
ONE-DIMENSIONAL TOPOLOGICAL SEMILATTICES

BY

L. W. ANDERSON AND L. E. WARD,

1. Introduction

In [5] A. D. Wallace proved that a compact, connected mob with zero nd
unit has trivial cohomology groups for n > 0. It is implicit in this result

one-dmensonal and locally connected, then it is athat if such a mob is
tree. For, if X is a continuum, dim X 1, and H(X) 0, then X is heredi-
tarily unicoherent; thus, if X is locally connected, it is a tree [8]. In the main
theorem of this note we modify Walluce’s result so as to eliminate the neces-
sity of hypothesizing a unit. Specifically, we prove

THEOREM. A compact, connected, locally connected, one-dimensional,
idempotent, commutative mob is a tree.

2. Preliminaries

A topological semilattice (= TSL) is an idempotent commutative mob.
A TSL can be endowed with a natural partial ordering by letting x -<_ y if
xy x. Thus xy g.l.b. (x, y), denoted hereafter by x ^ y, and this
partial ordering is continuous in the sense that its graph (x, y)" x _-< Yl
is closed. It is easy to see that compact TSL is ^-complete and therefore
has a zero. Also ^-complete TSL with unit is an algebraic lattice (but
not necessarily topological).
A tree is a continuum (= compact connected Hausdorff space) in which

every two points are separated by third point. A tree admits a partial
ordering as follows" Select a point x0, nd define x _-< y if and only if x x0,

or x y, or x separates x0 nd y. This partial ordering is called the cutpoint
ordering of a tree [6]. We recall [7] thut a compact Huusdorff space X is a
tree if, and only if, X admits a prtil ordering, -_<, such that for each a, b e X

(i) L(a) and M(a) ureclosed,
(ii) ira b, thenthereexistsceXwitha c b,

(*) (iii) L(a) L(b) is a nonvoid chain,
(iv) M(a) {al is open.

3. Proof of the theorem

Throughout this section, S will denote compact, connected, locally con-

Received July 31, 1959; received in revised form July 5, 1960.
This research was supported in part by the Air Force Office of Scientific Research.
The dimension function employed throughout this note is codimension as expounded

by Haskell Cohen [3]. For compact ttausdorff space, the codimension (with the integers
as coefficient group) and the covering dimension agree.

In a partially ordered set we write L(a) {x’x <-_ a} andM(a) {x" a -< x}.
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nected, one-dimensional TSL.
plished by a series of lemmas.

The proof of the theorem will be accom-

LEMMA 1. If X S, then there is a unique closed connected chain C(O, x)
such that 0 and x are elements of C O, x) and C(0, x) c L x

Proof. Since L(x) has a unit, it is a tree. Let Fe(x) denote the graph
of the cutpoint ordering of the tree L(x). If (a, b) Fe(x), then a 0,
or a b, or a separates0 and binL(x). In the first two cases a =< bis
obvious. If a separates 0 and b in L(x), then, since L(b) is a connected sub-
set of L(x) containing 0 and a, again we have a =< b. Thus Fc(X) is a subset
of F(x), the graph of the semilattice ordering of L(x). Since there is a
closed connected chain from 0 to x in the cutpoint ordering of the tree L(x),
so there is also one in the semilattice ordering. The uniqueness of this chain
follows from the fact that L(x) is hereditarily unicoherent.
We define a new relation/ on the elements of S by x A y if and only if

x _-< y and there exists a closed connected chain C(x, y) such that x and y are
elements of C(x, y) and C(x, y) M(x) [ L(y). It is clear that A is an
order-dense partial order, and by Lemma 1, 0 A x for each x S. Moreover
C(x, y) is unique for each x and y in S such that x A y.

In order to distinguish between these relations let

L,(x) {y S" y / x},

M/(x) lye S" x A y},

Lc(x; y) Iz e L(y)" (z, x) e

Mc(x; y) (z L(y)" (x, z) rc(y)}.

LEMMA 2.
on L(y).

If y S, then the cutpoint ordering of L(y) is identical with

Proof. It is sufficient to prove that Me(x; y) M(x) n L(y) for x L(y).
If p Me(x; y), then x 0, or x p, or x separates 0 and p in L(y). If
x 0, thenxApbyLemmal. Ifx p, thenxApistrivial. Ifxsepa-
rates 0 and p in L(y), then x C(0, p), and hence C(x, p) M(x) C(0, p)
is the desired chain. In any event, Me(x; y) M(x) L(y). To prove
the reverse inclusion suppose p Ma(x) L(y), i.e., there exists a closed
connected chain C(x, p). By the uniqueness of C(0, p) and the existence of
C(0, x) it follows that C(x, p) C(0, p), and hence x C(0, p). Since
L(y) is a tree, this implies that x separates 0 and p in L(y).

LEMMA 3. If y e S, then L(y) is a closed chain containing O.

Proof. By Lemma 2, L/(y) Lc(y; y) C(O, y).

LEMMA 4. If y e S, then M(y) is a closed set.

Proof. Let x (M/(y))* and choose open sets U and V such that
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xV c U, V ^ V c U. IfzeVnM(y),thenx ^ zeUnL(x),and
there exists a connected chain C(y,z) c M(y). It follows that
x ^ C(y, z) C(x ^ y, x ^ z) C(y, x ^ z)since x e (M(y))* M(y).
Therefore x ^ z e U L(x) M(y), and hence x (L(x) M,(y))*.
Since L(x) n M/,(y) Me(y; x), a closed subset of L(x), we have x e M,(y).

LEMMA 5. If X e S, then M(x) x} is open.

Proof. If y M(x) {x}, then by Lemma 2, L(y) (M/,(x) {x}) is
open in the treeL(y). Define f: S--L(y) byf(z) y ^ z. Since Sis
locally connected and f is continuous, there is a connected open set U such
that

y e U U* f-l(L(y) (M(x) {x})).
Suppose there exists z U* (M/,(x) {x} ). Then x e S C(0, z), and
since C(0, z) and C(0, y ^ z) have a nonempty intersection, there exists

w sup(C(0, z) a C(0, y ^ z)).

Since z e U*, we have z ^ y e M(x) x} therefore there is a connected
chainC(x,z.^ y),andthusxeC(O,z ^ y). BecausexeS- C(0, z),it
follows that w < x and x e C(w, y ^ z). Moreover, C(w, z) u C(w, y ^ z)
is an irreducible continuum between z and y ^ z. Since L(z) is hereditarily
unicoherent, it follows that (C(w, z) u C(w, y ^ z) (z ^ U*) is connected.
Sincezez ^ U*andy ^ zez ^ U* we infer that

C(w,z) u C(w,y ^ z) c z ^ U*,
and hence x e z ^ U*.
We have proved that if x e U* (M(x) {x} then x e z ^ U*. Now

y ^ U* S {x}, an open set, and hence there is an open set V with y e V
such that V ^ U* S {x}. In particular, V U is an open set contain-
ingyandVn U c M(x) {x}. (OtherwisezV U- (M(x) {x})
impliesxz ^ U* V ^ U* S- {x}.) ThereforeM(x) {x} is an
open set.
Lemmas 1-5 show that the relation A satisfies all of the conditions (*),

and hence S is a tree.

4. Order-dense and locally order-dense TSL’s
A partially ordered set P is order-dense if for each x, y e P such that x < y

there exists z e P such that x < z < y. A subset C of P is convex if x, y e C
implies M(x) a L(y) C. A POTS is locally order-dense (locally convex)
if the topology has a base consisting of order-dense (convex) sets.
Nachbin [4] has observed that every compact POTS is locally convex, and

thus a compact TSL is locally convex. In [2] it is shown that a locally com-

A POTS is a partially ordered topological space, i.e., a topological space S with a
partial order such that L(x) and M(x) are closed sets, for each x S.
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pact connected topological lattice is locally convex. It is not known if this
result is valid if "topological lattice" is replaced by "TSL".

It is known [1] that a locally convex connected topological lattice is locally
connected. This is not true in a TSL (e.g., see Example 1).
However, we have the

LEMMA. A locally compact, locally convex, locally order-dense TSL is
locally connected.

Proof. Let S satisfy the conditions of the lemma, and let x e U c S with
U an open set. Let U1, U2, Ua, and U4 be open sets containing x such that
U1 is order-dense, U is compact, Ua is convex, and

U ^ U UUUU U.

Now if y, z e U4, then L(y) M(y ^ z) U and is a compact order-dense
POTS with zero and hence is connected [6]. Thus S is locally connected.
The following corollary follows directly from the theorem.

COROLLARY 1. A compact, connected, locally order-dense, one-dimensional
TSL is a tree.

It is easy to see that a locally convex, order-dense TSL is locally order-
dense. Thus we have

COROLLARY 2. A compact, order-dense, one-dimensional TSL is a tree.
Moreover the cutpoint ordering agrees with the semilattice ordering.

5. Examples
Each of the following examples is a subset of the Euclidean plane with the

usual topology. The semilattice operation in all cases is given by
(x, y) ^ (xr, yr) (min(x, x), min(y, y)).
Example 1. For each positive integer n let

A {(x, y)’x 1/n and 0 _-< y -< 1};

B {(x,y)’0 =< x,y =< lar/dxy 0}.

Setting S B u U:= {A,,} we have a TSL which is compact and connected
but not locally connected.
Example 2. For each positive integer n let

Am {(x, y)" (n 1)In -<_ x _-< 1 and y (n 1)/n};

B {(x,y)’0-< x =< landy x}.

Then S B u U:=I {Am} is a compact connected locally connected TSL
which is not locally order-dense. We observe that S is a distributive lattice
but is not a topological lattice.
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Example 3. If S (x, y)" O <= x, y <= landxy O or y 1},thenS
is a locally connected, locally order-dense TSL which is not order-dense.
Example 4. For each positive integer n let

An I(x, y)’y 0 and 1/(n- 1) < x < l/n},
and set S (0, 0) u (Jn=l {An} Then S is a locally convex, locally order-
dense TSL which is not locally connected and not locally compact.
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