that G(v) = (v,, f) for
allv e H"(@). Moreover,ifve S, (v,f) = G(v) = 0. Hencef e H "¥(@)/S
and the proof is complete.
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COROLLARY 7.1. Under the same hypotheses, if f ¢ H %' (G) and |(f, v)| <
ol v]sq for all veC*(CL1@)/S, then fe H "“(Q). If (f, 8) = 0, then
| fll—ier < ¢"%o. In any event, there is a constant Ko independent of f such
that || f ||l-e.r = Ko(co + || f [|-s.00)-

Proof. By Lemma 7.2, f = f/ 4+ f”, where f” ¢ S and (f/, S) = 0. Since
S c H "¥(@), we must show that / e H "Y' (@). Now |(f,v)| = |(f, )| <
cl|lvleq for allv e C°(C1G)/S. Let F(v) = (v, f’) for all such v, and extend
F(v) to be a bounded linear functional on H*%(G)/S. By Theorem 7.1,
there is an fo e H 'Y (@)/S such that F(v) = (v,f,). Hence (f' — fo,v) =0
for all v e H % (@)/S. Lemma 7.4 now shows us that || f/ — fo||—s,,» = O.
Hence f’ = foe H "Y' (Q), and our first assertionis proved. Now if (f, 8) =0,
then f” = 0 and f = f,. But by completion, |(f, v)| < ¢ || v ||¢,¢ for all
v e H"%(@)/S. Hence, by Lemma 7.4 || f |1y < coc'™?, giving the second
agsertion. If f” 5 0, then

[ fll—ewr = 1F llctw + 1" Nt = 17 =t + Cop 117 1000
= (1 + Cs,p)” fl ”—t,q' + Ce,p ”f“—em'

=1+ Cs,p)ct'qCO + Csp ”f”—s,p' ’

by Lemma 7.1. This completes the proof.

Proof of Theorem 3.1. Inequality (3.7) is clearly necessary for (3.6) to
hold. For |(f, v)| = |(u, AW)| = || ulls.p || A0 ||—s,»r, by (8.3). To show
that it is sufficient, set F(4’v) = (v, f). Then F(w) is a properly defined
linear functional on the set R’ of all w such that there is a v ¢ V' satisfying
A'v = w. For if v; and v, are in V' and A’v; = A’v; = w, then

(v — 02, N S el A" (01 — )|l = O

and (vy,f) = (v2,f). Moreover, (3.7) implies that F(w) is bounded on R’
considered as a subspace of H *?'(@). Extend F(w) to be bounded on the
whole of H*'?'(@). Then by Theorem 2.1, there is a u ¢ H*'?(G) such that
F(w) = (w, w). In particular, this holds if v ¢ V' and A’v = w. Thus
(3.6) holds. The proof of (3.8) is almost identical employing V"% (@) and
Theorem 2.2 in place of H "% (@) and Theorem 2.1, respectively.

Proof of Theorem 3.2. Clearly, (3.9) is sufficient. For if f ¢ V'*%(G)/N’,

1ol S 1 fleallo e S el fleall A% e

forallv e V//N’. Now by Lemma 7.2, each v ¢ V' can be written in the form
v = v + v”, where v ¢ V//N’ and v” ¢ N'. Hence

Gl =1 S elfleall A - w = ¢l fleall 4 [

for all v ¢ V'. Thus, by Theorem 3.1, there is a u ¢ H'*(G) such that (3.6)
holds.

Now assume that for each f e V'*%(G)/N’ there is a u ¢ H*'?(@) satisfying
(3.6). Let N*?(Q) be the set of those u e H*?(Q) satisfying (u, A'v) = 0
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forallv e V. N°?(Q) is a closed subspace of H*?(G), and for each f there
is at most one’ u e H?(G)/N°?(@) satisfying (3.6). Write u = Tf. If
|fe = glix— Oand || Tfi — w [l.p — 0, then

(w, A'v) = lim (Tfi, A") = lim (fi,v) = (g,v)

for all v ¢ V’, and hence w = Tg This means that T has a closed graph.
By the closed graph theorem, || Tf |ls.,, < co|f |¢.q for all f e V'*%G)/N".

Now if (3.6) holds for every such f, we have

|(F, )| = [(Tf, AD)| S | Tf llap | A% o S €| F 00 | A [|—o,r
forallv eV’ and f e V'*4(@)/N’. Hence

IO/ flia S eoll A [l -
But by Lemma 7.4,

[0 ]|—r = " Lwb.sec=rann [0, HI/1 l.a

for all v e V//N’. (Here we have made use of the fact that for f ¢ C*(Cl @),
[flie = 11flee.) Since co is independent of f, (3.9) follows immediately.
The proof of (3.10) is similar and is omitted.

Proof of Theorem 3.3. The method of the proof of Theorem 3.1 is employed.
It should be noted that now (v, f) is considered a functional on H*'? (Q).

Proof of Theorem 3.4. The sufficiency follows from Theorem 3.3 as in the
proof of Theorem 3.2. The necessity proof is almost identical to that of
Theorem 3.2.

Proof of Theorem 3.5. (a)=>(b). Sinceu ¢ V""*'?(@), there is a sequence
{ux} < V such that | ue — % ||m+e,p — 0. Then

| ACur — u)llsp S cll e — Ut lmsp =0  ask,l— .
Hence there is a g e H"'"(G) such that || Aux — ¢ |s,» = 0. But
(g,v) = lim (Aug,v) = im (ux, A'v) = (u, A'v) = (f,v)

for all v e V'. Hence f = g e H"?(Q@), and || Aur — f|ls,» — O.

(b) = (a). Clearly, (f,v) = lim (Aux,v) = lim (ux, 4v) = (u, 4'v)
for allv e V.

That (a) and (¢) are equivalent follows from Theorem 3.1.

Theorem 3.6 is an immediate consequence of Theorems 3.2 and 3.5.

Proof of Theorem 3.7. (a) = (b). Sinceu ¢ H "*(@G), there is a sequence
{ur} < C*(@) such that || ux — % ||—,» — 0 (Lemma 6.2). Hence

| A(u — ul)l-’-—m—s,p Scllu— w|-p—0 ask,l— .

5 Here we mean the actual quotient space consisting of the cosets of New(@). If
an element v of this space is represented by w ¢ H*?(@), then

% llor = glballw+ A llso,
where h ¢ N*2(@).
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Thus there isa g ¢ V""""?(@) such that | Aux — ¢ |-m—s,, = 0. But
(g,v) = lim (Aug,v) = lim (ux, A) = (u, A'v) = (f,v)

forallveV’. Hencef = g.

That (b) implies (a) follows as in the proof of Theorem 3.5. The equiv-
alence of (a) and (c¢) follows from Theorem 3.3.

Theorem 3.8 follows immediately from Theorems 3.4 and 3.7. Theorem
4.1 is an obvious consequence of Theorem 3.8.

Proof of Theorem 4.2. Let v be any function in V’. Then (v, Au) =
(u, A’'v) for all uw ¢ V. Hence

10, Aw)| £ [ llmtoor | A0 lomsip = 0| A |omeep || Aw o,

for all u e V/N (by (¢)). Moreover, by (b) for each f ¢ C*(Cl G)/N’ there
is a u ¢ V such that Au = f. By the finite-dimensionality of N and Lemma
7.2, we may assume that u ¢ V/N. Hence for every such f,

|(v7 f)l é Co l A’v l_m_‘s'p “f ” 8,p" »

The theorem now follows readily from Lemmas 7.4 and 7.1 (cf. the proof of
Corollary 7.1).

Proof of Theorem 4.3. By (¢), |(h, Au)| = ¢1 || % |mtsr S crco || Au |[s,pr
for all ue V/N. By (b) and the reasoning above, it follows from this that
[(hy )] S ercoll fls.pr for all feC*(CLG)/N’. Our result now follows im-
mediately from Corollary 7.1.

Proof of Theorem 4.4. TFollowing the procedure of the last proof, we see
that |(h, Av)| < 2 K | A" |—m—s, for all v ¢ V//N’ (Theorem 4.2). Hence
[(hy )| £ 2K | gl-msp = 2K || gl —ms,» for all geC*(C1G)/N. Thus
by Corollary 7.1, k e H™*? (@), and || h |misr = Ko(cz K + | b lls.pr)-
Moreover, (h, g) = 0 for all g e C*(Cl @) such that (g, V) = 0. Hence h
must be in the closure of V in H™"*?' (). Thus h e V"*? (@), and the
proof is complete.

8. The remaining proofs

It remains to prove the theorems of §2. Clearly, Theorem 2.1 is a special
case of Theorem 2.2.

Proof of Theorem 2.2. We first note that V(@) is reflexive, since it
is a closed subspace of the reflexive space L?(G) X L*(G) X -+ X L*(@).
Next, we let Z denote the set of all bounded linear functionals F(v) on V*'*(@)
which can be written in the form F(v) = (v, u), where w ¢ V""'?'(@). (That
(v, u) is a bounded linear functional on V*'?(@) for u e V"*?'(@) follows
from (3.4).) Now the set Z is a complete set of functionals, i.e., their simul-
taneous vanishing for any element v ¢ V*'*(@) implies that v = 0 (this follows
from the fact that C3(Q) < V™" (G)). Hence Z is dense in the set of all
bounded linear functionals on V*'*(@®).

In addition, the norm of F(v) = (v, u) as a bounded linear functional on
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Vo?(@) is | u|—sp. Since V™"?(@) is complete, this means that Z is also
closed in the set of all bounded linear functionals on V*?(G). Thus Z is
both dense and closed which makes it equal to the set of bounded linear
functionals on V*'?(@). Since V*'?(Q) is reflexive, (V°?())’ = V"?(@),
and the proof is complete.

Proof of Corollary 2.2. We know that for v e V"'*(®)

[ollep = Lub. [F@I/IFI,

where the least upper bound is taken over all bounded linear functionals
on V*?(®). By Theorem 2.2, every such F can be written in the form
F(v) = (v, u), where u e V"% (G). Moreover, || F | = |4 |, , and the
result is immediate.

Corollary 2.1 is a special case of Corollary 2.2.

BIBLIOGRAPHY

1. SumuEL AeMoON, The Ly, approach to the Dirichlet problem. I, Technical Note No. 7,
Jerusalem, The Hebrew University, 1959.

2. S. AemoN, A. DougLis, AND L. NIRENBERG, Esttmates near the boundary for solutions
of elliptic partial differential equations satisfying general boundary conditions.
I, Comm. Pure Appl. Math., vol. 12 (1959), pp. 623-727.

3. N. BourBax1, Espaces vectoriels topologiques, Eléments de Mathématique, Livre V,
Paris, Hermann, 1955.

4. F. E. BROWDER, Estimates and existence theorems for elliptic boundary value problems,
Proe. Nat. Acad. Sci. U. S. A., vol. 45 (1959), pp. 365-372.

5. J. L. Lions, Conditions aux limites de Visik-Soboleff et problémes mixtes, C. R. Acad.

Sci. Paris, vol. 244 (1957), pp. 1126-1128.

, Lectures on elliptic partial differential equations, Bombay, Tata Institute of

Fundamental Research, 1957.

7. ENrRicO MAGENES AND GUIDO STAMPACCHIA, I problems al contorno per le equaziont
differenziali di tipo ellittico, Ann. Scuola Norm. Sup. Pisa (3), vol. 12 (1958),
pp. 247-358.

8. MARTIN SCHECHTER, General boundary value problems for elliptic partial differential
equations, Comm. Pure Appl. Math., vol. 12 (1959), pp. 457-486.

9. , Remarks on elliptic boundary value problems, Comm. Pure Appl. Math., vol.
12 (1959), pp. 561-578.
10. , Negative norms and boundary problems, Ann. of Math. (2), vol. 72 (1960), pp.

581-593.

11. M. I. Vi8ix anp S. L. SoBoLEV, General formulation of certain boundary problems for
elliptic partial differential equations, Dokl. Akad. Nauk SSSR (N.S.), vol. 111
(1956), pp. 521-523 (in Russian).

New York UNIVERSITY
New York, NEw YoRk

Tue UNIVERSITY OF CHICAGO
Cuicago, ILLINOIS



