
EXISTENCE OF NORMAL COMPLEMENTS AND EXTENSION OF
CHARACTERS IN FINITE GROUPS

Dedicated to Reinhold Baer on the occasion of his sixtieth birthday

The main purpose of this paper is to tie together the following problems
and to find conditions under which they may be solved.

PROBLEM A. Given a finite group G and a Hall subgroup H, when is there
a normal complement to H in G?

PROBLEM B. Given a finite group G and a Hall subgroup H, when is it
possible to extend each of the irreducible characters of H to one of G?

Of course, a positive solution of Problem A for the groups G and H leads
to a positive solution of Problem B.

In both problems, we may drop the restriction on H, but the example of
an abelian group G shows that the extended problems are not equivalent.
Our main results are the following:

THEOREM 1. Let G be a --separated group. Then the following conditions
are equivalent"

(a) G contains a normal .’-Hall subgroup.
(b) Each -Hall subgroup of G is c-closed.
(c) At least one -Hall subgroup of G is c-closed.

THEOREM 2. If H is a soluble Hall subgroup of G, then the following condi-
tions are equivalent"

(a) G contains a normal complement to H.
(b) Each irreducible character of H may be extended to G.

THEOREM 3. Let H be a Hall subgroup of G such that at least one of the fol-
lowing conditions holds:

(1) H has a Sylow tower.
(2) The terminal member of the lower central series of H is nilpotent.

Then, the following conditions are equivalent:
(a) G contains a normal complement to H.
(b) H is c-closed in G.
THEOREM 4. If H and K are Hall subgroups of G ofcomplementary orders,

then the following conditions are equivalent:
(a) G is the direct product of H and K.
(b) Each irreducible character of H and of K may be extended to G.
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Problem A has been treated rather extensively in the literature; for ex-
ample, see the papers of Baer [3], Frobenius [5], D. G. Higman [8], Thompson
[i0], and Wielandt [ii]. In particular, Baer [3] had obtained necessary and
sufficient conditions for the positive solution of Problem A. Our condition
(c) in Theorem 1 looks very much like the condition of Baer [3] of rt-homo
geneity. However, the equivalence of these two conditions does not seem
to be obvious.

It is natural to raise the question, "Is the condition of solubility needed
in Theorem 2?" There does not seem to be any elementary example to indi-
cate the necessity of the solubility, although our proof uses it rather strongly.
Theorem 3 may be considered as a generalization of a theorem of Fro-

benius [5; Theorem I, p. 1324], which states that G contains a normal p-com-
plement if and only if elements of G may induce only automorphisms of
order a power of p in any p-subgroup of G. Another proof of this theorem
may be found in [6; Theorem 14.4.7, p. 217].

In case H is a Sylow subgroup of G, Theorem 3 is a special case of a theorem
of D. G. Higman [8; Theorem 3.6, p. 488].
Theorem 4 may be considered as the "character" analogue of theorems of

Baer [2], Frobenius [5; Theorem II, p. 1220] and Ludwig [9].
In the last section, we shall describe some examples in connection with

Theorem 1 and Theorem 3.

1. Notations
H =< G, H < G, H <1 G shall mean, respectively, that H is a subgroup, a

proper subgroup, a normal subgroup of G.
N(S), C(S) shall mean, respectively, the normalizer and the centralizer

of the subset S in H __< G; S does not have to be part of H.
{S} subgroup generated by the subset S in G.
S x-lSx, [x,y] x-lx, [H,K] {[x,y]} withxeH, yeK.
[G :H] index of the subgroup H in G.
r, r denote complementary sets of primes.
G is called a r-group if all the prime divisors of [G" 1] occur in r. G is

called r-separated if its composition factors are either r-groups or r’-groups.
H is a Hall subgroup of G if ([G’H], [H" 1]) 1. It is called a r-Hall

subgroup of G if H is a r-subgroup and all the prime divisors of [G’H] occur
in -’.

2. c-closure
DEFINITION 2.1. Let H =< G. H is said to be c-closed in G if and only if

two elements of H conjugate in G are already conjugate in H, i.e., if x e H
and y e G are such that xe H, then there exists z e H such that x x.
Equivalently, conjugate classes of H fall into different conjugate classes of G.

LEMMA 2.2. Let H be c-closed in G. Then,
(a) H <= K <= G implies that H is c-closed in K;
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(b)
(c)
(d)

K <= H <= G and K is c-closed in H imply that K is c-closed in G;
if K <__ H and K <3 G, then H/K is c-closed in G/K;
if N < G and ([N" 1], [H" 1]) 1, then HN/N is c-closed in GIN.

Proof. The verifications of (a), (b), and (c) follow from tho definition.
(d) Let xN and yN be elements of HN/N conjugate under GIN. Thus,

we may assume that x and y lie in H and there exists z e G such that x yu
with u e N. Since [N" 1] and [H" 1] are relatively prime, we see that x and y
must have the same order; in fact, their common order coincides with the
order of the element xN in HN/N. Thus, {y} and {yu} are complements of
N in [N, Y/. Now, by the Theorem of Schur-Witt-Zassenhaus [12; Theorem
27, p. 132], {y} and [yu} are conjugate subgroups of {N, y}. Hence we can
find v e [N, y} such that yr (yu)v for a suitable integer r. Since {yu} is a
complement of N in {N, y}, we may assume that v e N. Hence,

r--1 --1 --1y v yuvy HnN 1,

sinceuveN <3Gand (IN’l], [H’I]) 1. Thus, y- (yu) x=. Since
H is c-closed in G, we may assume that zv e H. Thus, xN and yN are con-

jugate in HN/N, Q.E.D.
LEMMA 2.3. Let N <3 G, H <- G be such that NH G and N H 1;

then H is c-closed in G.

Proof. Let x, yeH, zeN be such that xeH. Then, u xeH and
uzeH. Hence, u-iu [u, z]eHaN 1, since N < Gand HaN 1.
Thus, xy xy, Q.E.D.
LEMMA 2.4. If each irreducible character of the subgroup H of G may be

extended to one of G, then,
(1) H is c-closed in G;
(2) for each N < H, there exists K < G such that K n H N, and each

irreducible character of HK/K may be extended to one of G/K.

Proof. (1) From the orthogonality relations [6; Theorem 16.6.9, p. 274],
the irreducible characters of H separate the H-classes in H. Since these
characters may be extended to G, distinct H-classes of H must fall into dis-
tinct G-classes in G.

(2) For each irreducible character of H, trivial on N, we select an ex-
tension to G. The kernel of the extension must contain N. Let K be the
intersection of all such kernels. Then, clearly, K <3 G, and K n H contains
N. By the same argument as in (1), we see that N K n H. Each irre-
ducible character of HK/K gives rise to an irreducible character of

H/(H K) H/N

by way of the natural inclusion map of H into HK. By the choice of K,
this character of H/N may be extended to one of G which is trivial on K,
i.e., a character of G/K, Q.E.D.
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3. Reduction lemmas
DEFINITION 3.1. Let A be a group of automorphisms of the group G,

and let H <__ G be invariant under A. Then, H is said to be A-closed in G
provided that elements of H conjugate under G are conjugate under A. In
case A is the group of inner automorphisms of G induced by elements of H,
then A-closure of H is equivalent to c-closure defined previously.

THEOREM 3.2. Let H be a Hall subgroup of G, let A be a group of automor-
phisms of G leaving H invariant, and let H be A-closed in G. Let
H* x--lxa}, X e H and a e A, that is, the "A-commutator subgroup" of H.
Then,

(1) [H, H] <= H*.
(2) The composition of the transfer map from G to H with the natural inclu-

sion map from H/[H, H] to H/H* carries G onto H/H*; the kernel of this homo-
morphism is A-invariant.

Proof. (1) Since H is A-closed, we see that xy x for suitable a e A,
where x, yell. Thus, [x, y] x-ix ell*, where x, yell.

(2) Let x e H. By the formulae given in [12; p. 138], the transfer map
from G to H carries x onto the element

[H, HI H Y xI()

where f(i) n [G:H], y xI()-1y e H, and y are suitable elements of
G. Since H is A-closed, the map described in (2) carries x onto H*xn,
where n [G’H]. Since H is a Hall subgroup of G, we see that the image is
all of H/H*. By the definition of H*, we see that A preserves the homomor-
phism described; thus the kernel is A-invariant, Q.E.D.

COaOLLAnY 3.3. Let H be a Hall subgroup of G. If H is c-closed in G,
then,

(1) the transfer map from G to H carries G onto H/[H, HI;
(2) there exists N < G such that NH G and N n H H, where
H is the ith term of the lower central series of H.

Proof. (1) If we let A be the group of inner automorphisms of G in-
duced by H, then Theorem 3.2 is applicable, and H* [H, H]. Thus, (1)
holds.

(2) If we let N1 be the kernel in the homomorphism described by Theo-
rem 3.2, then N <:IG, NH G, and NnH H [H, H]. Thus,
by induction, let N <:1 G be such that NH G and N n H H. It is
easy to see that H is a Hall subgroup of N. The inner automorphism
group A induced by H keeps N and H invariant. By the hypothesis of
c-closure of H in G, we see that H is A-closed in N. Thus, by Theorem
3.2, the transfer map from N to H followed by the inclusion from
Hi/[Hi, H] to H/[H, Hi] H/H+I carries Ni onto H/H+. Let N+
be the kernel of this homomorphism. Then, N+I < N and N+I is A-in-
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variant by Theorem 3.2. Thus, G Ni H implies that N+I <:l G. Clearly,
Ni+iHi Ni and N+nH H+. Thus, N+H N+HiH
NiH G, and Ni+lnH N+NnH N+Hi H+, Q.E.D.
The following result has been communicated to us by Professor R. Baer.

We would like to thank him for the permission to reproduce it here.

THEOREM 3.4. G contains a normal r’-Hall subgroup with soluble quotient
group if, and only if,

(a) there exists a soluble r-Hall subgroup of G, and
(b) S is a c-closed subgroup of C whenever C is a characteristic subgroup of

G and S is a r-Hall subgroup of C.

Proof. Let N < G be a t-Hall subgroup such that G/N is soluble. Then,
by Schur’s Theorem [12; Theorem 25, p. 130], G contains a complement H
to N. Since H is isomorphic to G/N, we see that H satisfies (a). If C is a
characteristic subgroup of G, then C a N <:] C is a r’-Hall subgroup of C.
Thus, S is a complement of C N in C. By Lemma 2.3, S is c-closed in C;
hence (b) holds.

Conversely, assume that (a) and (b) hold in G. We proceed by complete
induction on [G:I]. By (a), we can find a soluble r-Hall subgroup H in G.
By (b), taking C to be G, we see that H is c-closed in G. By Corollary 3.3,
the kernel N of the transfer map from G to H satisfies

N1H G and N n H H [H, H].

Since N/[G, G] is the r’-Hall subgroup of G/[G, G], N is a characteristic
subgroup of G. Since H is soluble, [H, H] < H; otherwise, there is nothing
to prove. Thus, N1 < G. It is clear that H is a soluble r-Hall subgroup
of N thus (a) holds in N. Since characteristic subgroups of N are also
characteristic subgroups of G, the condition (b) in G is inherited by N1.
Thus, by induction, N contains a normal r’-Hall subgroup N. It is clear
that N is the normal complement to H desired, Q.E.D.
We now give a generalization of a theorem of Burnside [4; Theorem II,

p. 89] as well as a specialization of the First Theorem of Griin, [12; Theorem
5, p. 140].

LEMMA 3.5. Let H <- G be a Hall subgroup of G, and let A be a group of
automorphisms of G which leaves H invariant. Suppose that

(a) ([A’I], [G:H]) 1,
(b) H is A-closed in G,
(c) at least one of the following conditions holds:

(B) H <:l G.
(G) H is a p-Sylow subgroup of G.

Then, there exists a normal complement of H in G.

Proof. (B). Let H < G. Let x ell; let K, L, and M be the H-class,
G-class, and A-class of x respectively. Thus, conditions (B), (b), and the
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A-invariance of H and G imply that K L __c M

___
H. Now, L is the

disjoint union of H-classes each of which is conjugate to K under G, and M
is the disjoint union of G-classes each of which is conjugate to L under A.
If we let r, s, and be the number of group elements in K, L, and M respec-
tively, then r is It. Let s qr. Since G permutes the H-classes of L transi-
tively and H leaves eacd of them fixed, we see that q I[G:H]. Now, A acts as
a transitive permutation group on the elements of M; hence l[A’l]. Thus,
q l([A’l], [G’H]) 1. Hence r s and K- L. Thus, H-classes in H
coincide with G-classes in H. By Schur’s Theorem, [12; Theorem 25, p. 132],
G contains a complement N to H. By a theorem of Burnside [4; Theorem
II, p. 89], the condition that H-classes in H coincide with G-classes in H
together with ([N’I], [H’I]) 1 imply that N induces the trivial auto-
morphism in H, i.e., [N, H] 1. Thus, G is the direct product of H and N.

(G). Let H be a p-Sylow subgroup of G. By (B), we may assume that
H is not normal in G. Thus, H <- No(H) < G. G and H are invariant
under A implies that No(H) is also invariant under A. Thus, by induction
on [G" 1], we may assume that No(H) has a normal p-complement. Hence,
the p-factor commutator group of No(H) is isomorphic to HI[H, H]. It is
then easy to see that

[H, H] H n [No(H), No(H)].

Let xeHn[H, H]z, where zeG; then x u with ue[H, H]. By (b),
x u ua, where a e A. Since H is A-invariant and [H, H] is a charac-
teristic subgroup of H, we see that [H, H] is also A-invariant. Thus,

x U [H, H], and H [H, H] < [H, H]

for each z e G. By the First Theorem of Griin, [12; Theorem 5, p. 140], the
transfer map from G to H leads to an isomorphism of G/G with H/H*,
where H* is the subgroup generated by H [No(H), No(H) and H [H, H]
with z ranging over G. Our computation then shows that H* [H, H] < H.
Now G is the p-commutator subgroup of G, hence a characteristic subgroup
of G; therefore G is A-invariant. Moreover,

and GoH H* [H,H] < H.

Thus, G, [H, H], and A satisfy the same hypotheses. Hence, by induction,
G contains a normal p-complement N to [H, H]. N is a characteristic sub-
group of G <3 G; hence N is a normal p-complement to H in G, Q.E.D.

4. Proofs of theorems

Proof of Theorem 1. By Lemma 2.3, (a) implies (b), since r-separated
groups have r-Hall subgroups by [7; Corollary E2.2, p. 291]. (b) implies
(c) .trivially.
Let (c) hold in the r-separated group G. We will proceed to prove (a)

by induction on [G:I]. Thus, let H be a r-Hall subgroup of G such that H
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is c-closed in G. Let M be a minimal normal subgroup of G. Since G is v-
separated, M is either a v’-group or a v-group.

Case 1. M is a v’-group. Then, by Lemma 2.2(d) and induction, G/M
contains a normal v’-Hall subgroup N/M. Thus, N is a normal v’-Hall sub-
group of G.

Case 2. M is a v-group. Thus, M =< H. Hence, by Lemma 2.2(b) and
induction, G/M contains a normal v’-Hall subgroup L/M. The triple L, M,
and H now satisfies the hypotheses of Lemma 3.5 (B). Thus, L contains a
normal complement N to M. N is easily seen to be a normal v’-Hall subgroup
of G, Q.E.D.

Proof of Theorem 2. It is obvious that (a) implies (b). Thus, let H be a
soluble Hall subgroup of G such that each irreducible character of H may be
extended to one of G.

Let M be a minimal normal subgroup of H. By Lemma 2.4(2) and in-
duction, we can find L <3 G such that LH G and L n H M. Since M is
a minimal normal subgroup of a soluble group H, it is a p-group. Since G/L
is isomorphic to H/M and H is a Hall subgroup of G, we see that M is a
p-Sylow subgroup of L. Now L, M, and H satisfy the hypotheses of Lemma
3.1 (G); thus, L contains a normal p-complement N. It is then easy to see
that N is a normal complement to H in G, Q.E.D.

Proof of Theorem 3. Again, it suffices to show that (b) implies (a).
(1) Let H be a Hall subgroup of G, and let 1 Ho H. <3 <:1 H H

be a Sylow tower for H, i.e., each H is a normal Hall subgroup of H, and
[Hi:H_I] is a prime power for i 1, t. Finally, suppose that H is
c-closed in G. We now proceed by induction on t.
The case 0 is trivial. Thus, we may assume that the theorem is true

for t- 1. By the theorem of Schur, [12; Theorem 25, p. 132], H1 has a com-
plement C in H. By Lemma 2.2(b) and Lemma 2.3, C1 is c-closed in G.
H/H is isomorphic to C thus C has a Sylow tower of length 1. Hence,
by induction, we may find N1 < G such that N H G and N n H C,
namely a normal complement to C. Now, N1, H, and H satisfy the hy-
potheses of Lemma 3.5 (G) thus, N1 contains a normal complementN to H.
It is easy to see that N is a normal complement to H in G.

(2) Let H be a Hall subgroup of G, and let C be the terminal member of
the lower central series of H so that C is nilpotent and H is c-closed in G.
We now proceed by induction on [G:I].

Let K be the largest normal subgroup of G contained in H. If 1 < K, then
by Lemma 2.2(c), we see easily that G/K and H/K satisfy the same hy-
pothesis. Thus, by induction, we can find M <3 G such that MH G and
MH K. It is clear that K is a Hall subgroup of M. If we letA be
the group of inner automorphisms induced by H, then M, K, and A satisfy
the hypotheses of Lemma 3.5 (B); hence M contains a normal complement
N to K. It is then easy to see that N is a normal complement to H in G.
Thus, we may assume that K 1.
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By Corollary 3.3(2), we can find M < G such that MH G and
M n H C. Let N* <= M be minimal with respect to the following prop-
erties"

(A) N* <:IG.
(B) N*H- G.
Thus, N* H C* <- M H C, and C* is nilpotent. We let A be the

group of inner automorphisms induced by H.
If C* i is a prime power group, then N*, C*, and A satisfy the hypotheses

of Lemma 3.5 (G) hence N* contains a normal complement N to C*. There-
fore N would be a normal complement to H in G; this contradicts the mini-
reality of N*.

If C* 1 is not a prime power group, then from C* nilpotent, we may take
P 1 to be a p-Sylow subgroup of C* for an odd prime p. Since C* is nil-
potent and A-invariant, we see that P is A-invariant. Let 1 < P1 < P be such
that P1 is A-invariant. Thus, H <= Na(P1) < G, where the first inclusion
is a consequence of the A-invariance of P1 and the second strict inclusion is a
consequence of the hypothesis that H contains only the trivial normal sub-
group of G. Clearly, Na(P) and H satisfy (2); thus, by induction, Na(P)
contains a normal complement to H. Hence, Na(P) may induce only
automorphisms in P1 of orders dividing [H’I]. Therefore, NN,(P) may
induce only automorphisms in P1 of orders dividing [C*" 1]. Since C* is nil-
potent and C* <= NN,(P), we see that N,(Pi) may induce only auto-
morphisms of orders dividing [P’I], i.e., N,(P)/C,(P1) is a p-group.
Thus, by the Theorem of Thompson, [10; Theorem A, p. 332], N* contains
a normal p-complement N. Thus, N would have properties (A) and (B)
and N N*. This again contradicts the minimality of N*.

Thus, C* 1 and N* is a normal complement to H in G, Q.E.D.

Proof of Theorem 4. It suffices to verify that (b) implies (a).
Let H and K be Hall subgroups of complementary orders in G such that

each irreducible character of H and of K may be extended to one of G re-
spectively. Let r be the set of prime divisors of [H:I]. We shall show that
G is -separated.

First, let M < G. Then HM/M and KM/M are Hall subgroups of G/M
with complementary orders. Thus, [G:M] [H:M M][K:K M] and
[M:I] [H M: 1][K n M:I]. Hence H n M and K M are Hall subgroups
of complementary orders in M.
Now, let M < G be minimal with respect to the property that G/M is

-separated. From the preceding paragraph, we have

M--- (MnH)(MnK).

By the minimality of M, we see that M [M, M], and M is the normal
closure in G of M n H, as well as of M n K.
By way of contradiction, let 1 < M. Then

1 < MnH <H and 1 < MnK<K.
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Thus, since the irreducible characters of a group separate the conjugate
classes, we see that there exist characters of H and of K which are respectively
nontrivial on M n H and M K. Among all such characters, take one of
minimal degree. By symmetry, let this be x, an irreducible character of H,
with degree f. Thus, f [H:I]; cf. [6; Theorem 16.8.4, p. 288].

Case 1. f 1. Thus, we may extend x to G, then restrict it to M. Since
M [M, M], this restriction must be the trivial character on M. Thus,
the restriction of x to M n H is trivial; this contradicts the choice of x.

Case 2. f > 1. We now extend x to G, then restrict it to K. This re-
striction to K is the direct sum of irreducible characters of K (cf. [6; Theorem
16.3.2, p. 255]), each of which must have degree dividing [K: 1]. Since f is
minimal and ([H:I], [K:I]) 1, we see that each of these components must
be trivial on M n K. Thus, the restriction to K of an extension of x to G
is trivial on M n K. Hence, the extension of x to G is trivial on M K,
therefore trivial on the normal closure in G of M K, i.e., trivial on M. This
contradicts the nontriviality of ; on M H.

Thus, G is r-separated. Now, by Lemma 2.4(1) and Theorem 1(c), G
contains a normal r’-Hall subgroup. This must be the only v-Hall subgroup
of G; i.e., it is K. By symmetry, we see that G is the direct product of H
and K, Q.E.D.

5. Remarks
We may summarize the relations between Problem A and Problem B by

the following:

THEOREM 5. Let H be a -Hall subgroup of G. Then Problem A and Problem
B are equivalent in the following cases:

a) H is soluble.
b G is -separated.
(c) H has a Sylow tower.
(d) The terminal member of the lower central series of H is nilpotent.
In cases (b), (c), and (d), both problems are equivalent to the following:
(C) H is c-closed in G.

We shall now describe some examples concerning Theorem 1 and Theorem 3.
Let S be the symmetric group of degree n. Let S_ be embedded in it

in the obvious manner. In case n is a prime p, then S_ is a Hall subgroup
of S. In all cases, S_ is c-closed in S. The verification of this is an
elementary exercise in transformation of permutations. When n > 4, S does
not contain a normal complement to S_. Thus, the condition of r-separa-
tion in Theorem 1 cannot be dropped. Moreover, we cannot replace the
conditions (1) and (2) of Theorem 1 by solubility plus the existence of a
"nice" invariant series. In particular, the case of n 5 shows that S has
an invariant series 1 < V < A < S with invariant factors of orders 4, 3,
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and 2 respectively; furthermore, $4 splits over each member of the series.
But $5 does not have a normal complement to $4.
The conditions (1) and (2) in Theorem 3 are not equivalent, but are

complementary in some sense. For example the direct product of A4 with
$3 satisfies (2) but not (1); let S operate faithfully on a finite vector space
of characteristic not equal to 2 or 3 and form the split extension; then the
resulting group will satisfy (1) but not (2).

It would be interesting to know if the condition of extendability of char-
acters in Theorem 4 may be replaced by c-closure plus solubility. In particu-
lar, does there exist a nonsoluble group G such that G contains c-closed soluble
Hall subgroups of complementary orders?
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