INDECOMPOSABLE REPRESENTATIONS

BY
A. HeELLEr AND I. REINER!

1. Introduction

Let A be a finite-dimensional algebra over a field K. By a A-module we
shall mean always a finitely generated left A-module on which the unity ele-
ment of A acts as identity operator. It is well known that the Krull-Schmidt
theorem holds for A-modules: each module is a direct sum of indecomposable
A-modules, and these summands are uniquely determined up to order of
occurrence and A-isomorphism. Thus the problem of classifying A-modules
is reduced to that of finding the isomorphism classes of indecomposable A-
modules. We denote the set of these by M (A).

A central problem in the theory of group representations is that of deter-
mining a set of representatives of M(A) for the special case where A = K@,
the group algebra of a finite group G over the field K. A definitive answer
can be given when the characteristic of K does not divide the group order
[G:1]; in this case K@ is semisimple, all indecomposable modules over KG are
irreducible, and a full set of non-isomorphic minimal left ideals of KG con-
stitute a set of representatives of M (KG). For the case where the charac-
teristic of K is p (p % 0), Higman [6] has proved the following remarkable
result: M(KQ) 1is finite if and only if the p-Sylow subgroups of G are cyclic.
If such is the case, Higman obtained an upper bound on the number of ele-
ments of M (KG). A best possible upper bound was later obtained by Kasch,
Kupisch, and Kneser [5).

We shall attempt to elucidate Higman’s theorem by considering in detail
the special case where @ is an abelian p-group, and K a field of characteristic
p. We shall exhibit some new classes of indecomposable modules. How-
ever we shall show that the problem of computing M (KG), in case G is not
cyclic, is at least as difficult as a classical unsolved problem in matrix theory.

It should be pointed out that the question of determining all representa-
tions of a p-group in a field of characteristic p has been extensively treated by
Brahana [1, 2, 3] from a somewhat different viewpoint. There is conse-
quently a certain amount of overlapping between his results and ours, but we
have thought it best to make this paper completely self-contained.

2. C-algebras

Inasmuch as we shall need to consider, together with modules over an
algebra A, also modules over sub- and quotient-algebras of A, we cannot re-
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strict our attention only to group algebras. Instead we shall work with a
special type of commutative completely primary algebras.

DEeriniTION. A C-algebra A over a field K of arbitrary characteristic is a
finite-dimensional commutative algebra over K with a unity element, such
that

A/R(A) = K,

where R(A) denotes the radical of A. Any quotient algebra of a C-algebra
is easily seen to be a C-algebra. Likewise any subalgebra A’ of a C-algebra
A, which contains the unity element of A, is a C-algebra.

We may describe a C-algebra A explicitly as follows. Let
Uy, =, Un € R(A)

map onto a K-basis of R(A)/R(A)*. From the nilpotency of R(A) it follows
readily that

(1) A=Klu, -, ul,

though of course there are polynomial relations connecting the {u;j. Let
2y, +++ , T, be indeterminates over K, and define a K-homomorphism

(2) o:Klwy, -+, 2] > A

by means of

(3) o(1) =1, ¢(x1) =wm, -+, &(Tn) = Un.

Then ¢ is an algebra epimorphism; its kernel J has the property that

(4) VI = (21, , @),

where as usual

VI ={FeKlx,, -+, 2):F ¢J for some 1},

and where (1, - -, x,) denotes the ideal generated by the {z;}. We have
(5) K[xl, L ,xn]/JgA.
Conversely if J is an ideal in K[z, , ---, x,] for which (4) holds, then

equation (5) defines a C-algebra A. The integer n given by

n = dimg R(A)/R(A)?
we shall call the rank of A.
In particular let G be an abelian p-group, and write

G=G1X"'XGn,

where for each 7, G; is cyclic generated by an element g; of order r; = p™.
Let K be any field of characteristic p. Then the K-homomorphism

o:Klxy, -+, 2] > KQ
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defined by
¢(1) =1, ¢(IL'1) =q-1 -, ¢(£Un) =gn — 1,

is an algebra epimorphism with kernel
J = (a1, -+, ).
Thus K@ is a C-algebra of rank n.

3. Quotient algebras; the height of a module

Let A be a finite-dimensional K-algebra, and let A’ = A/W be a quotient
algebra of A, where W is a two-sided ideal in A. Then each A’-module M
may be made into a A-module by defining

Amo= N+ W)m, NedA, meM.

The A-modules obtained in this way are precisely those which are annihilated
by W.

Moreover if a A-module is annihilated by W, then so is each sub- or quotient-
module. In particular the direct sum of two A-modules is annihilated by W
if and only if each summand is. Thus a A’-module is indecomposable if and
only if it is indecomposable when considered as a A-module. This immedi-
ately implies the following result.

ProrositioN 1. If A’ is a quotient algebra of A, then M(A') may be canoni-
cally identified with a subset of M (A).

Now suppose that B = R(A) is the radical of A; then for some integer
m, R™ = 0. Thus for any A-module A there is a smallest integer k such that
R'A = 0. We call this & the height of A, and clearly h < m.

Thus a module is of height < & if and only if it is annihilated by R", and
so by Proposition 1 we may identify M (A/R") with the subset of M(A) con-
sisting of the isomorphism classes of A-modules of height < h.

If A is of height h, we have the upper Loewy series

ADRAD---DR"™ADR'A =0,

and all inclusions are proper. On the other hand R annihilates each quotient
of two successive terms, and so each quotient is semisimple. This establishes

ProrosiTioN 2. A A-module of height h is an (h — 1)-fold successive ex-
tension of semisimple modules. In particular a module of height 1 is semi-
simple, while a module of height 2 is an extension of one semisimple module by
another.

4. Height two modules over C-algebras

Let A be a C-algebra over K, and let R be its radical. Then A/R = K
shows that a semisimple A-module is just a vector space over K, so that
M(A/R) has just one element, namely, the class containing K.
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As we have seen, the set of isomorphism classes of indecomposable A-
modules of height < 2 may be identified with M(A/R?). But A/R’ depends
only upon the rank of A, since we have

ProposITION 3. Set A, = Klxy, +++ , @a)/(%1, +*+ , Ta), where the {3} are
indeterminates over K. If A is any C-algebra over K of rank n, then
A/R* = A,.

Proof. Let uy, -+, u, ¢ R map onto a K-basis of R/R’. For each \ ¢ A
let X denote its image in A/R’. Then we have at once

ARR=KI® K, ® --- ® Kit,, .
On the other hand let x ¢ K[y, - -+, x,] map onto % ¢ A,. Then
(6) A, =KI®K# @ --- ® K&, .
The map 1 — 1, 4 — #; (1 < 7 = n) thus gives the desired isomorphism.

CoroLLARY. The set of tsomorphism classes of indecomposable A-modules
of height = 2 may be identified with M(A,), where n = rank of A.

We remark that (6) determines the structure of A, , since I is its unity
element, and %, Z; = O for all 7, j. Set

S =Kt ® -+ ® Ki, = radical of A, .
If A is any A,-module, the sequence
0—>84—-A4—-A4/84 -0

is exact. Both SA and A/SA are annihilated by S, hence are semisimple
An,-modules, that is, they are vector spaces over K which are annihilated by
S, and upon which K acts by scalar multiplication. For each ¢ we define a
K-homomorphism

¢itA/SA — SA
by means of
o+ S84 — %;aq, aed.
Then A is A-isomorphic to the space
A/SA @ SA,
the action on A, on this space being given by
(7) T(a + S4,b) = (0, ¢:a), aed,beSA,1 < 7= .

We have thus shown that to each module A there corresponds a pair of vector
spaces A/SA and SA, and an n-tuple of homomorphisms of the first space
into the second. This pair of spaces, and the set of homomorphisms, com-
pletely determines A up to isomorphism.
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Conversely let V, W be any pair of K-spaces, and let
1, tn e Homg(V, W)

be arbitrary. Define the action of A, on V @ W by letting K act by scalar
multiplication, and using (7) to define the action of S. Then V & W be-
comes a A,-module which we denote by

[V) W;§‘17 ’g_n])
and it is clear that the preceding construction associates with this module
precisely the spaces V and W, and the homomorphisms ¢, -+, ¢ .

Clearly [V, W; ¢y, -+, &l [V, W5 ¢1, -+ ¢n]if and only if there exist
K-isomorphisms
0:V =V, gW=W

such that
¢i6 = gy, 1<i<n,
We note further that the direct sum of the modules [V, W; &1, ---, ¢u] and
[V, Wi g1, -+, £al is just
VeV, WeW;a®l, & ® ¢l
We have thus introduced the concepts of isomorphism and decomposability
for arrays [V, W; &1, -+, &, and have proved

ProrositioNn 4. The elements of M(A,) are in one-to-one correspondence
with the set S(n) of isomorphism classes of indecomposable arrays.

(We have in fact constructed functors which connect the category of A,-
modules with that of arrays, and which provide a weak equivalence of these
categories.)

The problem of determining a complete set of non-isomorphic indecompos-
able arrays is a classical problem of matrix theory, namely that of equivalence
of matrix n-tuples. (In matrix terminology, we seek a complete set of non-
equivalent indecomposable n-tuples of matrices, where ‘“equivalence” is
given by

(T17 7Tn) ~ (PT1Q7 7PTnQ)y

P and Q nonsingular.) The problem has been solved for n < 2 (see [4], [7]),
and is unsolved for n» > 2. We shall use the solution for the case n = 2
to compute M (Ay), and hence to give a set of representatives for the isomor-
phism classes of indecomposable A-modules of height < 2.

Since we are dealing with a C-algebra A of rank 2, we may write A =
Klu; , us], where u; and us e R(A) are such that their images form a K-basis
for R(A)/R(A)®. Then we have

ProposiTioN 5. Up to isomorphism, there is only one indecomposable A-
module of height 1, namely the space K on which K acts by scalar multiplication,
and which vs annihilated by uy, and ua.  There are infinitely many non-isomorphic
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indecomposable A-modules of height 2, and a full set of these is given by the spaces
V @ W, where

V=Ka1(+)~~-®Ka,, W=Kb1@"‘@Kbs,
the action of K being scalar multiplication, and the action of uy, us given by

Un @i = D g t57b;, 1Z24=Zr, m=12,
where
T(l) — (t%))’ T(Z) — (tii))

are r X s matrices over K given by the following choices:

(1) TV = Ln, T% = Cu(p(x))
where 1., denotes the em-rowed identity matriz, e is an arbitrary positive integer,
p(x) = 2" — ama a™ ' — -+ — aq s an arbitrary irreducible polynomial in
K(z], and C.(p(x)) is defined as
B U 0 0
0 B U 0
Cop(z)) =10 0 B 01, e B’s occur,
... U
| B
where
[0 1. 0 --- 0
o o0 1 -+ 0
B=|.- - - ... . 1= companion mairix of p(x),
o 0 o0 - 1
Ay Ay Qg Apm—1,
[0 0 0 0
0 0 00
U == . . . .
0 0 00
[1 0 00
(i1)
0 ... Q Qeroxoy
v — O‘I ™™ — 1
L i ’ "
o)
(iii)

w 0 --- 0 (m+1)Xm @ _ Im (m+1)Xm
T _[ 1, ’ T = 0O --- 0 ’
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0 m X (m+1) 0 m X (m+1)
T(l) — E Im , T(2) — Im E ,
0 0

where tn (i1), (ili), and (iv) m s an arbitrary posttive integer.

and

(iv)

Remark. 1If K is algebraically closed, then p(z) = # — « for some a ¢ K
and C.(p(z)) takes the simpler form

a 1l -+ 0
0 a - 0

Ce(p(x))= T
00 --- 1
HE

CoROLLARY. Let @ = Gy X G, where for i = 1, 2, G, s a cyclic group with
generator g; of order p™*, a; > 0. Let K be any field of characteristic p. Then
there are infinitely many indecomposable KG-modules. A complete set of non-
isomorphic indecomposable modules of height 2 is given by the above spaces
V ® W, where the action of G is given as follows:

(p — Das = 2 t90;, (o — Das = 2 t&b;, 1Si=Zr,
and where
(g — VW = (g — HW = 0.

Finally we note that for n = 2, A, is a quotlent algebra of A,, and hence
by Proposition 1 we may conclude that M (A,) is infinite. Thus M (K@) is
infinite whenever @ is a non-cyclic abelian p-group, and K has characteristic p.

5. C-algebras of rank two
We have seen that if an abelian p-group @ is a direct product of r cyclic
groups, and K is a field of characteristic p, then KG is a C-algebra of rank r,
and consequently M(KG) contains a subset in one-to-one correspondence
with S(r), the set of isomorphism classes of indecomposable arrays
Vv, W; &, -+, &). This shows that for » > 2 we cannot hope to find a
complete system of non-isomorphic indecomposable KG-modules. We might
expect, however, that this could be done for the special case where r = 2.
The aim of this section is to show that even this special case leads to the
problem of computing S(p), and hence cannot be solved explicitly as soon
as p > 2.
Let G = Gy X G2, where for 7 = 1, 2, G, is generated by an element g;
of order r, = p*, a; > 0. Then we have seen that

K@ = Kz, , z.)/(x1*, 23?),
and so surely
($1 , x22) C (xl ’ .12)
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We now prove generally

ProposiTioN 6. Let A = Kz, y|/J be a C-algebra of rank 2 such that for
somen > 2,
J < (z,y)".

Then M(A) contains a subset in one-to-one correspondence with S(n).
Proof. We begin by observing that

is a quotient of A, so that M(A,) € M(A), and it suffices to prove the result
for M(A,). Let x and y map onto X and Y, respectively, in A, ; then

A, = K[X, Y], X, )" =0.
Using formula (6) for A, , we embed A, in A, by the mapping
¢(i) = 1; 'p("zl) = Xn_l) 'p(i?) = Xn_zY) Tty 'p(in) = Ynﬂl)

which is easily seen to be an algebra isomorphism of A, into A,. By means
of this embedding we may regard A, as a subalgebra of A, .
If A is a A,-module, define

(8) A* = Ay ®a, 4,

which is a A,-module. The correspondence A — A* preserves isomorphisms
and direct sums. In the other direction we proceed as follows. Let

R = (X, Y) = radical of A, .
Then (as a subalgebra of A,)
(9) A, =K1® R,

and R = Sis the radical of A,. If Bisa A,-module, then for 1 <7 < n
we have

& B =X""Y"'Bc R"'B,
% RBC R"B = 0,
and so there exists a K-homomorphism 6;: B/RB — R"™'B given by
0¢(b+RB) = :ﬁib, beB.
Setting
B’ = B/RB ® R"'B,
we may therefore make B’ into a A,-module by defining for each ¢,
jz(i), bl) = (0, 0, l-)), E € B/RB, b]_ € Rn_lB.

The correspondence B — B’ maps A,-modules onto A,-modules and clearly
preserves isomorphisms and direct sums.
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We shall prove that for any A,-module A, we have
(10) (4%) = A,

so that each class in M (A,) determines a classin M(A,), and the result fol-
lows from Proposition 4.
We have shown in Section 4 that

A=A/84 & S84,
the action of A, on the right-hand side being given by

Zi(a + S4, a1) = (0, & a), aedA, a e SA.
On the other hand every element of A* is expressible as a sum
20§i+j§n_1 XtY" ® a;j, A;; € A.
But we have
X“Y"'"®a=1® %a, aed,
and so every element of A* is expressible as
a* =1 ® ao + Zo<i+j<n—1 Xin ® aij, 17} GA, {aij} eA.

To compute (A*)’, we determine RA*:
Xa* =X ® a0 @ D ociticn2 XY ® i @ D ipjmnz 1 ® Fnisy a5,
and likewise for Ya*. Thus

A*/RA* =~ (1 ® A)/(1 ® SA) = A/SA.
Furthermore
R"'A* = 1 ® SA =~ SA.
Thus
(A*)' =2 A/SA @ 84,
where the action of each &, is given by
o'éi(a -+ SA, a]_) jz(l ®a+1® SA, 1® SA)
=1® %a = (0, %;a), aed, a eSA.
This completes the proof of (10), and establishes the proposition.
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