AVERAGE ORDER OF ARITHMETIC FUNCTIONS

BY
J. P. Tull

1. Introduction and an elementary lemma

The author has given a theorem [8] by which it is possible to find an asymptotic formula for the summatory function of the convolution of two arithmetic functions if such a formula is known for these functions. By the convolution of arithmetic functions a and b we mean

$$
(a * b)(n)=\sum_{d \mid n} a(d) b(n / d)
$$

If $A(x)=\sum_{n<x} a(n)$ and $B(x)=\sum_{n<x} b(n)$, we have used the term Stieltjes resultant for the function

$$
C(x)=\sum_{n<x}(a * b)(n)
$$

due to the fact that for almost all x

$$
C(x)=\int_{1}^{x} A(x / u) d B(u)
$$

However, the term convolution is just as natural, and so we have two convolutions, $*$ and \times, where for $x \geqq 1$

$$
(A \times B)(x)=\sum_{n<x}(a * b)(n)
$$

In the present paper we shall apply the theorem of [8] to some interesting arithmetic functions and then apply the following elementary lemma to some of these results and also to some known nonelementary asymptotic formulae to find estimates for sums $\sum_{n<x} a(n) / n$.

Lemma. Given an arithmetic function a, if for $x \geqq 1$

$$
A(x)=\sum_{n<x} a(n)=R(x)+O\left(x^{\alpha} L(x)\right)
$$

where R is continuous on $[1, \infty), \alpha$ is real, L slowly oscillating (see below), then

$$
\sum_{n<x} a(n) / n=\int_{1}^{x} R(t) t^{-2} d t+R(x) x^{-1}+c+O\left(x^{\alpha-1} L_{1}(x)\right)
$$

where $c=0$ if $\alpha \geqq 1$,

$$
c=\int_{1}^{\infty} t^{-2}(A(t)-R(t)) d t
$$

if $\alpha<1, L_{1}(x)=L(x)$ if $\alpha \neq 1$, and

$$
L_{1}(x)=\int_{1}^{x} t^{-1} L(t) d t
$$

if $\alpha=1$.
Received October 26, 1959.

A function L is said to be slowly oscillating if it is continuous and positive valued on $\left[x_{0}, \infty\right)$ for some x_{0}, and if for every $c>0$

$$
\lim _{x \rightarrow \infty} L(c x) / L(x)=1
$$

Such a function is characterized by the form [5]

$$
L(x)=\rho(x) \rho_{0} \exp \left(\int_{x_{0}}^{x} t^{-1} \delta(t) d t\right)
$$

where ρ and δ are continuous, $\rho_{0}>0, \rho$ is positive valued, and $\rho(x) \rightarrow 1$ and $\delta(x) \rightarrow 0$ as $x \rightarrow \infty$. (x_{0} will be taken as 1 in this paper.)

Note that as $x \rightarrow \infty, L(x)$ is asymptotic to

$$
J(x)=\rho_{0} \exp \left(\int_{x_{0}}^{x} t^{-1} \delta(t) d t\right)
$$

where J is differentiable. Thus the use of l'Hospital's rule is justified in the following proof.

Proof of lemma. Let $E(x)=A(x)-R(x)=O\left(x^{\alpha} L(x)\right)$. Then

$$
\begin{aligned}
\sum_{n<x} a(n) / n & =\int_{1}^{x} t^{-1} d A(t) \\
& =A(x) / x+\int_{1}^{x} t^{-2} A(t) d t \\
& =R(x) / x+O\left(x^{\alpha-1} L(x)\right)+\int_{1}^{x} t^{-2} R(t) d t+\int_{1}^{x} t^{-2} E(t) d t
\end{aligned}
$$

Now if $\alpha>1$, then

$$
\int_{1}^{x} t^{-2} E(t) d t=O\left(\int_{1}^{x} t^{\alpha-2} L(t) d t\right)=O\left(x^{\alpha-1} L(x)\right)
$$

for one can use l'Hospital's rule to prove that

$$
\int_{1}^{x} t^{\alpha-2} L(t) d t \sim x^{\alpha-1} L(x) /(\alpha-1)
$$

If $\alpha=1$, then

$$
\int_{1}^{x} t^{\alpha-2} L(t) d t=\int_{1}^{x} t^{-1} L(t) d t
$$

This is readily seen to be a slowly oscillating function with the aid of l'Hospital's rule; further, it can be shown that it dominates $L(x)$. If $\alpha<1$,

$$
\begin{aligned}
\int_{1}^{x} t^{-2} E(t) d t & =\int_{1}^{\infty} t^{-2} E(t) d t-\int_{x}^{\infty} t^{-2} E(t) d t \\
& =c+O\left(\int_{x}^{\infty} t^{\alpha-2} L(t) d t\right) \\
& =c+O\left(x^{\alpha-1} L(x)\right)
\end{aligned}
$$

by l'Hospital's rule. This completes the proof of the lemma.
S. A. Amitsur [2] has used the arithmetic linear transformations of K. Yamamoto [9] to find some formulae for sums $\sum_{n \leqq x} a(n) / n$. His technique involves the method of convolutions applied directly to these sums. It is interesting to note that with the aid of the above lemma we are able to get a better estimate in his formulae even in some cases where we used only the convolution method to get a formula for $\sum_{n<x} a(n)$. In fact, the theorem by which he derives his formulae can easily be derived as a special case of the theorem of [7] which is a special case of [8].

2. Statement of results

We begin with the assumption that for $x \geqq 1$,

$$
\begin{equation*}
M(x)=\sum_{n<x} \mu(n)=O\left(x^{\theta} L_{0}(x)\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{k}(x)=\sum_{n<x} d_{k}(n)=x P_{k}(\log x)+O\left(x^{\alpha_{k}} L_{k}(x)\right) \quad(k \geqq 2) \tag{2.2}
\end{equation*}
$$

where μ is the Möbius function, $d_{k}(n)$ is the number of ordered positive integral solutions of $x_{1} x_{2} \cdots x_{k}=n, L_{0}$ and L_{k} are slowly oscillating functions, P_{k} a polynomial function of degree $k-1$ (which is known explicitly),

$$
\frac{1}{2} \leqq \theta \leqq 1 \quad \text { and } \quad(k-1) /(2 k) \leqq \alpha_{k} \leqq(k-1) /(k+1)
$$

(See [6], Chapter 12 and [4] for estimates of $\boldsymbol{\alpha}_{k}$.) We further assume that if $\theta=1$, then for $x \geqq 1$

$$
\begin{equation*}
L_{0}(x)=O\left(\exp \left\{-c(\log x)^{4 / 7} /(\log \log x)^{3 / 7}\right\}\right) \tag{2.3}
\end{equation*}
$$

for suitable $c>0$. (This follows by standard arguments from the information on p. 114 of [6]. See [6], p. 316 for the case $\theta=\frac{1}{2}$. Of course it is not yet known whether one can take $\theta<1$.) Under these assumptions we shall prove the following:

$$
\begin{align*}
\sum_{n<x} \mu_{k}(n) & =x / \zeta(k)+O\left(x^{1 /(k+1-\theta)} L_{0}^{*}(x)\right) \quad(k \geqq 2) \tag{2.4}\\
\sum_{n<x} \mu_{k}(n) / n & =(\log x) / \zeta(k)+c_{1}+O\left(x^{-(k-\theta) /(k+1-\theta)} L_{0}^{*}(x)\right), \\
\sum_{n<x} 2^{\nu(n)} & =x P_{2}^{*}(\log x)+O\left(x^{\theta_{2}} L_{2}^{*}(x)\right), \\
\sum_{n<x} 2^{\nu(n)} / n & =P_{2}^{* *}(\log x)+O\left(x^{\theta_{2}-1} L_{2}^{*}(x)\right), \\
\sum_{n<x} d\left(n^{2}\right) & =x P_{3}^{*}(\log x)+O\left(x^{\theta_{3}} L_{3}^{*}(x)\right), \\
\sum_{n<x} d\left(n^{2}\right) / n & =P_{3}^{* *}(\log x)+O\left(x^{\theta_{3}-1} L_{3}^{*}(x)\right), \\
\sum_{n<x} d(n)^{2} & =x P_{4}^{*}(\log x)+O\left(x^{\theta_{4}} L_{4}^{*}(x)\right), \\
\sum_{n<x} d(n)^{2} / n & =P_{4}^{* *}(\log x)+O\left(x^{\theta_{4}-1} L_{4}^{*}(x)\right), \\
\sum_{n<x} d_{k}(n) / n & =P_{k}^{*}(\log x)+O\left(x^{\alpha_{k}-1} L_{k}(x)\right)
\end{align*}
$$

where μ_{k} is the characteristic function of the $k^{\text {th }}$-power-free integers (thus $\left.\mu_{2}(n)=|\mu(n)|\right), \nu(n)$ is the number of distinct prime factors of n,
$d(n)=d_{2}(n)$ the number of divisors of n,

$$
\begin{array}{ll}
\theta_{k}=\left(1-\theta \alpha_{k}\right) / \lambda_{k}, & \lambda_{k}=3-\theta-2 \alpha_{k}, \\
\theta_{k}=\alpha_{k} & \text { if } \alpha_{k} \leqq \frac{1}{2} \\
\text { if } \quad \alpha_{k} \geqq \frac{1}{2} .
\end{array}
$$

The P 's are polynomial functions which can be explicitly calculated by an Abelian argument (see [3]) or by (4.2) below. The L's are slowly oscillating functions satisfying

$$
\begin{aligned}
& L_{0}^{*}(x)=(1+o(1)) L_{0}\left(x^{1 /(k+1-\theta)}\right)^{(1+o(1)) /(k+1-\theta)} \quad \text { as } \quad x \rightarrow \infty, \\
& L_{k}^{*}(x)=\left\{L_{k}\left(x^{(1-\theta) / \lambda_{k}}\right)^{2-\theta} L_{0}\left(x^{\left(1-\alpha_{k}\right) / \lambda_{k}}\right)^{1-2 \alpha_{k}} \log ^{(k-1)\left(1-2 \alpha_{k}\right)}(x+1)\right\}^{(1+o(1)) / \lambda_{k}} \\
& \text { as } \quad x \rightarrow \infty \quad \text { if } \quad \alpha_{k}<\frac{1}{2} \quad(k \geqq 2) \text {, } \\
& L_{k}^{*}(x)=\int_{1}^{x} u^{-1} L_{k}(u) d u \quad \text { if } \quad \alpha_{k}=\frac{1}{2} \quad(k \geqq 2), \\
& L_{k}^{*}(x)=L_{k}(x) \quad \text { if } \quad \alpha_{k}>\frac{1}{2} \quad(k \geqq 2) .
\end{aligned}
$$

Note that all the arithmetic functions a in the above formulae satisfy $a(n)=O\left(n^{\varepsilon}\right)$ for each $\varepsilon>0$ and hence although we use the sum $\sum_{n<x} a(n)$ in the text, the formulae are unchanged by replacing this sum by $\sum_{n \leqq x} a(n)$.

3. Proof of (2.4)

We observe that $\sum_{n=1}^{\infty} \mu_{k}(n) / n^{s}=\zeta(s) / \zeta(k s)$, and hence if $A_{k}(x)=\sum_{n^{k}<x} \mu(n), \quad B(x)=\sum_{n<x} 1, \quad$ and $\quad M_{k}(x)=\sum_{n<x} \mu_{k}(n)$, then $M_{k}=A_{k} \times B$. Thus we apply [8] to the formulae

$$
\begin{gather*}
A_{k}(x)=O\left(x^{\theta / k} L_{0}\left(x^{1 / k}\right)\right) \tag{3.1}\\
B(x)=x+O(1) \tag{3.2}\\
V_{A_{k}}(x)=O\left(x^{1 / k}\right), \quad V_{B}(x)=O(x) \tag{3.3}
\end{gather*}
$$

Here $V_{A}(x)$ denotes the total variation of the function A over the interval [$1, x]$.

Formulae (5) and (6) of [8] applied to A^{k} and B give us
$M_{k}(x)=\int_{1}^{x} M\left((x / u)^{1 / k}\right) d u+O\left(x^{\theta / k} L_{0}\left(x^{1 / k}\right)\right)+O\left(z^{\theta / k} y L_{0}\left(z^{1 / k}\right)\right)+O\left(z^{1 / k}\right)$
uniformly for $1 \leqq y \leqq x, z=x / y$. The main term is

$$
\begin{aligned}
\int_{1}^{x} M\left((x / u)^{1 / k}\right) d u & =x \int_{1}^{x} u^{-2} M\left(u^{1 / k}\right) d u \\
& =x \int_{1}^{\infty} u^{-2} M\left(u^{1 / k}\right) d u+O\left(x \int_{x}^{\infty} u^{(\theta / k)-2} L_{0}\left(u^{1 / k}\right) d u\right) \\
& =x / \zeta(k)+O\left(x^{\theta / k} L_{0}\left(x^{1 / k}\right)\right)
\end{aligned}
$$

by l'Hospital's rule. We choose, with $\eta=k+1-\theta$,

$$
z=x^{k / \eta} L_{0}\left(x^{1 / \eta}\right)^{k / \eta}=x^{k / \eta} L^{*}(x)^{k}
$$

and the error term becomes

$$
O\left\{x^{1 / \eta} L_{0}\left(x^{1 / \eta} L^{*}(x)\right) L^{*}(x)^{\theta-k}\right\}+O\left(x^{1 / \eta} L^{*}(x)\right)=O\left(x^{1 / \eta} L_{0}^{*}(x)\right)
$$

where
$L_{0}^{*}(x)=\max \left\{L^{*}(x), L_{0}\left(x^{1 / \eta} L^{*}(x)\right) L^{*}(x)^{\theta-k}\right\}=(1+o(1)) L_{0}\left(x^{1 / \eta}\right)^{(1+o(1)) / \eta}$ as $x \rightarrow \infty$. The term $O\left(x^{\theta / k} L_{0}\left(x^{1 / k}\right)\right)$ is neglected, for if $\theta<1$, then

$$
\theta / k<1 /(k+1-\theta)
$$

and if $\theta=1$, then $L_{0}(x) \leqq 1$ for large x, and so

$$
L_{0}\left(x^{1 / k}\right) \leqq L_{0}\left(x^{1 / k}\right)^{1 / k}=L^{*}(x)
$$

Thus we have (2.4):

$$
\sum_{n<x} \mu_{k}(n)=x / \zeta(k)+O\left(x^{1 / n} L_{0}^{*}(x)\right)
$$

A simple application of our lemma now yields (2.5).

4. Proof of (2.6)-(2.11)

If k is an integer $\geqq 2$, set

$$
\begin{aligned}
M^{(2)}(x) & =M\left(x^{1 / 2}\right)=\sum_{n^{2}<x} \mu(n) \\
C_{k}(x) & =\left(D_{k} \times M^{(2)}\right)(x)=\sum_{m n^{2}<x} d_{k}(m) \mu(n)
\end{aligned}
$$

It is easily shown that (see [6], Chapter 1)

$$
C_{2}(x)=\sum_{n<x} 2^{\nu(n)}, \quad C_{3}(x)=\sum_{n<x} d\left(n^{2}\right)
$$

and

$$
C_{4}(x)=\sum_{n<x} d(n)^{2} .
$$

Thus we can handle formulae (2.6)-(2.11) in one proof.
With the aid of (2.1), (2.2), and the estimates

$$
V_{D_{k}}(x)=O\left(x \log ^{k-1}(x+1)\right), \quad V_{M^{(2)}}(x)=O\left(x^{1 / 2}\right)
$$

the theorem of [8] gives, for $\alpha_{k}<\frac{1}{2}, 1 \leqq y \leqq x, z=x / y$,

$$
\begin{align*}
C_{k}(x)=T_{k}(x) & +O\left(x^{\alpha k} L_{k}(x)\right)+O\left(x^{\theta / 2} L_{0}\left(x^{1 / 2}\right)\right) \\
& +O\left(z^{\alpha_{k}} y^{1 / 2} L_{k}(z)\right)+O\left(z y^{\theta / 2} L_{0}\left(y^{1 / 2}\right) \log ^{k-1}(z+1)\right) \tag{4.1}
\end{align*}
$$

where

$$
\begin{align*}
T_{k}(x) & =\int_{1}^{x} M\left((x / u)^{1 / 2}\right) d\left(u P_{k}(\log u)\right) \tag{4.2}\\
& =x P_{k}^{*}(\log x)+O\left(x^{\theta / 2} L_{0}\left(x^{1 / 2}\right) \log ^{k-1}(x+1)\right)
\end{align*}
$$

Since

$$
L_{0}\left(x^{1 / 2}\right) \log ^{k-1}(x+1)=o(1)
$$

if $\theta=1$, and

$$
\theta / 2<\left(1-\theta \alpha_{k}\right) /\left(3-\theta-2 \alpha_{k}\right)
$$

if $\theta<1\left(\alpha_{k} \leqq \frac{1}{2}\right)$, the above error term is dominated by that found below. The substitution in (4.1) of

$$
z=\frac{x^{(1-\theta) / \lambda_{k}} L_{k}\left(x^{(1-\theta) / \lambda_{k}}\right)^{2 / \lambda_{k}}}{L_{0}\left(x^{\left(1-\alpha_{k}\right) / \lambda_{k}}\right)^{2 / \lambda_{k}} \log ^{2(k-1) / \lambda_{k}}(x+1)}
$$

leads to the error term

$$
\begin{equation*}
O\left(x^{\left(1-\theta \alpha_{k}\right) / \lambda_{k}} L_{k}^{*}(x)\right) \tag{4.3}
\end{equation*}
$$

with λ_{k} and L_{k}^{*} as in Section $2\left(\alpha_{k}<\frac{1}{2}\right)$.
If $\alpha_{k}=\frac{1}{2}$, then [8] gives an error term

$$
\begin{equation*}
O\left(x^{\theta / 2} L_{0}\left(x^{1 / 2}\right)\right)+O\left(x^{1 / 2} \int_{1}^{x} u^{-1} L_{k}(u) d u\right)=O\left(x^{1 / 2} \int_{1}^{x} u^{-1} L_{k}(u) d u\right) \tag{4.4}
\end{equation*}
$$

If $\alpha_{k}>\frac{1}{2}$, the error is

$$
\begin{equation*}
O\left(x^{\alpha_{k}} L_{k}(x)\right) \tag{4.5}
\end{equation*}
$$

After applying the lemma to these results, we have formulae (2.6)-(2.11). (2.12) is an immediate consequence of the lemma applied to (2.2).

One can easily show that θ_{k} is a nondecreasing function of α_{k} and of θ, and thus improvements on α_{k} and on θ will yield improvements on θ_{k}. However, since $\left(1-\theta \alpha_{k}\right) /\left(3-\theta-2 \alpha_{k}\right)=\frac{1}{2}$ if $\theta=1$, no improvement on α_{k} beyond $\alpha_{k} \leqq \frac{1}{2}$ will improve θ_{k} by this method until more is known on the Riemann conjecture. Thus at present the best value for θ_{k} given by this method is $\frac{1}{2}$. Since α_{2}, α_{3}, and α_{4} can be taken $\leqq \frac{1}{2}$, we have $\theta_{2}=\theta_{3}=\theta_{4}=\frac{1}{2}$. (Hua [4] has a list of the best values of α_{k} known to date.) Furthermore, if $\alpha_{k}<\frac{1}{2}(\theta=1)$, then L_{k}^{*} is independent of L_{k}, and so improvements on L_{k} are of no help unless $\alpha_{k} \geqq \frac{1}{2}$. However, if L_{0} is given by (2.3), then improvements on α_{k} beyond $\frac{1}{2}$ will improve L_{k}^{*}.

If we recall that the best conceivable values for α_{k} and θ are $(k-1) /(2 k)$ and $\frac{1}{2}$, respectively, then it appears that the best value for θ_{k} given by this method would be

$$
\theta_{k}=(3 k+1) /(6 k+4)
$$

(See [6], p. 273.) It would be interesting to know whether this is indeed a lower bound on the possible values of θ_{k}.

Bibliography

1. S. A. Amitsur, On arithmetic functions, J. Analyse Math., vol. 5 (1956-1957), pp. 273-314.
2. --, Some results on arithmetic functions, J. Math. Soc. Japan, vol. 11 (1959), pp. 275-290.
3. P. T. Bateman, Proof of a conjecture of Grosswald, Duke Math. J., vol. 25 (1958), pp. 67-72, particularly p. 71.
4. L.-K. HUa, Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie, Enzyklopädie der mathematischen Wissenschaften (2. Aufl.), Band I, Nr. 29, Leipzig, 1959, pp. 107-108.
5. J. Korevaar, T. van Aardenne-Ehrenfest, and N. G. de Bruijn, A note on slowly oscillating functions, Nieuw Arch. Wisk. (2), vol. 23 (1949), pp. 77-86.
6. E. C. Titchmarsh, The theory of the Riemann zeta-function, Oxford, 1951.
7. J. P. Tull, Dirichlet multiplication in lattice point problems, Duke Math. J., vol. 26 (1959), pp. 73-80.
8. ——, Dirichlet multiplication in lattice point problems. II, Pacific J. Math., vol. 9 (1959), pp. 609-615.
9. K. Yamamoto, Theory of arithmetic linear transformations and its application to an elementary proof of Dirichlet's theorem, J. Math. Soc. Japan, vol. 7 (1955), pp. 424-434.

Ohio State University
Columbus, Ohio

