
LINEAR SPACES WITH A COMPACT GROUP OF OPERATORS

BY

I. DELEEuW

Introduction

This paper is devoted to the establishment of several results of a rather
general nature concerning a class of locally convex topological linear spaces
that have compact abelian groups of operators. The class includes many of
the spaces that occur in analysis as function spaces on compact groups or as
completions of such spaces.

Section 1 is devoted to some necessary preliminary results concerning
Fourier analysis in the spaces in question. The results are hardly original
but do not seem to be in the literature in the form needed here. In Section 2
the formal topology is introduced. For the spaces that occur in analysis this
topology agrees with that of formal (i.e., termwise) convergence of Fourier or
power series. Our main result is that in the spaces under consideration a

convex, invariant subset, closed in the original topology, remains closed in the
much weaker formal topology. Several applications are given. The next
section is devoted to a result establishing the equivalence of several types of
continuity for linear transformations that commute with the group operations.
In Section 4 we associate to each space of the type under consideration its
G-dual (which will in general be smaller than its ordinary dual space) and
prove that the association is reflexive, that is, that a space is canonically
isomorphic to the G-dual of its G-dual.
We have restricted ourselves to compact abelian groups for the sake of

simplicity and in order to avoid as many computations as possible. All of our
results, with the appropriate modifications, remain valid for arbitrary compact
groups.

In the following we assume a knowledge of the rudiments of the theory of
locally convex topological linear spaces as found for example in [1]. Also
needed are some of the simplest facts concerning vector valued integration of
continuous functions (contained for example on pp., 79-89 of [2]); the fact of
which we make most crucial use is that the integral of a continuous function
with respect to a positive measure of mass 1 lies in the convex closure of its
range.

I wish to express my indebtedness to H. Mirkil. Most of the ideas in this
paper grew out of conversation with him.

1. Fourier analysis in G-spaces
Let G be a compact abelian group and A a complete locally convex topologi-

cal linear space over the complex numbers. Assume that there is associated
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to each in G a continuous linear transformation T on A so that T T T
for all and r in G and the identity transformation is associated to the unit
of G. A subset X of A is called G-invariant if T(X) X for all in G, and
a function f with domain A will be called G-invariant if f(T(x)) f(x) for
all x in A and in G. A neighborhood U of the zero element of A will be
called admissible if it is G-invariant, convex, closed and circular (i.e., ax is in
Uif]a l and x is in U).
A will be called G-space if it satisfies the two conditions:
A1. There is a fundamental system of neighborhoods of the zero element

all of which are admissible (or equivalently, every neighborhood of zero contains
an admissible neighborhood).

A2. For each x in A, the map -- T,(x) of G into A is continuous.
If A is Banach space, it is clear that A1 is equivalent to the existence of a

G-invriant norm for A. The existence of such a norm is known (see [3], p. 7)
to be a consequence of A2 in this case. In the general case it is possible to
prove that A1 and A2 together are equivalent to: A3. The map G X A -- Adefined by (, x) --. T,(x) is jointly continuous. Since this equivalence is not
needed in what follows we shall not prove it.

Several more definitions are needed before we are able to state another con-
dition A4 which together with A1 is equivalent to A2 plus A1. For each
character x of G let A x be the closed linear subspace

{x:T(x) X()x, all in G}

of A. Let A be the subspace of A consisting of all finite sums xx with xx in
Ax. It is easy to check that the A x are linearly independent so that A is
actually the vector space direct sum of the subspaces A x.
Our fourth condition is: A4. A is dense in A.
The equivalence of A1 plus A2 with A1 plus A4 will be established in

Corollary 1.3. For the G-spaces that occur in analysis, the truth of A1 is
usually obvious, while the verification of A2 or A4 may be nontrivial.
For every complex valued continuous function on G, define the linear

operator T:A ----> A by the vector valued integral

(1.1) To(x) fa T(x) O((r) dz,

where dz is normalized tIaar measure on G. If V is any admissible neighbor-
hood of zero in A and h is a real number with I() h for all in G, the
integrand of (1.1) will be in hV if x is in V. Thus if x is in V, To(x) will be
in the convex closure of ),V which is hV itself, so that To(V) c hV and To
must be continuous.

If x is character of G, it is easy to check that

T(Tx(x)) x(a)Tx(x)
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for ll x in A and all z in G, so Tx(V) is a subset of Ax. If x is an element
of A x, (1.1) can be computed and Tx(x) x. Thus we see that Tx is a
continuous projection of A onto Ax.
An approximate identity on G is a directed set {} of functions on G that

satisfies the following conditions:
1. _>- 0 for each.
2. o()d 1 for each %
3. If U is any neighborhood of the unit of G, 6, converges to zero uni-

formly on the complement of U.
4. Each 6, is a finite linear combination of characters of G.
It is well known (see [3], p. 13) that approximate identities do exist.

THEOREM 1.1.

for all x in A.

If A is a G-space and {} an approximate identity on G,
Lim T,,(x) x

Proof. Let V be any admissible neighborhood of zero in A. Since the map-- T(x) is continuous, there is a neighborhood W of the unit of G which
is such that T(x) x is in V if a is in W. Then

which is

(.2)

T(x) x fq (T(x) x)() dq,

f, (T(x) x)h(z) dz -t- f-w (T(x) x)(a) dz.

If a is in W, T(x) x is in V and so the first integral of (1.2) is in the convex
closure of V which is V itself. Since converges uniformly to zero on G W,
the second integral of (1.2) is in V if , is large enough. Thus for sufficiently
large ,, T(x) x is in 2V, and since V was an arbitrary admissible neighbor-
hood, T(x) converges to x.

COROLLARY 1.2. If A is a G-space and x is in A, Tx(x 0 for all charac-
ters x implies x O.

Proof. If {} is an approximate identity, T(x) will be a finite linear
combination of the Tx(x). Since T(x) converges to x, it must be zero if all
of the Tx(x) are zero.

COROLLARY 1.3. A1 plus A2 is equivalent to A1 plus A4.

Proof. If A satisfies A1 plus A2, it is a G-space, and Theorem 1.1 can be
applied. T(x) will be, if is an element of an approximate identity, a
finite linear combination of Tx(x) and so is in A. Thus by Theorem 1.1,
A is dense, so A4 is satisfied. For the converse assume that A satisfies A1
and A4. The map -- T(x) is continuous for x in any A x since T(x) x(a)x.



370 K. DELEEUW

Thus this map will also be continuous for x in A. If y is any point in A and
x} a directed subset of A that converges to y, the map z -- T(y) is the
uniform limit of the continuous maps z --. T(x) and thus is itself continuous.
Therefore A must satisfy A4.

2. Convex sets in the formal topology
Let A be a G-space. Denote by fl the set of all functions having as domain

the character group of G and as rnge A, and which besides stisfy f(x) e A x
for all x in . fl is a complete locally convex topological linear space under
the topology of pointwise convergence on (i.e., f converges to f if f(x) con-
verges to f(x) in the topology of A for all x in ).
To each element x in A ssociate the function 2 in fi defined by

() T(x). The mp J:A -- defined by J(x) is a linear trans-
formation that is continuous because the T are continuous, and that is one-
one because of Corollary 1.2. Thus A can be identified with the subspace
J(A) of fl. J(A) inherits a topology as a subspce of fi_, aad this topology
transferred to the isomorphic space A will be called the formal topology of A
(in the G-spaces that occur in analysis, it is the topology of formal convergence
of Fourier series or power series; see Lemm 2.4 and Corollary 2.5).
The formal topology can also be described s the weakest topology on A

which agrees with the original topology on the A and which is such that the
proiections Tx:A -- A are continuous. Note that if x is a directed subset
of A, x converges to x in the formal topology if and only if Tx(x) converges
to Tx(x) in the original topology for all x. If the A are finite-dimensional,
as they re in the spaces that occur in analysis, the formal topology is weaker
thn the ordinary wek topology of A. Now that A has a second topology,
its original topology will be called the strong topology.

It is a consequence of the theory of locally convex spaces that a closed
convex subset K of A remains closed if the topology of A is weakened to the
weak topology. Our min result is that if G-invariance is added the topology
can be weakened to the formal topology and K remains closed.

THEOREM 2.1. Let A be a G-space and K a closed, convex, G-invariant subset
of A. Then K remains closed if the topology of A is weakened to the formal
topology.

Proof. Let x be any element in the closure of K in the formal topology.
Then there is a directed subset {x} of K with x converging to x in the formal
topology. Let 1} be an approximate identity on G. Since each T is

finite linear combinatioa of the Tx, T(A) is contained ia the subspace
spanned by a finite number of the A x, and on such a subspce the formal
nd strong topologies agree. Also since T is a finite linear combination of
the Tx, T(x) converges to T(x) in the formal topology, and thus in the
strong topology since they gree on T(A). Recall that T(x) is defined
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by the vector valued integral

Since x is in K which is G-invariant, T(x) will be in K for all a in G. Thus
To(x) will be in the convex closure of K which is K itself. Again using
the fact that K is strongly closed, we have, since T(x) converges to T(x)
in the strong topology, that To(x) is in K for each in the approximate
identity. Now Theorem 1.1 shows that To(x) converges to x in the strong
topology, so x itself must be in K. This proves K to be closed in the formal
topology.
Although it should be clear that the above could not hold without the

G-invriance of K, it is instructive to look at an example. Let A be all con-
tinuous functions on G with [T(f)](v) f(v). Let be some fixed point
in G and K all functions in A that vanish at a. Then K is closed and convex
but becomes unclosed if the topology of A is weakened only as far as L con-
vergence.

If A is a vector space over the complex numbers, a semi-norm p on A is
a nonnegative real valued function on A that satisfies p(x y) <= p(x) p(y)
and p(x) I Ip(x). If A is a topological vector space, p is called lower
semicontinuous if p(x) <= lim inf p(x) for any x in A and directed subset
{x} of A converging to x. Lira inf for a directed set of numbers is defined
as for sequences by

lim inf t, lira inf t,).

It is well known, nd easy to check, that p is lower semicontinuous if and only
if its unit sphere S x:p(x) <= 1} is closed.

COROLLARY 2.2. Let A be a G-space and p a G-invariant semi-norm that is
lower semicontinuous in the strong topology of A. Then p remains lower semi-
continuous if the topology is weakened to the formal topology.

Proof. S is a G-invariant convex set that is strongly closed since p is
lower semicontinuous in the strong topology. By Theorem 2.1, S is closed
on the formal topology, so p is lower semicontinuous in the formal topology.
As a special case of Theorem 2.1 and Corollary 2.2, if A is a G-space which

is a Banach space and a G-invariant norm for A, the unit sphere is closed
and II" is lower semicontinuous in the formal topology.

Before giving several examples of concrete applications we shall show that
in a class of G-spaces that occur in analysis, the formal topology is identical
with that of termwise convergence of Fourier series. A G-space A will be
called a G-space offunctions if A is a subspace of L(G) with topology stronger
than that of L(G) and G acts on A by translation, [T(f)](r) f(r).
As examples of G-spaces of functions one has C(G) and L,(G) for i _<_ p < .
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In addition, if G is the circle group/z:l z 1 }, one has the space of infinitely
differentiable functions, all functions in L(G), 1 -< p < , that are boundary
values of functions analytic in the unit disk, and the space of all functions
that can be extended to be entire in the plane.

If A is a G-space of functions, A x is the subspace of A generated by x if x is
in A and is the zero element of A otherwise. For if f is an element of LI(G)
that satisfies T(f) x(z)f for all z in G, f must be a multiple of the character
x; and conversely, if f is a multiple of x, T(f) x(z)f for all z in G. Thus
the subspace A of A, defined earlier as the direct sum of the A x, is seen
to be the subspace of linear combinations of characters, and so because of
Corollary 1.3 linear combinations of characters are dense in A.

If A is a G-space of functions, Tx(f) being in A x will be x multiplied by
some constant. We proceed to identify this constant.

IEMMA 2.3. If A is a G-space of funclions, Tx(f) ax(f)x for each f in A
and each character x of G, where

f()x-() d

is the Fourier coecient off with respect to x.

Proof. Tx(f) is the A valued integral

(2.1) fo T(f)x-l(a) d.

Since A is a subspace of LI(G) and the topology of LI(G) is weaker than that
of A, (2.1) can be considered to be an L(G) valued integral. (2.1) as an
LI(G) valued integral is well known to be the convolution of f with x which
is

If A is a G-space of functions, f converging to f in the formal topology,
which is equivalent to Tx(f) converging to Tx(f) in the strong topology for
all x, means the same as ax(f) converging to ax(f) for each x because of the
preceding lemma. But ax(f) converging to ax(j’) for all x is equivalent to the
Fourier series of f converging termwise to the Fourier series of f. Thus we
have proven

:LEMMA 2.4. If A is a G-space of functions, the formal topology is identical
with that of termwise convergence of Fourier series.

We shall illustrate applications of the preceding to two concrete examples.

COnOLLAV 2.5. Let A be the space of entire functions. Let D be a disk
in the plane having the origin as center, and for every f in A let

p(f) Sup lf(z) !.
zeD
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If f is a directed subset of A with the power series of f. converging termwise to
the power series of some function f in A, then p(f) <- lira inf p(f).

Proof. Let G be the circle group w’lw 1} in the plane. It is easy
to check that A is a G-space if it is supplied with the topology of uniform
convergence on compact subsets of the plane and the operation of G is defined
by [Tw(f)](z) f(wz), p is a G-invariant semi-norm continuous in
the topology of A, so the corollary will follow from Corollary 2.2 when it is
established that the formal topology on A is identical with that of termwise
convergence of power series. For each f in A, denote by ] its restriction
to the circle G. Let 2: be the space of all functions on G thus obtained, fi is,
if supplied with the topology of the naturally isomorphic space A, a G-space
of functions, and so by Lemma 2.4 the formal topology and that of termwise
convergence of Fourier series are identical. But the natural mapping f -- ]
preserves the formal topologies, and since the Fourier series of ] is essentially
the same as the power series of f, our result is established.

COROLLARY 2.6. Let A be the space of all functions on the circle group G
having m continuous derivatives (m 1, 2, ). Let hi (i O, 1, m)
be positive real numbers and K the subset of A consisting of those f with

f(i) <= hi, where f() is the ith derivative off and

aeG

for any continuous function on G. Then K is closed in the topology of termwise
convergence of Fourier series.

Proof. It is known that A is a G-space of functions if supplied with the
topology determined by the semi-norms p (i 0,--., m) defined by
P(f) f()I]. K is a closed convex G-invariant set, so the result follows
from Theorem 2.1 and Lemma 2.4.
Note that as a consequence K must be closed in all topologies stronger than

that of termwise convergence of Fourier series, for example those of uniform
convergence, L convergence, or convergence in the sense of distributions.

3. Continuity of linear transformations

In this section we establish a result concerning the equivalence of several
types of continuity for linear transformations between two G-spaces that
commute with the operation of G. The closed graph theorem is needed so
it will be necessary to assume that the G-spaces involved are metrizable
(and thus F-spaces in the sense of [1]). It will furthermore be necessary to
assume that the G-spaces are of finite type, that is, that the subspaces A x are
all finite-dimensional. This includes the case of G-spaces of functions defined
in the previous section.
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If A is a G-space, A will denote A supplied with its strong topology, and
A/will be A supplied with the formal topology.
Our result is as follows"

THEOREM 3.1. Let A and B be two metrizable G-spaces of finite type and
L:A -- B a linear transformation that commutes with the action of G
(i.e., LT T L for all in G). Then the following are equivalent:

1. L :A -- B is continuous.
2. L’A -- B/ is continuous.
3. L :A/ ---> B/ is continuous.
4. LTx TxLforallxin.
Proof. 1 implies 4" If x is in A, LTx(x) L(]T(x)x-l(a)dz)

]L(T(x))-l(z)da fTz(L(x))x-(a)dz TxL(x), by using the fact that
a continuous linear transformation commutes with integration. 4 implies
3" It suffices to show that if {x} is a directed subset of As that converges to
zero, L(x) converges to zero in B/. If x converges to 0 in As, Tx(x)
converges to 0 in A/for all x in . Since Tx(A) Ax is finite-dimensional,
L restricted to Tx(A) is automatically continuous, and so L(Tx(x)) con-
verges to 0 in Bs for all ) in . But since LT Tx L, Tx(L(x)) converges
to 0 in B/for all x in , which is equivalent to L(x) converging to 0 in B/.
3 implies 2" The proof is trivial. 2 implies 4" Since L’A -- B/is continuous
and Tx"B/-- B/is also, the composite T L’A, -- B/is continuous. Similarly
LTx’A -- B/is continuous. If x0 is a character of G, L(x) is in B0 if x is

inAx0since TL LTforallainG. Thus ifxisinAx0andx x0,the
formula

(3.1) LTx(x) Tx L(x)

is valid since both sides are zero. If x x0, (3.1) is valid since both sides
will be L(x). Since both sides of (3.1) are linear in x, it will be valid for any
x in A. Finally it is true for all x in A, since A is dense in A and we have
shown that T L and LT are continuous on A. 4 implies 1: Since A and
B are metrizable and complete, to prove L’A. -- B continuous it suffices
by the closed graph theorem (see [1], p. 37) to prove that the graph of L as a
subset of A X B is closed. Let /(x, L(x))} be a directed subset of the
graph that converges to a point (x, y) in A8 B. To prove the graph
closed it suffices to show that y L(x). Since L(x) converges to y in B.,
LTx(x) TxL(x) converges to Tx(y) in B. Also since x converges to
x in A, Tx(x) converges to Tx(x) in A. L is continuous on the finite-
dimensional subspace Tx(A), so LTx(x) converges to LTx(x) in B. We
have shown that the directed set {LTx(x) hasas limit both Tx L(x) LTx(x)
and Tx(y). Thus Tx L(x) Tx(y) for all characters x, so by Corollary 1.2,
y L(x), and the proof is complete.
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4. Duality
In this section some results concerning duality for G-spaces are obtained.

For simplicity it will be assumed that the spaces under consideration are
Banach spaces.

If A is a G-space that is a Banach space, G-invariant norms for A exist,
and we shall take one fixed one II as part of the structure of A. Let A*
be the dual space of A, (.,. the pairing between them. For each z in
G, we shall denote by T* the adioint (T)* of T, and for each complex valued
continuous function on G, we shall denote by T the adjoint (T)* of T.
G acts as a group of operators on A* since T* T*T*, and if A* is sup-

plied with the norm II" II* dual to If" II, defined by

II F ll* Sup [(F, x)I,
Ilxl1-5_

the T* are isometrics. Nevertheless A* may fail to be a G-space since there
may be F in A* for which the mapping a --. T* (F) is discontinuous.
There is however a relatively large closed G-invariant subspace A of A*

that will be a G-space under the action of the T*. We simply take Aa to
be the subspace of A* consisting of those F in A* for which the map a -- T* (F)
is continuous. A is G-invariant and so will be a G-space if it is closed in A*.
But A must be closed, for if {F} is a sequence in A converging to a point
F in A*, the map a --+ T*(F) is the uniform limit of the continuous maps

T*(F) and thus is itself continuous, so F is in A. A supplied with
the norm I]" I]* and the action of the T* will be called the G-dual of the G-
space A.

It is possible to characterize the subspace A of A* in a different manner.
Denote by A*x the closed subspace of A* that consists of all F that satisfy
T* (F) x(z)F for all in G. It is easy to check that the adjoint T*x of the
projection Tx is a projection of A* onto the subspace A*X
LEMMA 4.1. A is the closed linear subspace of A* that is generated by the

A* A is dense in A* in the weak* topology.X

Proof. If F is in A* *
x T (F) X(a)F so the map -- T* (F) is continuous

and F is in A a. Thus A*x is actually the same as A and the first assertion
of the lemma follows from the fact that in a G-space A, the subspace (A)

must be dense If {} is an approximate identity forspanned by the A x
G, T(A*) A for each 4 since T is a finite linear combination of the.Tx Because of Theorem 1.1, T(x) converges to x for each x in A and thus

rT,(F) conve ges weak* to F for each F in A*. Therefore each F in A* is a
weak* limit point of A and A is weak* dense.

Since A is a G-space, it will have a G-dual (A) of its own. The main
result of this section is the fact that if A is of finite type, A and (A) are
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canonically isomorphic. (For example if A is LI(G), A* is L(G), A is C(G),
(A)* is the space of measures on G, and (A) is LI(G).)
The canonical isomorphism is set up as follows" For each x in A, the map

F --* (F, x) of Aa into the complex numbers is a continuous linear func-
tional. It will be denoted by Cx. The map I’A -- (A)* defined by
I(x) Cx is clearly linear.

THEOREM 4.2. If A is of finite type, A and (A) are canonically isomorphic.
In particular the map I defined above is an isomorphism, an isometry, commutes
with the operation of G, and I(A) (A).

Proof. I is one-one. For ill(x) O, (F, x} 0 for allFinA,
and x must be zero since A is weak* dense in A*. Thus since I is linear, it
is an isomorphism. It is known that in any Banach space the canonical map-
ping from A to (A*)* is an isometry. Equivalently,

(4.1) x Sup I(F, x} I.

I will be proven to be an isometry when we have shown that

(4.2) II x Sup I(F, x)I.

Let {} be an approximate identity on G. For any F in A*,
(4.3) lim (T(F), x} lim (F, T(x)} iF, x}.

If x is in the unit sphere of A, T,(x) is also for all a in G, and so

T(x) f T(x)(a) dz

will be in the convex closure of the sphere which is the sphere itself. As a
consequence, each T takes the unit sphere of A* into itself. Each T,
being a finite linear combination of the T*x, takes A* into A, and thus by
the preceding comment, will take the unit sphere of A* into the unit sphere of
A. Therefore (4.2) is a consequence of (4.1) and (4.3), and I is an isometry.
Since it is clear from the definition of I that it commutes with the operation
of G, it remains only to prove that I(A) (A). For the first time we shall
use the fact that A is of finite type. To prove I(A) (A), it suffices to
prove that I(Ax) (A)*x. For by Lemma 4.1, (A) is the closed sub-
space of (A)* generated by the (A)x* the closed subspace of A generated
by the A x is A itself, and I is an isometry. I(A) is dense in (A)* in the
weak* topology that (An)* receives as the dual of A because of the well
known fact that the canonical image of A is dense in (A*)* in the weak*
topology that (A*)* has as the dual of A*. Now take any t in (A)* and
directed subset {x} of A so that I(x) converges to in the weak* topology.
Let Tx*’(A)* ---. (Aa)* betheadjoint of T "A -- A whichis the restriction
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to A of the adjoint T*x of Tx. ITx Tx*I, Tx*(O) O, and Tx* is con-
tinuous in the weak* topology of (A)*. Thus IT(x) Tx*I(x) con-
verges to Tax*(O) in the weak* topology, and so I(Ax) is weak* dense in
(A)*x. But Ax is finite-dimensional since A is of finite type, so I(Ax) must
be equal to (A)* which was all that was needed to conclude thatx
I(A (A).
COROLLARY 4.3. If A is of finite type, A A*, and (A) (A)*,

then A must be reflexive.
Proof. The map I’A -- (A%) is simply the canonical map of A into

(A*)* in this case, and A is reflexive when this map is onto.
The converse is easily established.

THEOREM 4.4. Let A be reflexive. Then A A* and (A) (A)*.

Proof. We prove only A A*. Then the second assertion will follow
since the dual A* is reflexive if A is. By Lemma 4.1, A is dense in A* in
the weak* topology. But since A is reflexive, the weak and weak* topologies
agree on A*, so A is weakly dense in A*. It is known that a weakly dense
subspace of a Banach space must be strongly dense, and since A is closed
in the strong topology, A A*.

In the light of Corollary 4.3 and Theorem 4.4 the question arises whether
A A* and finite type are sufficient to insure the reflexivity of A. It is
interesting that the answer is in the negative. For an example take A to be
the space of all distributions on the circle group G having Fourier coefficients
that are 0 at infinity with G acting by translation. Then A* can be identified
with the space of functions on G having absolutely convergent Fourier series
and A A*, but there is no reflexivity.
Most of the results of this section can be obtained without added difficulty

if A is no longer a Banach space. Let us point out however that to obtain a
result analogous to Theorem 4.2 it seems necessary to make some further as-
sumptions concerning A, for example A being a t-space in the sense of [1].
Also in the hypothesis of Theorem 4.2, finite type can be weakened to the
A x being reflexive, the proof becoming slightly more complicated.
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