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1. Introduction
In a recent paper Spitzer and Stone [11] considered some asymptotic prop-

erties of the Toeplitz matrices

where the ck satisfied

(1.1) ck c_ >- 0, k 0, 1, ...,

(1.3)

By (1.1) and (1.2)
(1.5)

g.c.d. [k[/c > 0, ck > 0] 1,

0< ck< .
c P{X k}

defines a probability distribution of a random variable X, and consequently
most of the results in [11] have an easy probability interpretation. Putting

S,, Xo + Lx,
where X1, X2, is a sequence of independent random variables, each dis-
tributed as X in (1.5), and X0 an unspecified integer, it was shown in [11]
that

(1.6) H(N),j [I T(N)]-: Expected number of visits tojofthe Sn
process with So X0 /c before leaving the interval [0, N].

One also has ([11])
H(N)k.j r--max(,’) pr. pr,’,

where the pr, are the coefficients of the orthogonal polynomials correspond-
ing to the weight function

1 if(t) 1 +_ c exp (ikt).
Received July 11, 1960.
P{A the probability of the event A,
P{AIB the conditional probability of A, given B,
EX expectation of the random variable X,
E{XIB the conditional expectation of X, given B.
[a] the largest integer =< a,
[b, c] is the closed interval b -</i _-< c.

This double use of square brackets is not likely to lead to confusion.
interval b < < c.

(b, c) is the open
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268 HARRY KESTEN

The author, in [7], proved some probabilistic results which by means of
(1.5) can be interpreted as results for Toeplitz matrices. The sequences {ck}
in [7] satisfied (1.1)-(1.3), but instead of (1.4) it was assumed that for some
1_<__<_2

0 < limt_.0 It 1-"(1 (t))

limt_.0 It I-".2 kl ck(1 cos kt) Q < .
It seems that for a < 2 the probabilistic methods more easily lead to results
on Toeplitz matrices than the direct methods used in [11] for a 2. The
present paper completes the results of [7] and [11].
We obtain the limit (as N--* of the probability that the Sn process

with So [xN] leaves the interval [0, N] for the first time at the left and
the probability that at the first departure of [0, N], it iumps to a point in
[-yN, 0] (Theorem 1). This is of course related to the classical problem of
gambler’s ruin. In addition, for 1 < a < 2

(1.8)

and

limN_.= NI-H(N) xm ,tvv

(1.9) lim_.

are obtained (Theorems 3 and 6). The result (1.8) is applied to find the
inverse of a certain infinitesimal generator (Theorem 5). This infinitesimal
generator was found by Elliott [4] and Getoor [5] as corresponding to the
stable process of index a with absorbing barriers. Another form of the in-
verse of this operator was found by Widom [13].
Under assumption (1.7) one can expect several asymptotic formulae to be

the same as their analogues for stable processes with independent increments
of index a. Our paper rests indeed heavily on the recent results of Blumen-
thal, Getoor, Ray, Widom ([2], [5], and [13]) concerning these processes. It
would even be possible to prove Theorem 1 concerning the distribution of
the first sum S, outside a given interval.from the above results by using a
general invariance theorem of Skorohod [10]. For the quantities p,(y),
q,(y; c) (cf. (2.8) and (2.29)), and limN_Nl-"H(N)Em.u one first has
to prove continuity (Lemmas 3 and 4) before an approach via the invariance
principle becomes feasible. In the proofs appearing below we follow the
method of [7] which does not use the invariance principle, especially since we
need Lemma 1 anyway for Corollary 2 of Theorem 1.
The author wishes to thank Professor Getoor and Professor Widom who

kindly informed him about their recent results. In addition the author is
indebted to C. J. Stone for several remarks concerning the invariance prin-
ciple.
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2. Absorption probabilities and probabilities of visits
before absorption

Unfortunately, we worked in [7] always with the interval [-cN, N] and
took So 0, while in [11] the interval [0, N] and So [xN] was considered.
Since this section is a sequel to [7], we shall here still work with [-cN, N]
and So 0, but when applying the results in the next section to Toeplitz
matrices we shall always follow the notution of [11].

Let X, X, be a sequence of integer-valued independent random
variables each with the distribution

(2.1) P{Xi k} ck, O, =i:l, -4-2,

where the ck satisfy (1.1) and (1.2). (1.3) is not required for most results
in this section. If it is required, we shall mention it explicitly. In addition,
putting

(2.2) 4(t) Ee: _,+- ck eirk,
we assume

(2.3) 0 < lim_.0 It I-"(1 --(t)) Q <
for some 0 < a -< 2. As before, we define

(2.4) S X0 + 1Xk,

where X0 is an unspecified integer. Following [11], we also introduce

P(] j; [a, b])
(2.5)

=P{S,=j;a<_ S<=b for i=O, 1,...,n[So=k},
and similarly

(] j; [a, b])
P{there exists an n >_- 0 with S j and a -< S -< b

(2.6) for i 0, 1, n So k}
probability of visiting j before leaving [a, b] when So k.

(Note that P(k --+ k; [a, b]) 1 when/c e [a, b] snce we required only n >= 0
in the definition of P.) In [7] we introduced the following quantities"

’c 0 -I(2.7) F,(x) r- sin- t-"(1 -t- t) dt

and (for1 < < 2,0 < y < 1)

p,(y) lim P(k -- 0; [- , N])

(2.S)
(a 1)- w-(1 w)- dw
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(cf. Lemma 9 in [7]) as well as

(2.9) G.(x; N, c) P{the first S. outside of [-cN, N]
lies in [-(x -+- c)N, -cN)i So 0}

and

(2.10) H.(x; N, c) P{the first S outside of [-cN, N] lies in
(N, (1 + x)N] So 0}.

For 1 < a < 2 it was proved in [7] that

limN_ G.(x; N, c) G.(x; c)
and

limN H.(x; N, c) H.(x; c)

exist and are the unique nondecreasing and bounded solution of

G,(x; c) F.(xc-1) [ dF.(xl)F.(x(1 + c + xl)-)
(2.11)

+ f o(x;) f fo (x ( + c + x)-)o(x(1 + + x)-1)
and

(2.12)
H.(x; c) F.(x) fo dF"(xc-1)F"(x(1 + c -t- xl)-)

+ fo dH.(Xl;C) f0 dF.(x.(1 + c + x)-l)F,(x(1 + c + x)-)

under the conditions

(2.13)

and

limx_ G..(x; c) -+- limx_= H.(x; c) 1

1--c-= [ dG(xl; c)]^ p(x)dF.(x(c-t-x)-)
(2.14)

c dH,(x ;c) p,(xc-) dF,(x(1 -t- Xl)--I),

For 0 < a 1, G, and H, are uniquely determined by (2.11) and (2.12)
alone (cf. Lemma 10 in [7]). It is easily seen that (2.11) and (2.12) are
implied by

(2.1) G(z; e) F.(ze-) dH( e)P((1 + e + )-)

ogegher wigh

Aegually (2.15) is he limiging relation of ghe firsg equaligy of (4.a4) in [7].
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In addition it is an immediate consequence of the definitions (2.9) and (2.10)
and the symmetry condition (1.1) that

(2.17) H,(x; c) G,(xc-1; c-).
Replacing c by c-1 in (2.15) and using (2.17) one gets (2.16). We therefore
conclude that there is st most one pair of bounded, nondecreasing solutions
G and H of (2.13), (2.14), (2.15), and (2.17). The solutions which we shall
exhibit are therefore the G and H looked for. As already indicated in the
introduction, the solutions are the expressions found by Blumenthal, Getoor,
Ray, Widom ([2], [13]) for the stable processes with independent increments.

THEOREM 1.
then

If (1.1), (1.2), and (2.3) are satisfied for some 0 < a < 2,

and

(2.19)

"ffOt Ca/2 fOG(x; c) -1 sin -- z-"/2 (z -t- c -t- 1 )-.12 (z + c)-1 dz,

--1 7rol c.2 fo z-"2 z + c + 1)-"/2 z + 1 )-1 dz.H.(x; c) sin-
(2.17) is obviously satisfied. (2.15), rewritten for densities says

’--1 sin-’a c./x-./2 x + c + 1 )-.2 x + c)-1

--2(sin--) c"/2x-/2f(R)j0
-i sin --z-"/2(z -t- 1)-1(x -t- z -t- c + 1)-1 dz

y.n-1 1 y "/2-1 dy.
(2.20)

--1 7rol Ca/2 for sin -- r(.) for(a/2)r (a/2)

z-"n(z + c + 1)-"n(z - C)-1 dz

LEMMA 1. For 0 a 2

which immediately follows by rewriting the last integral as

z-"(z + 1)-l(x + z + c -t- 1) -1 dz

X + C)--I Z
-a]2

Z + 1 )-1 dz z-"n x -Jr- z .- c + 1 )-1 d

v sin (x + c)-1{1 (x + c - 1)-"/}.

This completes the proof when 0 < a -<_ 1. For 1 < a < 2 one still has to
verify (2.13) and (2.14), which will be done after the next two lemmas.
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Proof. After substituting (z + c) cu-1 in the left-hand side of (2.20)
it is easily verified that the two sides of (2.20) are equal to 1 for c 0 and
in addition have equal derivatives with respect to c.

LEMMA 2. For 1 < < 2

(2.21)

Proof. Substituting P and F from (2.7) and (2.8) we see that we have
to compute

(2.22)

Interchanging the order of integration of y and w and then introducing the
new variable x (z + c)w( (z + c)w + y)-’ gives

z+c) (z+c+l)-i
x-":(1 x)"-(x -l- w(1 x) )-i dx

sin-- a 1)c"/ x 1-- x dx
c(c+l) -

z-"(z -+- c --}- 1)-"(z "-I’- c) "- dz

fo w-"/(1 w)’/-’(x 4- w(1 x))-’ dw.

However, the introduction of u w(x 4- w(1 x))- shows that

w-"/* 1 w)"/-I (x 4- w 1 x) )-1 dw r sin T) x
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Hence, after introducing v (z q- c)(z q- c + 1)-1(c -- 1)c-lx-1 we obtain
that the expression (2.22) equals

"fla (a 1)c"-l(c q- 1sin -- /. (c+l) c-
--1 )./2--1x _1 x !

(Cq-1) --I Jx--1

.--2 --./2(xv 1) dv

"fl sin--(og- 1)C"-1(C-t- 1) 1-"

a-2 X-1 --.]2v dv (1 x)"/-(xv 1 dx.
1 --1

Finally, introducing (1 x)x-l(v 1)-1, the last expression is seen to
equal

e+i
This proves the lemma.
The proof of Theorem 1 for the ease 1 < Og < 2 is now easily completed.

Since (2.17) is satisfied, it follows from Lemma 1 (replacing by c-1) that

--1 "flOg Co for sin - z-"/(z q- c q- 1)-"/2(z q- 1)-1
r() /(+1)- y./2-1(1 y)./2-1 dy

r(/)r(/) 0

r() flr(/2)r(/2)
Similarly, by changing c intowhich, together with Lemma 1, implies (2.13).

--Ic in Lemma 2

y,/.-1(1 y)./2-1dy,

"fl--1 Z
-"/2

Z -Jr" C q- 1 )--.2 Z + 1 )--1 dz

f0 ( 1 )"-1

p,(yc-1) dF.(y(1 .+z)-1) 1 C+ 1

This together with Lemm 2 proves (2.14). Hence G, and H, in (2.18) and
(2.19) are indeed bounded, nondecreasing solutions of (2.13)-(2.17), which
proves the theorem.

COROLLARY 1. If (1.1), (1.2), and (2.3) are satisfied for some 0 < a <- 2,
then

lim P{the first S, outside [-cN, N] is less than -cN So 0}
(2.23) (c+1)-1r (og) fo y,/2-1( 1 y)"/2-1 dy.lim G(x; c)

r(./e)r(./)
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This is of course nothing but Lemma 1 when 0 < a < 2. For a 2 it
was already proved in [7] or [11].

COROLLARY 2. If (1.1), (1.2), and (2.3) are satisfied for some 1 < <-_ 2,
then

limN_ _p(N, -cN) limN_ P{the S, process leaves [-cN, -N] at
the left and returns to 0 before it ever crosses

+N[ S0 0}
(2.24)

limn_. P{there exist n, m such that n < m,
S, < -cN, S, 0, and Si <= N for

i=

Consequently, if I is a set of integers and

(2.25) N(A, -B) number of terms S in the infinite sequence $1, S
with Sk I and -B <__ Si <- A for i 1, 2, ..., ] when So O,

and if (1.3) is satisfied, then
C(2.26) lim... AI-"EN(A, -cA) + i C(, Q),

and

lim P iN(A,
(2.27) A*

where

cA) <= A"-I(c+C 1)a--1

C(a, Q)tx So O}

C(a, Q) 1-, -1 fo YrQ2 r(a)) (1- dy

(Q(a- 1)F(a/2)F(a/2)) -1.

(Q is defined in (2.3).

Proof. It was proved in equation (4.45) of [7] that for 1 < a < 2

lim p_(N, -cN) fo dG,(xl; c) f p,(x) dF,(x(c + x)-l),

which implies (2.24) in virtue of Lemma 2. (2.26) and (2.27) were also
proved under the additional condition (1.3) in Theorem 4 of [7] except for the
explicit expression of 1 _p. For a 2, (2.24), (2.26), (2.27) are contained
in Theorem 2 of [7] ((2.24) not explicitly, but it follows easily from the proof
there). The first expression for C(a, Q) was obtained in [7], while the last
equality follows from p. 240 in [12].

In order to find the asymptotic behaviour of [I T(N)]. we shall need
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the analogue of p,(y) for the case of two absorbing barriers, i.e.,

(2.29) q,(y; c) lim /(k --. 0; [-cN, N]) (0 < y < 1).
kN y

In [7] we left out the proof of the existence of the limit in (2.8). Since a simi-
lar argument is needed here a few times, we shall give a complete proof of the
existence of the limit in (2.29) and compute the limit. The missing detail
for (2.8) (or Lemma 9 in [7]) can then be proved in the same way.

LEMMA 3. Let (1.1), (1.2), and (2.3) be satisfied for some 1 < a <= 2.
Then for each e > 0 there exists a () > 0 such that

P(k--0;[- ,N]) _>- 1

whenever k <= ( e N.

M n

P{there exists an n =< M with 01 0=

M P(O, n

However,

(2.30) P(k n 1
0; [-, +]) ((t) dt,

n=lnl

and one can show, using (2.3), that for fixed

(2.31) lim M’"- [ et((t) )" C > O.
M 2 nl J-

One can even find for each e > 0 a (e) > 0 such that, for sufficiently large M,

Zp( )0;[--,+1) P(0. n ,0;[-,+1) 1 e/3
n=l n=0

whenever k (e)M/". Consequently

(2.32) P{there exists an n M with

when

(2.33) k ()M" and M is sufficiently large.

Thus under condition (2.33)

P{there exists an n _-< M for which S= 0 while
(2.34) S -<_ N for i 0, 1, n So k}

>- 1 s/3- P{there exists an n _<_ M with
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But

1 P{there exists an n =< M with S, > N So k}

P{S_-< N- /foralln <= M So 0}

_>_ P{the S process returns to 0 at least m times before leaving
(-, N /c] S0 0}

P{there do exist m integers 0 < nl < n2 < < nm =< M with
Sn O So O}

_--> (P(0--> 0; [--oc, N ]C]))m C2m-M1-/a

for some C2 > 0. In the last step we used Chebychev’s inequality and the
conclusion

(2.35) E{number of indices n -< M with S 0 So 0} O(M-")
of (2.30) and (2.31).
We know from Theorem 1 in [7], that

1 P(0-- 0; [--, N- k]) O(N- k) 1-’ ((N- l) ---> ).

Hence, there exists a (e) > 0 such that

(P(0 -- 0; [- , N k]))m _>_ 1

when m =< i2(e)N"-1 and/c =< .(e)N. Taking

m [ti2(v)N"-1] and then M [sm/3C:] /("-),
we see that

1 P{there exists an n =< M with S > N So k} >- 1 2t/3
when / =< i.(e)N. For

--< (e)M/" 8(e)N.

(2.33) is also fulfilled; hence if one takes

ti4(e) rain (8:(e), ()),

one has in virtue of (2.34)

P(/ --, 0; [-, N]) ->_ P{there exists an n __< M with S 0 and

(2.36) S _-< N for i 0, ..., n[ So
_>l-e

whenever [/ __< ti4(t)N for all sufficiently large N, say N -> N0(t). (2.36)
will be valid for all N, if

I/] __< (e)N 1/2 rain (4(e), N-(e))N
This completes the proof.
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Put now for k >- 0

q,(N-1, c) P( 0; [-cN, N])

and define, for kN-1 <= y <- (k + 1)N-1, q,(y, c) by linear interpolation
between q,(kN-, c) and q,((k + 1)N-, c). One has then, for fixed
c>0,

LEMMA 4. If (1.1), (1.2), and (2.3) are satisfied for some 1 < o <__ 2, and
c > O, then the functions q,(y, c), N 1, 2, are equicontinuous (in y)
on [0, 1), and consequently from each sequence of integers {N} one can select a
subsequence {Nit} such that

limr_ q,r(y, c) q(y, c)

exists and is a continuous function on [0, 1).

Proof.
q.,(kl N-, c) P(k 0; [-cN, N])

>= P(k k [-cN, N])P(/ 0; [-cN, N])

P( , [-cN, N])q.,(. g-, c).

It follows immediately from Lemma 3, that for each e > 0 there exists a
5(e) > 0 such that

P(kl -- k2 [-cN, N]) >= 1

whenever
0 =< k,k2 <- N(1-- s) and

Hence, there exists a 6(e) > 0 such that

(2.37) q.,(yl c) >= (1 e)q.,(y, c)

whenever
0 =< yl,y2_-< 1 e and

Since 0 -< q.,(y, c) -<_ 1, the equicontinuity follows immediately from (2.37).
The remainder of the lemma is a well-known consequence of the equiconti-
nuity.

THEOREM 2. /f (1.1), (1.2), and (2.3) are satisfied for some 1 < a < 2,
and c > O, then

(2.38) lim_ q.,(y, c) q.(y, c)

exists for 0 <= y < 1, and

q.(y, c) (a 1)c-"/(c - 1)"-(y -t- c)"/y-(2.39) /’ .._
j (y + cv)-"(1 ) dr.
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Remark.

(2.40)

By the equicontinuity of q.,N(Y, C) one has also for 0 -< y < 1

lim q.,N(yN, C) q.(y, C).
yN.-->y

Let N1 < N2 < be any sequence of integers such that

lim_ q,,N,(y, C) t.(Y, C)

exists and is continuous on [0, 1). Such a sequence may be selected from any
infinite set of positive integers by Lemma 4. One has, for 0 < z < 1 (cf.
(2.25) for definition of NIoI(A, -B); cf. also proof of Lemma 9 in [7])

ENIoI(N cN) ENIoI(zN, -cN)

+ zN<k_<N P{the first S outside [-cN, zN] equals k S0 0}

q.,N(kN-1, c)EN(oI(N, -cN).

Dividing by ENIoI(N -cN) and letting N through the sequence N

1 lim ENIoI(zN, -cN){ENIoI(N -cN) }-1
(2.41)

-4"- dyH.( (y z)z-, cz-)O.(y, c).

By (2.26)

limNo. ENIoI(zN,-cN){EN(oI(N, -cN)} -1 z"-(c -+- 1)"-(z -+- c) 1-".

Substituting this and the expression for H. into (2.41) one obtains

1 z-(c -- 1)-’(z -t- c) -"

fl7l’Ol Ca/2Za/2 --a/2+ 7r
-1 sin (y z) (y A- c) y q.t.y, c) dy,

or

( l)-l c-a/2[Z-a]2 Za/2-1(C .31_ l a-l z .J[_ C l-a]sin

{I.(Y, c)(y + c)-"/2y-}(y z)-"/ dy.

This is again Abel’s integral equation for I.(Y, c)(y + c)-"/2y-. Solving it
according to the standard formula [1], we find that the unique continuous
solution is

.(y, c)

_(y .4_c)./2yc_./2 d f- "
z-’/2 z/2-1(c "4- 1)-(z -4- c)1-, (z y)./2-1 dz

one gets



RANDOM WALKS AND TOEPLITZ FORMS 279

(putting u zy-1)
d(y + c)" -" J, u-" u"-(c -t- 1)"-(u + cy-)-"yC

(u 1)"/- du

( 1)(e + 1)-e-( + c)- -( + e-)
( 1)-By pugging v -, ghe lasg expression goes over ingo (2.9), showing

(, c) is given by (2.a9) independengly of ghe sequence [N}. his shows
ghag ghe ordinary limig of .(g, c) as N exisgs and is given by (2.a9).

3. Applications to Toeplitz matrices

We consider again a sequence {c} satisfying (1.1), (1.2). The random
variables X and S are defined as in (2.1) and (2.4). (2.2) and (2.3) are
assumed valid. The case where a in (2.3) equals 2 has been extensively
treated in [11], so we shall restrict ourselves to 0 2.
The corresponding sequence of (N W 1) X (N -[- 1) Toeplitz matrices

(N 0, 1, is defined by

(3.1) T(N), c_ I1, k,j O, 1,..., N.

The inverse of I T(N) is denoted by

(3.2) H(N) [I- T(N)]-1,
where I stands for the (N 1) X (N - 1) identity matrix. It was proved
in [11] that this inverse exists, and that

H(Y)k. n=O P( j; [0, N])
(3.3) E{number of indices n for which Sn j

while 0 -< Si =< N for i 0, 1,.-., hi So

The proof was based on the fact that

T’(N)k, the /c, j entry of the nth power of T(N) P(tcn j; [0, N]).

Using these facts, it becomes quite easy to translate the results of the last
section into results on Toeplitz matrices.

Following [11] we put for j [0, N]

I(N), ro H(N),r c_

P{the first S outside [0, N] equals j[ So /}.

TEOREM 3. If (1.1), (1.2), and (2.3) are satisfied for some 0 < < 2,
then for O < x < 1
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(3.4)

lim
kN--lx,

/(N)k,-= G.(y(1 x) -1, x(1 x)-1)
---vr_’<o

(z(1 x) + 1)-"/:(z(1 x) + x)-1 dz,
-i r(a) l-(3.5) lim /(N)k.-=_- r(/2)r(/2)

kN--l-x

y..-l(1 y).n-1 dy.

If (1.1), (1.2), (1.3), and (2.3) are satisfied for some 1 < a < 2, then for
O<x,y<l

(3.6)

lim NI-"H(N)I,
klN--l..x
k2N--1-..y

mir (x(l--x) --1,y(l--y) --1)

Q-(r(a/2))-lz y [-i/m((i’)-’,(i)-’) W./.-l(1 W)-" dw.
d0

For x y the expression in the right-hand side of (3.6) has to be read as

Q-l(a_ 1)-l(F(a/2))-2x"-l(1 x) --1.

Proof. (3.4) and (3.5) follow from Corollaries 1 and 2 to Theorem 1 by
change of scale. Only (3.6) requires further proof. But

(3.7)

By (2.26)

(3.8) lim
k2N--ly

H(N),I. E{number of indices n for which S k2 while
0-< Si-< Nfori= 0,1,...,hiS0 kl}

P(k -- k [0, N] E{number of indices n for which
S,=k2while0-< S-<Nfori=0,1,.-.,nlS0=k2}

P(kl .--+ k ;[0, NI)ENIoI(N k, -k).

NI-"ENIoI(N- k,-k) C(a, Q)y"-(1 y)-’

whereas, for 0 < y < x < 1, by Theorem 2

(3.9) lim P(I 2; [0, N]) q. ( y Y )--y’l --y
k2_W--1-y

By combining (3.7)-(3.9) and using the expressions for q, and C(a, Q), (3.6)
now follows for0 < y < x < 1. For0 < x < y < 1 it follows from the
fact that H(N) is symmetric, being the inverse of a symmetric matrix.
For y x it is even easier, since/(kl --* k. [0, N]) tends to 1 as N --+ ,

andkN-1-x,kN-lx,0 < x < 1, byLemma3.
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Remark. For0 < < lweknow

1 f_+ e-it(’-)(3.10) Nlim H(N), 1 (t)
dt

since then the S process is not recurrent and the integral in (3.10) converges
(cf. [3]). In this case

limN_ H(N), E/number of indices n for which

which is exactly the integral in (3.10).
For 1, the problem is more delicate. In [7] we proved that for a 1,

lim (log N)-IH(N), r-lQ-1.

One can also show that for x y

(3.11) lim (log N)- H(N), O,
klN’-- 1.-
k2N’--l-y

but it is not clear what will happen in (3.11) when x y or if log N is re-
placed by another appropriate factor. There are good reasons to believe that
fora: 1, x y

lim H(N),
kl-l->x
k21-l-y

exists and is given by the fight-hand side of (3.33) with a 1.
Let us now assume Q 1, i.e.,

(3.12) lim_0 ]-"(1 (t)) 1.

It is clear that in this case

(3.13) limN_ E exp (itN-i"sv) exp (- It
or, in other words, N-1"S behaves like X(1), where X(s) is a stable process
with independent increments with

E exp (it X(s)) exp (-s It
It seems reasonable therefore, to expect that

(3.4) -N"[I- T(N)]

will approximate the infinitesimal generator corresponding to a stable process
with absorbing barriers. For 0 < < 1 this infinitesimal generator was
found by Elliott in [4]. Elliott’s results were extended for all a < 2 by
Getoor [5]. We shall show in the next theorem that (3.14) indeed approaches
the same operutor.
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THEOREM 4. If (1.1), (1.2), and (3.12) are satisfied for some 0 < a < 2,
and if f(x) is twice continuously differentiable on [0, 1], then for 0 < x < 1

lim N" [I T(N)]k,f(jN-1)
No j----O

(3.15) -x*

d-F(a) sin P.V. f(y)]y x - sgn (y x) dy.

Proof.

f(-) --N X-1+ oc_ (/(-) /( ))
Putting ;c;

one obtains by partial summation (taking into account (1.1))

"=o [I T(N)]k,f(jN-)
f(o),,+ + f(1

+ = :(f(( + j 1) f((k + j)N-)
(3.16) + =7:(f(( j + 1)N-) f((k j)N-)

_
(( + j)N-)f(o)+ + :(1)_+ Y- - f’

+ N- =:f’(( J)-) + O(N-7).

By (3.12), (3.13), nd Theorem 5, p. 181 in [6]

(3.17) lim c > 0.

One esily derives from (3.12) that one must hve

c F() sin (/2).(3.18)
Since

P.V.f0 f’(Y) Y x [-" sgn (y x) dy

exists, it is easily seen from (3.16)-(3.18) that

lim N" _, [I T(N)], f(jN-)

Ofr(,)-sin (O)z-"+f(1)(1 x)
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P.V. f’(Y) IY x sgn (y x) d

71"O/ d -1--F(a)r-1 sin - xx P.V. Jo f(y) y x i-" sgn (y x) dy.

In Theorem 3 the asymptotic behavior of H(N) was found. We shall show
how this can be used to find the inverse of the infinitesimal generator just
found.

LEMMA 5. Let (1.1), (1.2), (1.3),and (3.12)besatisfiedforsome 1 < a < 2.
If g(x) C[0, 1], then

lim N-" H(N),g(jN-)
kN--1-->x

z(1--x)

(r(/))-’ (z - )-() -" ’-(1 )-e
(1--z)

(a.l) + (r(/))- (z z)-() d "(- -(1

(r / )- [ ’-a -( ( ))

(l--x) ((1--x)w+x)

+ f u"-lg(x + u(1 w))d-fa0

Proof. From (3.7) and (3.8) one concludes that N-"H(N), is bounded,
uniformly in , j. The first equality in (3.19) is now an immediute conse-
quence of (3.6) as

N- =0H(N), (jN-) oN-"H(N),:
The second equality in (3.19) follows after a simple ransformation.

Define now for 0 ( a ( 2

Te(x) ((/) )- "-
(3.2O) "- du

(l--x) ((l--x)w+x)

+ f u"-g(x + u(1 w))d
J0

whenever the integrals exist. Since for0 < a < 2

fol wa/2-1dW fo ua-l du

C[O, 1] is the class of functions continuous on [0, 1].
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it is easy to check the following properties"
(i) If g(x) e C[0, 1], then also Tg(x) C[0, 1].
(ii) If g(x) C[0, 1], and if g(x) is twice continuously differentiable in

[0, 1], then Tg(x) is twice continuously differentiable in (0, 1).
(iii) Under the conditions of (ii) there exists a function K(x),

bounded in each interval [, 1 e] for > 0, such that for i 0, 1, 2,
0<x0l

[(d/dx)Tg(z)]-o

Theorems 3 and 4 suggest that a solution of

a d f0(3.21) -r(.)-sinP.V. ](y) y x I-"
is given by

f(x) =Tg(x).

sgn (y- x)dy g(x)

For certain g’s we shall indeed prove this in

THEOREM 5.
in [0, 1], then

If 0 < a < 2, and if g(x) is twice continuously differentiable

f(x) Tg(x)

satisfies (3.21)for 0 < x < 1.

Proof. Take first

(3.22) g(x) (1 tx) -"-1,
where is a complex number with < 1. Substituting this g(x) and intro-
ducing v u-1 in (3.20) one obtains easily

f(x) Tg(x) (r(a/2))-x"(1 x)"/a-(1 tx)-l(l -t)-a/2

(3.23) x(1--x)--l(1--t)

Ya[2--1(1 + y)--a dy + ya]2-1(1 + y)- dy
(l--x) --1 (l--t)

(F(a -t- 1))-1x"/(1 x)"/2(1 tx)-l(1 t) -"2.
In order to check (3.21) we have to compute

y)(3.24) P.V. y" 1 " 1 ty)-I Y x [-" sgn (y x) dy

(0 < x < 1, it < 1).

This can be done by contour integration, exactly as in [8], pp. 23, 24.
The result for the expression in (3.24) is

(3.25) r(sin (rc/2))-lt-{ (1 t)"( 1 tx)-" 11,

from which (3.21) immediately follows for the particular function g(x) of
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(3.22). Since both (3.22) and (3.23) can be expanded as a power series in t,
we deduce that f(x) Tg(x) indeed satisfies (3.21) whenever g(x) is a
polynomial in x. If now g(x) is twice continuously differentiable on [0 1],
then for each e > 0 we can find a polynomial g(x) such that

supo__<=<l g(x) g(x) + supo__<_l g’(x)

-[- supo__l g"(x) g’(x) <= .
Putting

f(x) Tg(x) and f(x) Tg(x),

we see from Lemma 5 that, for i 0, 1, 2,

(3.26) (f(x) re(x)) -0 as$0

for anyxo (0, 1). Writing now for28__< x-<_ 1 28

sgn(y-- x) dy

z-- I(3.27) f f(y)(x y)-’ dy
+

f(y)(y x)-" dy

(f(x y) -f(x -{-- y))y-" dy,

we can easily differentiate the three terms on the right, obtaining

-a f f(y)(x y)-a-1 dy + f(x

(3.28) f(y)(y x) -"-1 dy -t- f(x + )-"

(f’(x y) --f’(x + y))y-" dy.

The same formula holds with fe(x) replacing f(x).
shows that

This together with (3.26)

a d 01--r(a)r-1 sin -- xx P.V. (f(y) f (y))I y x sgn,(y x) dy

tends to zero as 0. Since (3.21) is valid with f(x) and g,(x) instead of
f(x) and g(x), the theorem follows.

Remark. The condition that g(x) be twice continuously differentiable on
[0, 1] is most likely stronger than necessary. E.g., we know from [4] and the
corollary below that for 0 < a < 1, g(x) C[0, 1] already suffices. In [4] it
is also proved that the solution in C[0, 1] is unique. Similar uniqueness
properties can be proved here.
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COROLLARY. Let X(s) be a stationary stable process with independent incre-
ments such that for some 0 < a 1

EeitX(8) e-8ltl
and let

A.(,; x, y) fo e-X’("(s’ x, y) ds

where a.(s, x, y) is the density (at y, 0 < y < 1) of

if inf0__< (x + X()) =< 0,
Xab,(s) if sup0_<__8 (x -4- X()) ->_ 1,

4- X s otherwise;

then, for O a l and O < x, y 1, x y

A.(0; x, y) I. (.(s, x, y) ds

(3.33 min (x( 1--x> -1,y l--y> -1

(r(a/2))-lx y ["-/,x((-)-,,.(-)-,) w._(1 w) dw.

Proof. It was shown in [4], that for 0 < a < 1 and g(x) eC[O, 1], the
unique solution in C[0, 1] of (3.21) is given by

f(x) Jo A,(0; x, y)g(y) dy.

Together with (3.19) and Theorem 5 this implies (3.33). Using the expres-
sions in [9] one can show that (3.33) remains valid, even for 1 =< a =< 2.
Another form of (3.33) was round by Widom [13].

One may also consider the analogue of (3.33) for a process with one ab-
sorbing barrier only; i.e., let (B(s, x, y) be the density of

1
x

if sup0___< (x + X()) >= 1,-ab8(S) A- X(s) otherwise,
and

B(X; x, y) fo e-XSO3(s’ x, y) ds.

Seeing that for1 a < 2, y x 1,

lira NI-"E {number of indices n for which S k2 while Si -< N
-_,x for i 0, 1, ..’, n[So ki}
k2N--l.y

p,((x y)(1 y)-l))(1 y)"-C(a, 1)

(r(/2))-(x )"- w-"( w)"-
xy) (l--y)
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one is lead to expect

B,(0; x, y) Jo 5,(s, x, y) ds

(r x u "-1

i-1 w 1 w) dw
1--mir(x,y)

1--max(x.y)

(r(a/2))- x yl"- f-m,(,)W.-( w)-" dw

(0 < a < 1;x,y < 1;x y).
This result was indeed proved in [9].

Finally we shall derive an analogue of Theorem 2.2 in [11]. This concerns
the coefficients p,, of the orthogonal polynomials pn(Z), defined by

(i) Forn >- 0,
p, (z) ’k=0 p.k zk with p,., > 0,

1 f_+(ii) 2-- P’(e)-(e)(1 4()) d n,, n, m 0, 1, ....
It was shown in [11], Theorem 1.1 hat

v O <j,l < N),(3.34) H(N), [I T(N)]- =(,.)p, p,

and in Theorem 1.5

(3.35) p,k- H(N)v,(H(N),)-1.

We interpret this probabilistically in

LEMMA 6. If (1.1) and (1.2) are satisfied, then

(3.36) p, P(] -* N; [0, N])H(N),k

EInumber of indices n for which S, ] while 0 <- Si <- N
for i O, 1, n and for some io <- n, S

Proof. From (1.6) and (2.6) it is clear that

(3.37) H(N), P( -j; [0, N])H(N),.

Furthermore

(3.38) H(N), H(N),.

(3.35), (3.37), and (3.38) show

H(N)N.(H(N)N.N)-IpN.k H(N).v

/(]c -- N; [0, N])H(N)v..

This proves the first equality in (3.36); the second is again clear from (1.6)
and (2.6).
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COROLLARY 1.
p, <= E{number of indices n for which

(3.39)

where

=0
while maxo =<_ St N ]c So 0}

--ske Uk
(3.40)

l f_2- dyexp --- (t- y)+s/41g(1 -(t)) dr.

Proof. The inequality is clear from the interpretation (3.36) of p.. The
generating function (3.40) of u was proved in Lemma 2 of [7].
Lemma 6 and this corollary explain why lim p,_ u as proved in

Theorem 1.6 of [11].

Coao 2. Let (1.1), (1.2), and (2.3) be satisfied for some 1 < a 2.
Then e can find for eh > 0 a () > 0 sh that

(3.) (.)/(p,)
whenever

e kN 1 and N N N(1 +(e)).

Similarly, there exists a s(s) > 0 sh that

(3.42) (u)/(u)
whenever N N N(1 + s e

Proof. (3.36) and (3.37) show that for N
p, P(k N; [0, N])P(N k; [0, N])H(N),

P(k N [0, N])P(N ; [0, N])H(N),P,

> P(k N [0, N])P(N ; [0, N])
P( N; [0, N])P(N ; [0, N])

In addition,

P( N, ;[0, N])
P( + N N ;[0, N])P( + N N N ;[0, N])

P( k + N N ;[0, N])P( N ;[0, N]).
Since

1 P(k k + N N ;[0, N]) 1 P(k k + N N (- , N])

+ 1 P(kkWN- N;[0, )),
it follows from Lemma 3 that for

(N N)/N (e), say

P(kkWN-- N;[0, N]) (1 s),
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and consequently
( --, N; [0, Nd) > ( )
P( - N.; [0, N])

In a similar way one treats the factor

(N - ; [0, N])
P(N. - ; [0, N.])

This proves (3.41). (3.42) is proved in the same way taking into account
that by the probabilistic interpretation of u (cf. (3.39))

u P(0 -- N; (- , N])P(N -- 0; (- oo, N])ENIoI(N oo

(cf. (2.25) for definition of N(oI(A, -B)).

THEOREM 6. If (1.1), (1.2), and (2.3) are satisfied for some 1 < a < 2,
then

(3.43) p. ---+ O as N-

and for O x 1,
1-a/2 Q-112 )-lxa/2 a/2-1(3.44) lim v p. (r(a/2) (1 x)

kN

(3.45) limN N-"/u Q-1/(r (,/2))-.

Proof. By (3.39), p,k =< UN--k, SO that (3.43) is a consequence of (3.45).
We shall now prove (3.44). By Theorem 3

N.-1Q-1 -1(H(N), (a 1) F(a/2))-2(kN-1) (1 kN-1) "-1 -k o(N"-1)
Q-l(a 1)-1( F (a/2))-2/.-1(1

as N --* ,/N-1 -+ x. Recalling (3.34) and (3.41) one has, for t < x

-r(1+7 ())/tT(e)N p,(1 e) -< /_.,r--+l pr,

H(N(1 + 7(e))k, H(N),
Q-l(a 1)-1( F (a/2)
(1 kN-l(1 q- /tr(e) )-1) a--i (1 kN-1)"-1}
q- o(N"-)

or
< (1 e)-Q- )-2 .( .-.pr, F (a/2) (kN-) 1 IoN-1) -[- 0(1).

As pr,N p,k H(N)N, > 0 and p, > 0, also p, > 0. Consequently

lim sup Nl-,/.p, =< Q-/2(F(a/2))-lx"/2( 1 x)"/-l.
kN--l-x
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Similarly, considering the sum
hEr=N(I+7 ())-1 Pr ,/

one proves

lim inf N-/p, >- Q-/ r a/2 )-x/(1 x)/-,
N->oo

kN--lx

completing the proof of (3.44). (3.45) is proved in the same way, taking
into account (3.42), Theorem 1 of [7], saying

C(a, Q)lim N-0u

and the fact that u limo p,_ 0 (Theorem 1.6 in [11]).
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