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1. Introduction and an elementary lemma
The author has given a theorem [8] by which it is possible to find an asymp-

totic formula for the summatory function of the convolution of two arithmetic
functions if such a formula is known for these functions. By the convolution
of arithmetic functions a and b we mean

(a b)(n) -,1., a(d) b(n/d).

If A (x) < a(n) and B(x) ,<x b(n), we have used the term Stieltjes
resultant for the function

C(x) <x (a b)(n)

due to the fact that for almost all x

C(x) A (x/u) dB(u).

However, the term convolution is just as natural, and so we have two convolu-
tions, and X, where for x _>- 1

(A X B)(x) <x (a b)(n).

In the present paper we shall apply the theorem of [8] to some interesting
arithmetic functions and then apply the following elementary lemma to some
of these results and also to some known nonelementary asymptotic formulae
to find estimates for sums Zn<x a(n) In.
LEMMA. Given an arithmetic function a, if for x >- 1

A(x) <x a(n) R(x) - O(x"L(x)),
where R is continuous on [1, ), a is real, L slowly oscillating (see below), then

,< a(n)/n R(t)t-2 dt + R(x)x-1 + c + O(x"-lLl(x)),

where c O if a >= 1,

c (A (t) R(t)) dt

if o < 1, L(x) L(x) if o 1, and
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L(x) t-iL(t) dt
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A function L is said to be slowly oscillating if it is continuous and positive
valued on [x0, for some x0, and if for every c > 0

lim_,= L(cx)/L(x) 1.

Such a function is characterized by the form [5]

)L(x) p(z)po exp t-(t) dt
xo

where p and t are continuous, p0 > 0, p is positive valued, and p(x) -. 1 and
i(x) --+ 0 as x -+ . (x0 will be taken as 1 in this paper.)
Note that as x -- , L(x) is asymptotic to

J(x) po exp t-(t) dt

where J is differentiable. Thus the use of l’Hospital’s rule is justified in
the following proof.

Proof of lemma. Let E(x) A(x) R(x) O(x"L(x)). Then

_,,< a(n)/n -1 dA (t)

A(x)/x + f
,1

t-2A (t) dt

R(x)/x + O(x"-lL(x)) + f t-2R(t) dt + t-E(t) dr.

Now if a > 1, then

t-E(t) dt 0 t"-L(t) d

for one can use l’Hospital’s rule to prove that

O(x"-iL(x)),

If 1, then

t"-L(t) dt-. x"-L(x)/(a 1).

t"-2L(t) dt t-L(t) dr.

This is readily seen to be a slowly oscillating function with the aid of
l’Hospital’s rule; further, it can be shown that it dominates L(x). If a 1,

t-E(t) dt t-E(t) dt t-E(t) dt

c -t- O (f t"-:L dt)
c - O(x"-i(x))

by l’Hospital’s rule. This completes the proof of the lemma.
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S. A. Amitsur [2] has used the arithmetic linear transformations of K.
Yamamoto [9] to find some formulae for sums

_
a(n)/n. His technique

involves the method of convolutions applied directly to these sums. It is
interesting to note that with the aid of the above lemma we are able to get a
better estimate in his formulae even in some cases where we used only the
convolution method to get a formula for < a(n). In fact, the theorem
by which he derives his formulae can easily be derived as a special case of the
theorem of [7] which is a special case of [8].

2. Statement of results
We begin with the assumption that for x >= 1,

(2.1) M(x) _,,,<x l(n) O(xLo(x) ),

and

(2.2) D(x) ,< d(n) xP (log x) -t- 0(x"L(x)) (/

_
2),

where is the MSbius function, d(n) is the number of ordered positive integral
solutions of xl x..., x n, L0 and L are slowly oscillating functions, P a
polynomial function of degree k 1 (which is known explicitly),

1/2 =< 0-<_ 1 and (k- 1)/(2k) =< -< (/- 1)/(k-f- 1).

(See [6], Chapter 12 and [4] for estimates of a .) We further assume that if
0- 1, thenforx->_ 1

(2.3) Lo(x) 0(exp {--c (log x)/7/(log log x) 3/7} ),

for suitable c > 0. (This follows by standard arguments from the information
on p. 114 of [6]. See [6], p. 316 for the case 1/2. Of course it is not yet
known whether one can take < 1.) Under these assumptions we shall
prove the following"

(2.4)

(2.5) ,< (n)/n (log

(2.6) En< 2"(") xP
(2.7) E< 2’()/n P*
(2.8) <d(n2) xP
(2.9) <d(n)/n P* (log z) + 0(, a x)),

(2.10) < d(n) xP (log x) + O(x’L(x)),
(2.11) <d(n)2/n P* (logx) + O(xe’-L(x)),
(2.12) <d(n)/n P (log z) + O(z"-L(x)) (k 2),

where g is the characteristic function of the k-power-free integers (thus
g(n) g(n)), (n) is the number of distinct prime factors of n,

___n<x lk,(Tt) X/(]) + O(x(+-O)L(x) (/c >= 2),

X)/() + Vl + O(x-(-e)/(k+l-e)L(x) ),

(og x) + o( (x)),

(logx) + O(x L (x) ),
T(og x) + o( (x)),



178 J.P. TULL

d(n) d2(n) the number of divisors of n,

(1-- Oa)/, ), 3-- 0 2, if _<_ 1/2,

a if a >_ 1/2.

The P’s are polynomial functions which can be explicitly calculated by an
Abelian argument (see [3]) or by (4.2) below. The L’s are slowly oscillating
functions satisfying

L*o(X) (1 -k o(1))Lo(x/(+-)) (+())/(+-) as x-- ,
L(x) {L(x(-)/)-Lo(x(-")/x)-" log(-)(-")(x + 1)}

s

L* (x) -u L(u) du

L (x) L(x)

x-- if ak<1/2 (/>=2),

if ak 1/2 (k_> 2),

if a > 1/2 (]_> 2).

Note that all the arithmetic functions a in the above formulae satisfy
a(n) O(n) for euch e > 0 and hence lthough we use the sum "< a(n)
in the text, the formulae are unchanged by replacing this sum by __< a(n).

3. Proof of (2.4)
We observe that =(n)/n (s)/(ks), and hence if

A(x) _< (n), B(x) < 1, and i(x) ’:,< k(n),

then M A X B. Thus we apply [8] to the formulae

(3.1) A(x) O(xe/Lo(x/) ),

(3.2) B(x) x + 0(1),

(3.3) V,(x) O(x/), V,(x) O(x).

Here Vx(x) denotes the total variation of the function A over the interval
[1, x].
Formulae (5) and (6) of [8] applied to A and B give us

O/k zl/k) (zl[kM(x) M( (x/u) l/k) du + O(XO/kLo(xi/k) + O(Z yLo( W 0

uniformly for 1 <-_ y <- x, z x/y. The main term is

M( (x/u)k) du x u-2M(u) du

(xf x u-M(u) du + 0

X/(]) -- O(xe/Lo(xlike))

(e/)-2Lo(Ul/k)



AVERAGE ORDER OF ARITHMETIC FUNCTIONS 179

by l’Hospital’s rule. We choose, with /c + 1 0,

z x/’Lo(x’)/’= x’L*(x),
and the error term becomes

Olx’Lo(x"L*(x) )L*(x)-} -t- O(x/’L*(x) O(x’L*o (X) ),
where

L*o (X) max IL*(x), Lo(x-/’L*(x))L*(x)-} (1 A- o(1))Lo(x[’) (+(1))’

as x -+ . The term O(xOLo(x)) is neglected, for if 0 < 1, then

and if 0 1, then Lo(x) 1 for large x, and so

Lo(xlk) <= L0(xl/k)/ L*(x).
Thus we have (2.4)

-",<x (n) x/(k) + O(xl/’L*o (x) ).

A simple application of our lemma now yields (2.5).

4. Proof of (2.6)-(2.11)

M()(x) M(x) Zn2<x (n),
C(x) (D X M())(x) _,,n<.d(m)p(n).

It is easily shown that (see [6], Chapter 1)

C(x) < 2(), C(x) _,< d(n),
and

C4(x) Zn<x d(T) 2.

Thus we can handle formulae (2.6)-(2.11) in one proof.
With the aid of (2.1), (2.2), and the estimates

V)(x) O(xlog-(x -t- 1)), I()(x) O(x/),
the theorem of [8] gives, for a < 1/2, 1 <= y =< x, z x/y,

C(x) Tk(x) -4- O(x"L(x) + O(xO/2Lo(x/2)
(.)

+ O(z"y/2L(z)) + O(zyI2Lo(y2) log-l(z +1)),
where

Since

T(x) M( (x/u)) d(uPk(log u)

xP*(log x) + O(x/2Lo(x1/2) log-(x + 1)).

L0(x/2) log-(x + 1) o(1)



180 . P. TULL

if 0 1, and
0/2 < (1 Oak)l(3- 0- 2ak)

if 0 < 1 (ak -< 1/2), the above error term is dominated by that found below.
The substitution in (4.1) of

x(-o)/XLk (x(-o)/ /xk
Z

Lo(z-) log -X(x + 1)
leads to the error term

4.3 0(x(-)L*kx))"
with Ak and L* as in Section 2 (ak < 1/2).

If ak 1/2, then [8] gives an error term

( fl ) (xl )(4.4) O(xOLo(x) ) + 0 x u-Lk(u) du 0 u-L(u) du

If k > 1/2, the error is

(4.5) O(x"’Lk(x) ).

After applying the lemma to these results, we have formulae (2.6)-(2.11).
(2.12) is an immediate consequence of the lemma applied to (2.2).
One can easily show that 0k is a nondecreasing function of ak and of O, and

thus improvements_on ak and on 0 will yield improvements on 8k. However,
since (1 0ak)/(3 O 2ak) 1/2 if O 1, no improvement on a beyond
ak

_
1/2 will improve 0k by this method until more is known on the Riemann

conjecture. Thus at present the best value for 0k given by this method is 1/2.
Since a., a, and a can be taken -<_ 1/2, we have 0. O 0 1/2. (Hua [4]
has a list of the best values of ak known to date.) Furthermore, if
ak < 1/2 (0 1), then L is independent of L, and so improvements on Lk are
of no help unless ak >- 1/2. However, if L0 is given by (2.3), then improvements
on ak beyond 1/2 will improve L*.

If we recall that the best conceivable values for ak and 0 are (] 1)/(2k)
and 1/2, respectively, then it appears that the best value for 0k given by this
method would be

0k (3k + 1)/(6 + 4).

(See [6], p. 273.) It would be interesting to know whether this is indeed a
lower bound on the possible values of 0k.
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