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1. Introduction

In a previous publication [10] the author applied the method of negative
norms to elliptic boundary value problems. It was shown how inequalities
involving such norms led to solutions of boundary problems for distributions.
Existence theorems were easily obtained together with powerful regularity
results.

In this paper we extract the essential features of the method and apply
them to general boundary problems for arbitrary partial differential equations.
The problems are posed in such a way as to include ,all types of equations
and boundary conditions. We seek necessary and sufficient conditions for
the existence of classical, strong, and weak solutions. These conditions are
usually expressed by means of inequalities (a priori estimates). In applying
the theory one would have to show that a certain inequality is satisfied.
Existence then follows automatically. In some particular cases (e.g., the
Viik-Sobolev problems, cf. 5) it was discovered that the required inequalities
were already known, giving the desired existence theorems immediately.
Our main tools are representation theorems for bounded linear functionals

on the spaces Ht’(G) and their subspaces, where is an arbitrary integer,
p an arbitrary real number greater than one, and G an arbitrary domain in
Euclidean n-space (cf. Theorems 2.1, 2.2, 6.2, 6.3, 7.1). For => 0, Ht’’(G)
is defined as the completion of C(C1 G) with respect to the norm

where summation is taken over all derivatives D of order r -< t. For < 0,
H’’(G) is the completion of C(C1 G) with respect to the norm

where

(u, v) fau dx and p’ p/(p 1).

Theorem 2.1 states that H-t’V’(G) is the dual of Ht’V(G) and vice versa.
Other ttfeorems give representations for various types of subspaces of Ht’V(G).
They require the introduction of other negative norms.

In 3 we consider boundary problems for partial differential equations.
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Let V be a linear subspace of C(C1 G) which contains those functions with
compact support in G. Typical result" Given a partial differential operator
A and a distribution f, a necessary and sufficient condition that there exist
u e H’(G) such that

(1.1) (u, Av) (f, v)

for all v e V, is that

(1.2) [(f, v Di _-< c Av

for all v e V. Moreover, there is such a u for each f e Hr’q(G) if and only if

(1.3) v ]I-r ,q, <= c I] dv

for all v e V (more refined statements will be found in 3). Moreover similar
criteria are shown to hold when u is to be restricted to certain subspaces of
H’(G). For these and related results we refer to 3.

In 4 the theorems of 3 are applied to elliptic poblems. They give rise
to new inequalities and existence and regularity theorems. For example if
A is properly elliptic and V is determined by differential boundary conditions
which cover A (cf. [2], [4], [9]), it follows from our results that for s => 0,

for all v e V. Moreover, if h is a distribution and [(h, Av)l =< co v [I-,. for
all v e V, then h e H+’’(G), and there is a constant K independent of h such
that h [],+,., <- K(co + IIh Further results may be found in 4.
Another application is to the so-called Vigik-Sobolev problems (cf. [5], [6],

[11]). In 5 we embed these problems into a very general framework and
then show how our theorems give the complete answers for them.
6 is devoted to the spuces Hca which arose in connection with the Viik-

Sobolev problems. We prove a representation theorem due to Lions [5], [6]
Ha and G) areand show that under mild assumptions on G that

isomorphic. The proofs of the theorems of 5 are also given.
Proofs of the theorems in 3 and 4 are given in 7. We note that Theorem

7.1, Corollary 7.1, and Lemmus 7.1-7.4 are of interest in their own right.
Proofs of the theorems of 2 are given in 8.
The author is thankful to L. Nirenberg and J. Peetre for several interesting

discussions.

2. Certain function spaces

Le G be a domain in Euclidean n-space E with boundary OG and closure
C1 G. Let C(C1 G) be the set of complex-valued functions infinitely dif-
ferentiable on C1 G with compact support. If (t, , t) is any
multi-index of length 1 - . -+- -t- ,, set

D’= O’’l/(iOx)’(iOx)’ (iOx,) ’’.
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For any nonnegative integer s and any real number p greater than one, we
define

u II,
=,

(2.2) u ,)I/11 p’ p/(p 1)

Cfor functions u e (C1 G) where

(u, v) f u dx.

Denote the completions of C(C1 G) with respect to these norms by Hs’(G)
and H-8’’(G) respectively. They are Banach spaces.

Let C(E) be the set of infinitely differentiable complex functions with
compact support in En. For such functions we employ the norm

Denote the closure of C(E’) with respect to this norm by Hs’’(En). For
any function k e Hs’(E) we let k o denote the restriction of k to G. Clearly
k e H"(G).

THEOREM 2.1. The spaces H’(G) and H-""(G) are conjugate to one
another.

COROLLARY 2.1. For u e (G)

If,., 1.u.b.,,,c=(oo>l(u, v)l/ll v

Now let C(G) denote the set of all v e C(C1 G) which vanish near
Let V be any linear space of functions such that C;’(G) V

_
C(C1 G).

Corresponding to V we define the norm

(2.4) u l-,., 1.u.b.,,l(u, )l/ll v

for functions u e C*(C1 G). Complete C=(C1 G) with respect to this norm,
and call the resulting Banaeh space V-"’(G). Let V’’(G) be the closure
of V in H"’(G).

THEOREM 2.2. V"’(G) and V-’’(G) are dual spaces.

COROLLARY 2.2. For u e (G)

3. Boundary value problems
Let A 1,1-_< a,(x)D" be a partial differential operator of order m __> 1

with coefficients a.(x) e C(C1G). The formal adjoint A’ of A is defined by

Some assumptions are made for convenience only. Our results hold under less re-

strictive hypotheses.
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integration by parts, i.e., by

(3.1) (Au, v) (u, A’v),

holding when u or v belongs to C(G). We define V’ as the set of those
v e C(C1 G) which satisfy (3.1) for all u e V. Clearly V’ is a linear space
contUining C(G). We set

(3.2)

and denote the eompletion of C(C1 G) with respect to ]’_,, by V’-"’(G).
The closure of V’ in H"’(G) is t’o be denoted by V"’(G).
Now by (2.2), (2.4), and (3.2) we have the following inequalities.

(3.3)

Let N (resp. N’) be the set of those u e V (resp. v e V’) such that Au 0
(resp. A’v 0). We shall assume that N’ is finite-dimensional. As before,
s will denote a nonnegative integer. The letters r, will denote arbitrary
integers, and p, q will denote real numbers greater than one, with

p’ p/(p 1), q’ q/(q- 1).

If L and L’ are subspaces of Ht’(G) and H-t’’ (G), respectively, we let L/L
represent the set of all u e L which satisfy (u, L’) 0 (i.e., (u, v) 0 for
all v e L’).
When is positive, we set u t, u ]t, u t,. We write u e H-=(G)

(resp. V-=(G), V’-=(G)) when u e Ht’(G) (resp. Vt’(G), V’t’(G)) for
some and p.

THEOREM 3.1. For f e V’-’(G) there is a u e H"’’(G) such that

(3.6) (u, A’v) (f, v) for all v e V’

if and only if
(3.7) I(f, v)l <= c A’v I1-,’ for all v e Y’.

There is a u e V"’’(G) satisfying (3.6)/f and only if
(3.8) [(f, v)] <= c A’v I-.,.’ for all v e V’.

In Theorems.3.2 and 3.4 below, when > 0 the spaces V’t’(G)/N should
be replaced by Ht’(G)/N’.

THEOREM 3.2. A necessary and sufficient condition that for each
f e V’t’(G)/N there exist a u e H’(G) satisfying (3.6) is that

(3.9) v ]]_,q, <= c A’v I]-,.’ for all v e V’/N’.

A necessary and suhficient condition that for each such f a u e V"’(G) satisfy
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(3.6) is that

(3.10)

THEOREM 3.3.

(3.)

v [1_,., <- c A’v l-,’ for all v e V’/N’.
A u e H-"(G) satisfies (3.6) if and only if

[(f, v)[ =< c A’v ]],, for all v e V’.

THEOREM 3.4. A necessary and sufficient condition that for each
f e V’t’q(G)/N there exist a u eH-"(G) satisfying (3.6) is that

(3.12) v I[-.’ <- c A’v ]1,’ for all v e V’/N’.
THEOREM 3.5. Let f e V’-(G) be given. Then the following statements are

equivalent:
(a) There is a u V’+"(G) satisfying (3.6).
(b) f e H’(G)/N’, and there are a u V’+"(G) and a sequence {uk} C V

such that uk u [I,,+, --* 0 and Auk f I1, -> 0 as t --> .
(c) [(f, v)l <= c A’v l_,_,, for all v V’.

THEOREM 3.6. The following statements are equivalent"
(a) For every f e H"(G)/N there is a u e Vm+"(G) satisfying (3.6).
(b) For every f eH"(G)/N there are a u e V"+"(G) and a sequence

{uk} c V such that i[ uk u [[+8, -- 0 and Auk f I], - 0 as to o.
(c) v ][_,, _-< c lA’v I--,’ for all v e V’/N’.
THEOREM 3.7. Let f e V’-(G) be given. The following statements are

equivalent"
(a) There is a u e H-"’(G) satisfying (3.6).
(b) f e V’--’’(G)/N’, and there are a u eH-’(G) and a sequence

{uk} c C(G) such that ][ uk u [[_,. 0, Au f I’-, -- o as t ----> .
(c) [(f, v)!

_
c [[ A’v for all v e V’.

THeOreM 3.8. The following are equivalent:
(a) For every f e V’-’-"(G)/N there is a u e H-"’(G) satisfying (3.6).
(b) For every f e V’-’-8"(G)/N’ there are a u e H-"(G) and a sequence

{uk} C(G) such that uk u [[_,, 0, [Auk f I’-,,,-,. 0 as l ----> .
(c) [I v I[m+,’ ----< c A’v ]1,’ for all v e V’/N’.

4. Elliptic problems
We shall say that A is elliptic on V if
(a) N and N’ are finite-dimensional,
(b) for everyf e C(C1G)/N there is a u e V such that Au f,
(c) for some s and p,

u I1,+.’ <= co 11 Au II,,’ for all u e V/N.
It can be shown that a properly elliptic operator A is elliptic on a wide

variety of spaces V satisfying homogeneous boundary data (cf. [2], [4], [9]).
In this section we shall assume that (a)-(c) hold and consider some conse-
quences.
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THEOREM 4.1.
sequence uk} c C G) such that

THEOREM 4.2.

THEOREM 4.3.
then h e H-8’’(G),
such that

THEOREM 4.4.

For each f e v-m-8’P(G)/N there are a u e H-8’’(G) and a

and

There are constants K and K such that

for all v e V’/N’,

for all v e V’.

Ifh eH-(G) and I(h, Au)l <- cl u II,+,.,, for all u e V/N,
and there is a constant KI depending only on N’, m, s, and p

Assume, in addition, that for every g e C(C1 G)/N there is a
v e V’ such that A’v g. Then if he H-(G) and l(h, A’v)l <- c2 v I1-,, for
all v e V’/N’, we have h e vm+""(G), and there is a constant K. depending
only on N, m, s, and p such that h +,, K(c Co + h [[,v,).

5. Viik-Sobolev problems
We introduce negative norms on E as follows. Let

dx

be the L(E) inner product. Set
B

Denote the completion of C(E) with respect to the norm II:, by
H-"(E). This space may be defined in other ways (cf. [5], [7]).
We shall say that the domain G satisfies Assumption (s, p) if there is a

linear mapping 0, of H"’(G) into H’(E) such that
(a) (o,,,v)o v a.e.,

for all v e H"(G).
An element u e "’(E) is said to be in Ha if (u, v} 0 for all v in

H’’’(E") with vo O. We shall show in 6 that Hfa is isomorphic to
"(G) provided G satisfies Assumption (s, p’). We let M-’’ be the set
of all h e"(E) which satisfy (h, v} 0 whenever v e H"’(E") and
v o e V’"’’(G). Clearly, M-’’ is a subspace of Hco-".
Now assume that the coefficients of A are in C(E). For every

h e H-’ (E) there is an element g e H--’ (E) such that

(5.1) <h, d’v} v)

for all v e H+’’’(E"). We define Ah to be g. Let f e HZ’’ be given.
We shall say that an element u e Hco is a solution of the Vigik-Sobolev

Cf. Footnote 2.
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problem if

(5.2) (u, A’v (f, v }

for all v e Hm+’’’(En) such that v e V’m+’’’(G). If (5.2) holds, then
by (5.1), (Au f, v} 0 for all v eH’+"’(E) such that vq e V"+"’(G).
Hence Au f e M-’-8’. Conversely, if Au f e M-’-’, then (5.2)
holds. Therefore we may say that u is a solution of the Viik-Sobolev problem

]pif Au f e For previous results on such problems, we refer to
Lions [5], [6] and Viik-Sobolev [11].

THEOREM 5.1. A sujcient condition that there exist a solution to the Viik-
Sobolev problem is that

(5.3)

for all v e H"+8’ , (E,) such that v ( e v’m+., (G).
on G, this is also necessary.

Under Assumption (s, p’)

THEOREM 5.2. If G satisfies Assumptions (s, p’) and (m + s, p’), then
the Viilc-Sobolev problem has a solution for every f e H-’-8’’/N if, and only if,

for all v e V’/N’.

COROLLARY 5.1. If A is elliptic on V, and G satisfies Assumptions (s, p’)
and (m -- s, p’), then the Viitc-Sobolev problem has a solution for each
f e H-I-’P/N’.

6. The spaces Hcl-’
In this section we shall give proofs for the theorems of 5.

8,0discuss some properties of the spaces Hcl
We shall first

THEOREM 6.1 (Lions [5], [6]). If F(u) is a bounded linear functional on
H"(G), then there is a unique f e H’a’ such that F(va)- (v, f} for all
v e Hs’(En).

Proof. For v eH’(E’), set F(v) F(va). Then F(v) F(va)[ _-<
Bnc [I vll,,, -<_ c v I],, Thus F(v)isa bounded linearfunctional on Hs’(E’).

By Theorem 2.1, there is an f e H-"’’(E") such that F(v) (v, f). More-
over, if e H"’(E’) and oo 0, then (o, f} F(q) F(oa) 0. Hence

8,pf e Hclo and the proof is complete.

THEOREM 6.2. Given any bounded linear functional F(w) on H-b, there
is an f e’H"’’(E’) such that F(w) (w, f}. Moreover, another element f’ has
this property if and only iff fo.

Proof. By hypothesis there is a constant c such that
for all w e Hce. Extend F(w) to be a bounded linear functional on the

Here we mean that (f, ) 0 for every H+’,’(E") such that Ca N’.



ON THE THEORY OF DIFFERENTIAL BOUNDARY PROBLEMS 239

whole of H-8’ "(E). Then by Theorem 2.1, there, is an f e H8’’ (En) such
that F(w) (w, f) for all w e H-8’(E) and a fortiori for all w H. If
f’eH8’’(E) andf f, then (f’ -f,w} 0forallweH. Hence
f’ can also be employed to represent F(w). Conversely, if f" e H’’’ (E) and
F(w) {w, ff}forallweHb,then if--if, w} 0and (f-ff) 0,
since C(G) Hc
THEOREM 6.3. There is a linear mapping r_, of H-"(G) intoH such

that
(, ,) (_,, v), -, <

I1-, ,, ,-, 11-,.

Poof. For ech e H-’(G), (v, ) is oded linear ctiol on
H’’(G). Hence y Theorem .1, there is y eH sch Lh

or 11 v H’’(E). Thus

which lso shows thatf is ie. oreover, if G stisfies kssmptio (s, p’),

-, H8,,show that it is onto, we note that for any f e Hc and v e (E)

Hence (v, f) is a bounded linear functional on H’’(G) (since, under Assump-
tion (s, p’), every function in H’’(G) is the restriction to G of a function in
H"’(E)). Thus by Theorem 2.1 there is w e H-"(G) such that

(v,f) (re, w),

and hence f v_, w. This completes the proof.
Proof of Theorem 5.1. Necessity. By Theorem 6.3,

(f v)l (u, A’v)[ I( --1 ,y --1r_,u,A o)1 < , ,,_ u II- A’o ,,
H+, V’+,’for 11 v (E) such that v e (G).

Suiency. Let Y be the set of 11 w e (G) such that there is
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Hm+s p, vfm..bs pra b e (En) satisfying o e (G) and A’o w. Clearly Y is a
linear subspace of H‘’’(G). Set F(w) (b, f}. Then F(w) is a bounded
linear functional on the subspace Y of H"’(G). Extending it to be bounded
on the whole of H"’(G), we see that there is a e Hca such that
F(e) ( ) for all e (G) (Theorem 6.1). In particular, this holds

H+’’’ V’+’’’ ,if e (E) ,e (G), and A . ence (, f) (A’, )
for all such . Thus is a solution of the Viik-Sobole problem.
Prog of Theorem 5.2. Clearly f H-"/N if and only if

-1 H-m-s,__,.f e (G)/N’
Moreover, u e Hco satisfies (5.2) if and only if (_,,- u, A’u) (__,-, f,v)
for all v e V’. The theorem now follows immediately from Theorem 3.8.

Corollary 5.1 is an immediate consequence of Theorem 5.2 and the defini-
tion of an elliptic problem.

7. urther considerations and the remainin9 proofs
Before giving the proofs of the theorems of 3 and 4, we shall discuss some

results of interest in themselves.

LEMMA 7.1. Let S be a finite-dimensional subspace of H"(G) with s > O.
Then there is a constant C,. such that v ]],. C,. v [[_,., for all v e S.

Proof. We first prove that v [[0,: c v [[_,,, for all v e S. If this
were not so, there would be sequence {v} c S such that v ]]0, 1 and
v [[_,, 0. This means that for each w e S,

Since S is a finite-dimensional subspace of L(G), weak convergence is equiva-
lent to strong convergence. Hence v [0, 0, contradicting the hypothe-
sis. Wenextshowthutv,,cv0.forallveS. Letw,...,w be
a basis for S which satisfies (w, w) , where is the Kronecker delta.
If our second assertion were not true, there would be a sequence {v} c S such
thatv[. 1 whilev]]0, 0. But v aw, and hence
[]v[. [a. Thereforea0as k for each 1. But this
means that

where K max w ,. This contradicts the second hypothesis, and
the proof is complete.

H-8,LEMMA 7.2 Under the same hypotheses, every f (G) can be written
in the form f f’ + f’, where f" S and (f’, S) O.

Proof. If f (G), there is a sequence {f C(C1 G) such that
f f ]l-.’ 0. Since S is closed in L(G), f f + f’, where f’e S

and (f, S) 0 (projection theorem). But this means that

(f’ fT S) (f f, S) o as , .
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The equivalence of weak and strong convergence now tells us that there is
an f"e S such that f/,’ f" II0,2 --+ 0. Set f’ f f". Then

(f’, S) lim (fk f’, S) lim (f’ f", S) 0,

and the lemma is proved.

LEMMA 7.3. In addition to the above, for each t, q such that

Hs’(G) H"q(G)

_
H-8’’(G)

there is a constant c’ such that

[I f’ I1,, <- c" f . for all f e (G).

Proof. Otherwise there would exist a sequence {f} C(C1 G) such that
]]f’],,q land [[f[[,,0 as . In this case, l]f’]],,q 1, and
hence f’ ]],, M for some constant M. Since S is finite-dimensional,
there are a subsequence of {f’} (also denoted by {f’}) and an f" e S such
that ]]f’ -f" 1[,,0. Now +f" +f’ -f’ +f" f (f’ f"),
nd hence 1 f + f" [t, Z f [],, + II f’ -f" I[,, 0. But (f", S)
(f + f", S) 0 wch shows that f 0. Therefore f I1,, 0, which
contradicts the hypothesis. The lemm now follows.

LMM 7.4. Under the same hypotheses

rot all v ’’(G)/S.

Proof. For w e H’’(G),
!<,  >i/tl I1,, 1<, w’>l/ll w 11,, z c’’ !<, w’>illl w’

by Lemm 7.3. If 0, our result follows from the definition of
Otherwise, we apply Corollary 2.1.

THEOREM 7.1. Under the same hypotheses, every bounded linear functional
F(w) on H’’q (G)/S can be written in the form

F(w) (w, f),
where f H-’q’ (G) /S.

Proof. For eachveHt’q(G), v v’ q- v" where v" e S and (v’, S) 0
(Lemma 7.2). Let G(v,) be the linear functional on H"(G) defined by
G(v) F(v’). Then G(v) is bounded, since, by Lemmu 7.3,

G(v)I F(v’)[ <= c v’ I1,, -<- cc it II,,.

Now by Theorem 2.1, there is an f eH-t’q’(G)such that G(v) (v, f) for
ally e G). Moreover, ifv S, (v,f) G(v) 0. Hencef ell- (G)/S
and the proof is complete.
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-8,ptCOROLLARY 7.1. Under the same hypotheses, if f (G) and [(f, v)l <
COOCo v I]t,q for all v e (C1 G)/S, then f e S-t’q’(G) If (f, S) O, then

f <= c’co, i any event, there is a constant Ko independent of f such
that f I[-t.q’ <-- Ko(co -- IIf [I-,,’).

Proof. By Lemmu 7.2, f f’ + if, where ff S and (f’, S) O. Since
U-t’qtS c H-t’q’(G) we must show that f’e (G). Now I(f’, v)l I(f, v)l <

COOc v IIt,q for all v e (C1G)/S. Let F(v) (v,f’) for all such v, and extend
F(v) to be a bounded linear functional on Ht’q(G)/S. By Theorem 7.1,
there is an f0 e H-t’q’ (G)/S such that F(v) (v, f0). Hence (f’ fo, v) 0
for all v eH-8’’(G)/S. Lemma 7.4 now shows us that IIf’ fo 11-8,’ O.
Hence f’ foe H"t’q’ (G), and our first assertion is proved. Now if (f, S) 0,
thenf" 0 andf =f0. But by completion, I(f, v)l =< Co IIv llt,q for all
Ut,q ct’qv (G)/S. Hence, by Lemma 7.4 f ][-t,q, < co giving the second

assertion. If f" O, then

< (1 + C8,)c’
by Lemma 7.1. This completes the proof.

Proof of Theorem 3.1. Inequality (3.7) is clearly necessary for (3.6) to
ho d. For I(f, v)i ](u, A’v)l <= u I]8, A’v 11-8.v’ by (3.3). To show
that it is sufficient, set F(Atv) (v, f). Then F(w) is a properly defined
linear functional on the set R’ of all w such that there is a v e W satisfying
Av w. For ifvandvarein V’ and A’v A’v w, then

I(v w., f) -< c A’(v v2)l]_8,v 0

and (v, f) (v, f). Moreover, (3.7) implies that F(w) is bounded on R’
considered as a subspace of H-’’v’(G). Extend F(w) to be bounded on the

H"V(G) such thatwhole of H-’V’(G) Then by Theorem 2.1 there is a u e

F(w) (w, u). In particular, this holds if v e V’ and A’v w. Thus
(3.6) holds. The proof of (3.8) is almost identical employing V-.’v’ (G) and
Theorem 2.2 in place of H--’’v’(G) and Theorem 2.1, respectively.

Proof or Theorem 3.2. Clearly, (3.9) is sufficient. For if f v’t’q(G)/N’,

for all v e V’/N’. Now by Lemma 7.2, each v e V’ can be written in the form
v v’ + v", where v’ V’/N’ and v" e N’. Hence

H"V(G) such that (3.6)for all v V’. Thus, by Theorem 3 1 here is a u
holds.
Now assume hat for each f V’t’q(G)fN’ there is a u (G) satisfying

H(3.6) Let "V(G) be the set of those u V(G) satisfying (u, A’v) 0
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for all v e V’. ’(G) is a closed subspace of H"(G), and for each f there
is at most one u eH’(G)/’(G) satisfying (3.6). Write u Tf. If

(w, A’v) lim (Tf, A’v) lira (f, v) (g, v)

for all v V’, and hence w Tg This means that T has a closed graph.
VttBy the closed graph theorem, Tf I[., <= Co if [.q for all f e "(G)/N’.

Now if (3.6) holds for every such f, we have

for all v e V’ and f e V’t’q(G)/N’. Hence

[(f, v)l/l f [,a Co A’v

But by Lemma 7.4,

v

for all v W/N’. (Here we have made use of the fact that for f e C*(C1 G),
If l.q -<- f [[,.q.) Since co is independent of f, (3.9) follows immediately.
The proof of (3.10) is similar and is omitted.

Proof of Theorem 3.3. The method of the proof of Theorem 3.1 is employed.
It should be noted that now (v, f) is considered a functional on H’’(G).

Proof of Theorem 3.4. The sufficiency follows from Theorem 3.3 as in the
proof of Theorem 3.2. The necessity proof is almost identical to that of
Theorem 3.2.

Proof of Theorem 3.5. (a) (b). Sinceu e V+8’(G), there is a sequence
[uk} c V such that uk u IIm+, -- 0. Then

ask, l-+

Hence there is a g e H’(G) such that Auk g 118, --> O. But

(g, v) lim (Auk, v) lim (uk, A’v) (u, A’v) (f, v)

for all v e V’. Hence f g e H’(G), and Au f I1. -- O.
(b) (a). Clearly, (f, v) lim (Auk, v) lim (u, A’v) (u, A’v)

for all v e W.
That (a) and (c) are equivalent follows from Theorem 3.1.
Theorem 3.6 is an immediate consequence of Theorems 3.2 and 3.5.
Proof of Theorem 3.7. (a) (b). Since u H-"(G), there is a sequence

uk} c C(G) such that II u u I1-. - 0 (Lemma 6.2). Hence

Here we mean the actual quotient space consisting of the cosets of hT’,(G). If
an element u of this space is represented by u H’,(G), then

where h fs,(G).
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Thus there is a g e V’-’-s’(G) such that Au g 1’-,-8. O. But

(g, v) lim (Au v) lim (u A’v) (u, A’v) (f, v)

for allveV’. Hence f= g.
That (b) implies (a) follows as in the proof of Theorem 3.5. The equiv-

alence of (a) and (c) follows from Theorem 3.3.
Theorem 3.8 follows immediately from Theorems 3.4 and 3.7. Theorem

4.1 is an obvious consequence of Theorem 3.8.
Proof of Theorem 4.2. Let v be any function in V’. Then (v, Au)

(u, A’v) for all u e V. Hence

I(v, Au)l <= II u II,+.’ A’v I-,,-. <= co A’v !-,-,, Au

for all u e V/N (by (c)). Moreover, by (b) for each f e C (C1 G) IN’ there
is a u e V such that Au f. By the finite-dimensionality of N and Lemma
7.2, we may assume that u e V/N. Hence for every such f,

The theorem now follows readily from Lemmas 7.4 and 7.1 (cf. the proof of
Corollary 7.1).

Proof of Theorem 4.3. By (c), I(h, Au)l <=
for all u e V/N. By (b) and the reasoning above, it follows from this that
I(h, f) -< c Co f I1.’ for all f e C(C1 G)/N’. Our result now follows im-
mediately from Corollary 7.1.

Proof of Theorem 4.4. Following the procedure of the last proof, we see
that I(h, A’v)l <= c K IA’v I-,,-s.p for all v e V’/N’ (Theorem 4.2). Hence
](h, g)i <- c gig I-,,-. <= c g ]i g I]--8, for all g e C(C1 G)/N. Thus
by Corollary 7.1, he g+’’(G), and
Moreover, (h, g) 0 for all g e C(C1 G) such that (g, V) 0. Hence h
must be in the closure of V in Hm+’’(G). Thus h e V+’’’(G), and the
proof is complete.

8. The remaining proofs
It remains to prove the theorems of 2. Clearly, Theorem 2.1 is a special

case of Theorem 2.2.
Proof of Theorem 2.2. We first note that V"(G) is reflexive, since it

is a closed subspace of the, reflexive space L’(G) X L(G) X X L(G).
Next, we let Z denote the set of all bounded linear functionals F(v) on Vs’(G)

y-- :Pwhich can be written in the form F(v) (v, u), where u e (G). (That
(,, u) is bounded linear functional on V’(G) for u (G) follows
from (3.4).) Now the set Z is a complete set of functionals, i.e., their simul-
taneous vanishing for any element v V"(G) implies that v 0 (this follows
from the fact that C(G) V-.’’(G)). Hence Z is dense in the set of all
bounded linear functionals on V"(G).

In addition, the norm of F(v) (v, u) as a bounded linear functional on
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V"’(G) is[u I-,.. Since V-""(G) is complete, this means that Z is also
closed in the set of all bounded linear functionals on V"(G). Thus Z is
both dense and closed which makes it equal to the set of bounded linear
functionals on V"(G). Since V"(G) is reflexive, (V-’’(G)) V"’(G),
and the proof is complete.

Proof of Corollary 2.2. We know that for v (G)

v ,., 1.u.b. F(v)i/l[ F II,
where the least upper bound is taken over all bounded linear funetionals
on V"’(G). By Theorem 2.2, every such F can be written in the form

rF(v) (v, u) where u e ’’(G) Moreover, F u [-,,, and the
result is immediate.

Corollary 2.1 is a special case of Corollary 2.2.
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