LOWEST ORDER EQUATION FOR ZEROS OF A HOMO-GENEOUS LINEAR DIFFERENTIAL POLYNOMIAL

BY LAWRENCE GOLDMAN

Introduction

If $\mathfrak F$ is a field and x belongs to an algebraic extension of $\mathfrak F$, then the algebraic properties of x are completely determined by the irreducible polynomial over $\mathfrak F$ which vanishes at x. Similarly, if $\mathfrak F$ is an ordinary differential field (i.e., a field with given derivation) of characteristic zero and x belongs to a differentially algebraic differential field extension of $\mathfrak F$, the differential algebraic properties of x are completely determined by the irreducible differential polynomial $F(y) \in \mathfrak F\{y\}$ of lowest order which vanishes at x. We shall call F(y), which is unique up to a nonzero factor in $\mathfrak F$, the lowest differential polynomial of x over $\mathfrak F$, and we shall call the differential equation F(y) = 0 the lowest equation for x over $\mathfrak F$.

Let \mathfrak{F} be an ordinary differential field of characteristic zero, and let C, the field of constants of \mathfrak{F} , be algebraically closed. Let (x_1, \dots, x_n) be a fundamental system of zeros of a homogeneous linear differential polynomial $L_n(y) \in \mathfrak{F}\{y\}$ such that the field of constants of $\mathfrak{F}\langle x_1, \dots, x_n \rangle$ is C. $\mathfrak{F}\langle x_1, \dots, x_n \rangle$ is called a Picard-Vessiot extension of \mathfrak{F} (hereafter denoted by P.V.E.), and the group G of automorphisms of $\mathfrak{F}\langle x_1, \dots, x_n \rangle$ over \mathfrak{F} can be identified with an algebraic group of linear transformations of the vector space V_n over C with basis (x_1, \dots, x_n) . (See [3].) We sometimes call G the group of $L_n(y)$ over \mathfrak{F} .

It is the purpose of this paper to obtain information about G when the lowest equation over \mathfrak{F} for some $x \in V_n$ is known, and about the lowest equation for every $x \in V_n$ when G is one of the classical groups.

Notation. Throughout this paper \mathfrak{F} will stand for an ordinary differential field of characteristic zero whose field of constants C is algebraically closed. $L_n(y)$ will always stand for a homogeneous linear differential polynomial of order n. Whenever we speak of zeros of $L_n(y)$ $\epsilon \mathfrak{F}\{y\}$, we restrict ourselves to zeros which belong to a P.V.E. of \mathfrak{F} . We shall therefore be able to say, for some $L_n(y)$ $\epsilon \mathfrak{F}\{y\}$, that every one of its zeros satisfies a differential equation over \mathfrak{F} of lower order. If, for a given $L_n(y)$ $\epsilon \mathfrak{F}\{y\}$, there exist an integer r and $L_r(y)$, $L_{n-r}(y)$ $\epsilon \mathfrak{F}\{y\}$ such that $1 \leq r \leq n-1$ and

$$L_n(y) = L_{n-r}(L_r(y)),$$

we say that $L_n(y)$ is composite over \mathfrak{F} , that $L_n(y)$ is the composite of $L_r(y)$ and $L_{n-r}(y)$, and that $L_n(y)$ is decomposable by $L_r(y)$ on the right. If an

Received September 3, 1957.

element x of an extension of \mathfrak{F} has a lowest equation over \mathfrak{F} which is of order r, we shall say that x is of order r over \mathfrak{F} .

We repeatedly make use of the following:

- (A) If F(y) is the lowest differential polynomial of x over \mathfrak{F} , then x is a generic zero of the general component of F(y) over \mathfrak{F} , and the transcendence degree of $\mathfrak{F}\langle x\rangle$ over \mathfrak{F} equals the order of x over \mathfrak{F} . For any $P(y) \in \mathfrak{F}\{y\}$ vanishing at x there exists a natural number t such that $S^tP \in [F]$, where S is the separant of F; if the order of P equals that of F, then P is divisible by F. (See [4].)
- (B) If G is the algebraic group of $\mathfrak{F}\langle x_1, \dots, x_n \rangle$ over \mathfrak{F} , where (x_1, \dots, x_n) is a fundamental system of zeros of $L_n(y) \in \mathfrak{F}\{y\}$, then the dimension of G equals the transcendence degree of $\mathfrak{F}\langle x_1, \dots, x_n \rangle$ over \mathfrak{F} . If G_0 is the component of the identity of G, then G_0 is the group of $\mathfrak{F}\langle x_1, \dots, x_n \rangle$ over the (relative) algebraic closure \mathfrak{F}_0 of \mathfrak{F} in $\mathfrak{F}\langle x_1, \dots, x_n \rangle$, and also of $\mathfrak{F}_1\langle x_1, \dots, x_n \rangle$ over \mathfrak{F}_1 , where \mathfrak{F}_1 is the (absolute) algebraic closure of \mathfrak{F} . G is reducible (maps a nontrivial proper subspace of V_n into itself) if and only if $L_n(y)$ is composite over \mathfrak{F} . G_0 is reducible to triangular form if and only if G_0 is solvable. (See [3].)
 - (C) If the dimension of G is ≤ 2 , then G_0 is solvable.
 - (B) and (C) imply (D).
- (D) If the transcendence degree of $\mathfrak{F}\langle x_1, \dots, x_n \rangle$ over \mathfrak{F} is ≤ 2 , then $L_n(y)$ is the composite of n homogeneous linear differential polynomials of order 1 in $\mathfrak{F}_0\{y\}$, \mathfrak{F}_0 denoting the algebraic closure of \mathfrak{F} in $\mathfrak{F}\langle x_1, \dots, x_n \rangle$.
- (E) If G is irreducible and a nontrivial zero x of $L_n(y)$ is a zero of F(y), then there exists a fundamental system of zeros of $L_n(y)$ consisting of zeros of F(y).
- (F) If $L_n(y) = L_{n-r}(L_r(y))$ and (x_1, \dots, x_n) is a fundamental system of zeros of $L_n(y)$ such that (x_1, \dots, x_r) is a fundamental system of zeros of $L_r(y)$, then $(L_r(x_{r+1}), \dots, L_r(x_n))$ is a fundamental system of zeros of $L_{n-r}(y)$.

1. Homogeneous elements

DEFINITION. An element x in a differential field extension of \mathfrak{F} is said to be homogeneous over \mathfrak{F} if x is differentially algebraic over \mathfrak{F} and $x \to cx$ is a specialization over \mathfrak{F} , where c is a transcendental constant over $\mathfrak{F}\langle x \rangle$.

Lemma 1. A necessary and sufficient condition for x to be homogeneous over \mathfrak{F} is that the lowest equation for x over \mathfrak{F} be homogeneous.

Proof. Let F(y) be the lowest differential polynomial of x. Suppose x

homogeneous over \mathfrak{F} . Then $F(cx) = 0 = \sum_{i=0}^{m} c^{i} F_{i}(x)$, where F_{i} is homogeneous of degree i. Since c is transcendental over $\mathfrak{F}(x)$,

$$F_i(x) = 0$$
 $(i = 0, 1, \dots, m),$

so that each F_i is a multiple of F, which is possible only if F is homogeneous. Suppose F(y) is homogeneous. Then $F(cx) = c^m F(x) = 0$. If $P(y) \in \mathfrak{F}\{y\}$ is any differential polynomial such that P(x) = 0, then $S^t P(y) \in [F(y)]$, where S is the separant of F. Since $S(cx) = c^{m-1}S(x) \neq 0$, P(cx) = 0 and $x \to cx$ is a specialization over \mathfrak{F} , and x is homogeneous over \mathfrak{F} .

2. Decomposition of $L_n(y)$

THEOREM 1. Let x be a zero of $L_n(y) \in \mathfrak{F}\{y\}$ of order r over \mathfrak{F} , let F(y) be the lowest differential polynomial of x over \mathfrak{F} , and let

$$L_r(y) = \sum_{j=0}^r \frac{\partial F}{\partial y^{(j)}}(x)y^{(j)}.$$

- (a) There exists an $L_{n-r}(y) \in \mathfrak{F}(x)\{y\}$ such that $L_n(y) = L_{n-r}(L_r(y))$.
- (b) x is a zero of $L_r(y)$ if and only if x is homogeneous over \mathfrak{F} .
- (c) If (u_1, \dots, u_{n-r}) is a fundamental system of zeros of $L_{n-r}(y)$ and K(y) is the sum of the terms of F(y) of highest degree, then every zero of $L_r(y)$ which is homogeneous over $\mathfrak{F}\langle x, u_1, \dots, u_{n-r} \rangle$ is a zero of K(y).

Proof. Let F(y) be of degree m, and let $v = x + z = x + \sum_{i=1}^{\infty} z_i e^i$ (formal power series) where the z_i , $1 \le i < \infty$, are in some differential field extension of \mathfrak{F} and e is a transcendental constant over $\mathfrak{F}\langle x, (z_i)_{1 \le i < \infty} \rangle$. v is a zero of F(y) if and only if F(v), when written as a power series in e, vanishes identically in e.

$$F(v) = F(x) + \left(\sum_{k=1}^{m} \frac{1}{k!} \left(\sum_{j=0}^{r} z^{(j)} \frac{\partial}{\partial y^{(j)}}\right)^{k} F(y)\right)_{y=x}$$
$$= \sum_{s=1}^{\infty} (L_{r}(z_{s}) + Q_{s}(z_{1}, \dots z_{s-1}))e^{s},$$

where

$$Q_1 = 0$$

and

$$Q_s \in \mathfrak{F}\{x, z_1, \cdots, z_{s-1}\}, \qquad 1 \leq s < \infty;$$

 $L_r(y)$ is of order r, for $(\partial F/\partial y^{(r)})(x) \neq 0$. If we choose the z_s , successively, to be zeros of

$$L_r(y) + Q_s(z_1, \cdots, z_{s-1}),$$

v will be a zero of F(y). Now x is a specialization of v over \mathfrak{F} . Since x is of order r, v must also be of order r. Therefore $v \to x$ is a generic specialization over \mathfrak{F} and $L_n(v) = 0$. Since $L_n(y)$ is linear, $L_n(v) = \sum_{i=1}^{\infty} L_n(z_i)e^i = 0$,

so that $L_n(z_i) = 0$, $1 \le i < \infty$. Since we may choose z_1 to be any zero of $L_r(y)$, any zero of $L_r(y)$ must be a zero of $L_n(y)$, so that

$$L_n(y) = L_{n-r}(L_r(y))$$
 with $L_{n-r}(y) \in \mathcal{F}\langle x \rangle \{y\}.$

To prove (b) note that if F(y) is homogeneous then the differential polynomial $P(y) = \sum_{j=0}^{r} y^{(j)} \partial F / \partial y^{(j)}$ equals mF(y). Conversely, if $L_r(x) = 0$, x is a zero of P(y) $\epsilon \mathfrak{F}\{y\}$, and consequently P(y) = aF(y), $a \epsilon \mathfrak{F}$. Equating coefficients we see that a is an integer, and by Euler's theorem F(y) is homogeneous.

To prove (c) we note that, for $1 < s \le m$,

$$Q_s = \left(\frac{1}{s!} \left(\sum_{j=0}^r z_1^{(j)} \frac{\partial}{\partial y^{(j)}}\right)^s F(y)\right)_{y=x}$$

plus terms all of which have at least one factor $z_i^{(j)}$ with 1 < i < s and $0 \le j \le r$. Let w be any zero of $L_r(y)$ which is homogeneous over $\mathfrak{F}\langle x, u_1, \dots, u_{n-r}\rangle$. Let $z_1 = w$ and suppose that

$$\left(\left(\sum_{j=0}^{r} w^{(j)} \frac{\partial}{\partial y^{(j)}} \right)^{s} F(y) \right)_{y=x} = 0, \qquad 1 < s < t,$$

where t is a natural number $\leq m$, while

$$\left(\left(\sum_{j=0}^{r} w^{(j)} \frac{\partial}{\partial y^{(j)}} \right)^{t} F(y) \right)_{y=x} \neq 0.$$

Then we may set, successively, $z_s = 0$ for 1 < s < t, and z_t a solution of

(1)
$$L_r(y) = -\left(\left(\sum_{j=0}^r w^{(j)} \frac{\partial}{\partial y^{(j)}}\right)^t F(y)\right)_{y=x}.$$

Since $L_n(z_t) = 0$, $L_r(z_t)$ is a zero of $L_{n-r}(y)$ and $L_r(z_t) \in \mathbb{F}\langle x, u_1, \dots, u_{n-r} \rangle$. Now the specialization $w \to cw$ over $\mathbb{F}\langle x, u_1, \dots, u_{n-r} \rangle$ leaves the left-hand side of (1) invariant while it multiplies the right-hand side of (1) by c^t , which is impossible. Hence

$$\left(\left(\sum_{j=0}^{r} w^{(j)} \frac{\partial}{\partial y^{(j)}} \right)^{s} F(y) \right)_{y=x} = 0, \qquad 1 < s \leq m.$$

Since

$$\left(\left(\sum_{j=0}^{r} y^{(j)} \frac{\partial}{\partial y^{(j)}}\right)^{m} F(y)\right)_{u=x} = m! K(y),$$

we see that w is a zero of K(y).

COROLLARY 1. With notation and hypotheses as in Theorem 1, let $L_r(y)$ have a zero of order r over $\mathfrak{F}\langle x, u_1, \dots, u_{n-r}\rangle$, and set $L_r^*(y) = (\partial F/\partial y^{(r)})^{-1}L_r(y)$. The coefficients of $L_r^*(y)$ are algebraic over \mathfrak{F} , and K(y) is divisible by $L_r^*(y)$.

Proof. Let w be a zero of $L_r(y)$ of order r over $\mathfrak{F}\langle x, u_1, \dots, u_{n-r}\rangle$. Then w is homogeneous over $\mathfrak{F}\langle x, u_1, \dots, u_{n-r}\rangle$ and, by Theorem 1, w is a zero

of K(y). Since the order of K(y) is $\leq r$, K(y) is divisible by $L_r(y)$ and therefore by $L_r^*(y)$; because one of the coefficients in the latter is 1 and the coefficients in K(y) all belong to \mathfrak{F} , all the coefficients in $L_r^*(y)$ are algebraic over \mathfrak{F} .

Remark. It is well known (e.g. see [2]) that if an $L_2(y)$ $\epsilon \, \mathfrak{F}\{y\}$ has a non-trivial zero of order ≤ 1 over \mathfrak{F} then $L_2(y)$ is composite over an algebraic extension of \mathfrak{F} . Indeed, if $L_2(y)$ is not composite over \mathfrak{F} , and if F(y) denotes the lowest differential polynomial of x over \mathfrak{F} , then $L_2(y)$ has a fundamental system of zeros (v_1, v_2) consisting of zeros of F(y); as the transcendence degree of $\mathfrak{F}\langle v_1, v_2 \rangle$ over \mathfrak{F} is then ≤ 2 , $L_2(y)$ is composite over an algebraic extension of \mathfrak{F} .

COROLLARY 2. If $L_3(y) \in \mathfrak{F}\{y\}$ has a nontrivial zero of order ≤ 1 over \mathfrak{F} , then $L_3(y)$ is decomposable on the right by a homogeneous linear differential polynomial of order 1 with coefficients which are algebraic over \mathfrak{F} .

Proof. Let x be a nontrivial zero of $L_3(y)$ of order ≤ 1 over \mathfrak{F} ; denote the lowest differential polynomial of x over \mathfrak{F} by F, and set

$$L_1(y) = \sum_{j=0}^{1} (\partial F/\partial y^{(j)})(x)y^{(j)}.$$

As $L_3(y)$ is decomposable on the right by y' - (x'/x)y, we may suppose that x'/x is not algebraic over \mathfrak{F} , so that F is of order 1 and not homogeneous. By Theorem 1 we may write $L_3(y) = L_2(L_1(y))$, with $L_2(y) \in \mathfrak{F}\langle x \rangle \{y\}$, and $L_1(x) \neq 0$. Let w be a nontrivial zero of $L_1(y)$. By the remark preceding the present corollary, we may suppose that x is not a zero of any homogeneous linear differential polynomial in $\mathfrak{F}\{y\}$ of order 2. It easily follows that F(y) has a zero v such that (x, v, w) is a fundamental system of zeros of $L_3(y)$. Obviously $(L_1(x), L_1(v))$ is a fundamental system of zeros of $L_2(y)$. If w is of order 0 over $\mathfrak{F}\langle x, L_1(v)\rangle$, then the transcendence degree of $\mathfrak{F}\langle x, v, w\rangle$ over \mathfrak{F} is ≤ 2 , and our result follows from (D) of the introduction. If w is of order 1 over $\mathfrak{F}\langle x, L_1(v)\rangle$, then, by Corollary 1, the coefficients in

$$L_1^*(y) = (\partial F/\partial y'(x))^{-1}L_1(y)$$

are algebraic over \mathfrak{F} , and obviously $L_3(y)$ is decomposable by $L_1^*(y)$ on the right.

3. Dimension of G

A group of linear transformations of an n-dimensional vector space is said to be reducible to diagonal form if the space is a direct sum of n invariant one-dimensional subspaces. We shall say, for any divisor r of n, that the group is reducible to r-diagonal form, if the space is a direct sum of n/r invariant r-dimensional subspaces.

THEOREM 2. Let $L_n(y) \in \mathfrak{F}\{y\}$, and suppose that the group G of $L_n(y)$ over \mathfrak{F} is irreducible. If $L_n(y)$ has a nontrivial zero x of order r over \mathfrak{F} , then either

the dimension of G is $\leq (n-1)r$, or the dimension of G is (n-1)r+1 and x is homogeneous over \mathfrak{F} , or r divides n and the component of the identity G_0 of G is reducible to r-diagonal form.

Proof. Let V_n denote the vector space over C formed by the zeros of $L_n(y)$, and let x be an element of V_n of order r over F. Using the notation of Theorem 1, we may write $L_n(y) = L_{n-r}(L_r(y))$. Suppose $L_r(y)$ has a nontrivial zero w of order r over $\Re\langle x, u_1, \dots, u_{n-r} \rangle$, where (u_1, \dots, u_{n-r}) is some fundamental system of zeros of $L_{n-r}(y)$; then the coefficients in the differential polynomial $L_r^*(y)$ of Corollary 1 to Theorem 1 are algebraic over \mathfrak{F} , so that $L_r^*(y) \in \mathfrak{F}_0\{y\}$, where \mathfrak{F}_0 is the algebraic closure of \mathfrak{F} in $\mathfrak{F}\langle V_n \rangle$, whence $gL_r^*(y) \in \mathfrak{F}_0\{y\}$ for every $g \in G_0$. Denoting the set of zeros of $L_r^*(y)$ by V_r , we see that gV_r , which is the set of zeros of $gL_r^*(y)$, is an r-dimensional subspace of V_n invariant under G_0 . If V_r contains a nontrivial proper subspace invariant under G_0 , then $L_n(y)$ has a nontrivial zero of order < rover \mathfrak{F}_0 and therefore over \mathfrak{F} , so that (because G is irreducible) V_n has a basis consisting of such zeros, and the transcendence degree of $\mathfrak{F}(V_n)$ over \mathfrak{F} , that is, the dimension of G, is $\leq n(r-1) \leq (n-1)r$; on the other hand, if V_r (and therefore each gV_r) contains no such invariant subspace, then V_n , which because of the irreducibility of G is the sum of the subspaces gV_r , is the direct sum of certain of them, whence r divides n and G_0 is reducible to r-diagonal form.

Suppose, then, that $L_r(y)$ has no nontrivial zero w as above. By Theorem 1 and the irreducibility of G there exists a fundamental system of zeros, $(x_1, \dots, x_{n-r}, w_1, \dots, w_r)$ of $L_n(y)$, such that each $F(x_i) = 0$, (w_1, \dots, w_r) is a fundamental system of zeros of $L_r(y)$, and either x is not homogeneous over \mathfrak{F} and $x = x_1$, or x is homogeneous over \mathfrak{F} and $x = w_1$. Since

$$(L_r(x_1), \cdots, L_r(x_{n-r}))$$

is a fundamental system of zeros of $L_{n-r}(y)$, the order of w_i , for each i with $1 \le i \le r$ in the nonhomogeneous case and for each i with $2 \le i \le r$ in the homogeneous case, over

$$\mathfrak{F}\langle x, L_r(x_1), \cdots, L_r(x_{n-r}) \rangle \subset \mathfrak{F}\langle x, x_1, \cdots, x_{n-r} \rangle$$

is $\langle r \rangle$. As x and each x_j have order $\leq r$ over \mathfrak{F} , the transcendence degree of $\mathfrak{F}\langle x_1, \dots, x_{n-r}, w_1, \dots, w_r \rangle$ over \mathfrak{F} is $\leq (n-r)r+r(r-1)=(n-1)r$ in the nonhomogeneous case and is $\leq (n-r+1)r+(r-1)^2=(n-1)r+1$ in the homogeneous case.

COROLLARY 1. Let G be an irreducible algebraic group of linear transformations of an n-dimensional vector space V over an algebraically closed field of characteristic zero, let H be the subgroup of G leaving invariant a fixed nonzero element $v \in V$, and denote the dimension of G and H by s and t respectively. Then, either s - t = n, or s - t < n and s - t divides n and the component of the identity G_0 is reducible to (s - t)-diagonal form, or

$$(s-1)/(n-1) \le s-t < n.$$

Proof. It is known (see e.g. [3]) that we may regard V as the space of

zeros of some $L_n(y) \in \mathfrak{F}\{y\}$ with group G; then s equals t plus the order of v over \mathfrak{F} , so that $s - t \leq n$. If s - t < n, then by Theorem 2 either

$$s \leq (n-1)(s-t)+1,$$

that is, $s - t \ge (s - 1)/(n - 1)$, or else s - t divides n and G_0 is reducible to (s - t)-diagonal form.

COROLLARY 2. Let G be an irreducible algebraic group of linear transformations of an n-dimensional vector space V over an algebraically closed field of characteristic zero, and suppose that the component of the identity G_0 leaves invariant an r-dimensional subspace of V, 0 < r < n. Then either the dimension of G is $\leq (n-1)r+1$, or else r divides n and G_0 is reducible to r-diagonal form.

Proof. As in the proof of Corollary 1, we may suppose that V is the space of zeros of some $L_n(y) \in \mathfrak{F}\{y\}$ with group G. If there exists a nontrivial zero v of $L_n(y)$ such that order of v over \mathfrak{F} is < r, it follows from the irreducibility of G that the dimension of G is $\leq n(r-1) \leq (n-1)r+1$. Since G_0 leaves invariant an r-dimensional subspace of V, $L_n(y)$ has a nontrivial zero v such that the order of v over F is r, and the conclusion follows from Theorem 2.

4. Transitivity of G

LEMMA 2. Let $L_n(y) \in \mathfrak{F}\{y\}$. A necessary and sufficient condition that every nontrivial zero of $L_n(y)$ be of order n over \mathfrak{F} is that the group G of $L_n(y)$ over \mathfrak{F} operate transitively on the space of zeros of $L_n(y)$.

Proof. Let every zero of $L_n(y)$ be of order n over \mathfrak{F} . Then every non-trivial zero is a generic zero of the prime differential ideal $[L_n(y)]$. Hence given any two nontrivial zeros u, v of $L_n(y)$, there exists an automorphism $g \in G$ such that g(u) = v. Therefore G is transitive.

Conversely, let G be transitive, and let x be any nontrivial zero of $L_n(y)$. Every $F(y) \in \mathcal{F}\{y\}$ vanishing at x must vanish at every zero of $L_n(y)$ and therefore belongs to $[L_n(y)]$; every such F(y) has order $\geq n$ so that the order of x over \mathfrak{F} is n.

COROLLARY. Let the group of $L_n(y)$ over \mathfrak{F} be either the general linear group $GL_n(C)$, the unimodular group $SL_n(C)$ $(n \geq 2)$, or the symplectic group $Sp_n(C)$ (n even). Then $L_n(y)$ is the lowest differential polynomial over \mathfrak{F} of each of its nontrivial zeros.

5. The orthogonal group

Theorem 3. Let $L_n(y) \in \mathfrak{F}\{y\}$, suppose the coefficient of $y^{(n)}$ in $L_n(y)$ is 1, and let F(y) be the lowest differential polynomial over \mathfrak{F} of a nontrivial zero of $L_n(y)$ of order n-1 over \mathfrak{F} . There exists $p \in \mathfrak{F}$ such that

$$(\partial F/\partial y^{(n-1)})L_n = F' + pF.$$

If F_i denotes the homogeneous part of F of degree i, then, for every i for which

 $F_i \neq 0$, each irreducible factor of F_i is of order n-1, and every nonsingular zero of such a factor is a zero of L_n ; if $c_i \in C$ and $\sum c_i F_i \neq 0$, then every nonsingular zero of $\sum c_i F_i$ is a zero of L_n .

Proof. Let x be a nontrivial zero of $L_n(y)$ of order n-1 over \mathfrak{F} having F(y) as lowest differential polynomial over \mathfrak{F} . $(\partial F/\partial y^{(n-1)})L_n-F'$ vanishes at x and obviously has order $\leq n-1$, and therefore is divisible by F; consideration of degrees shows that $(\partial F/\partial y^{(n-1)})L_n-F'=pF$ with $p \in \mathfrak{F}$. It immediately follows that

$$(\partial F_i/\partial y^{(n-1)})L_n = F_i' + pF_i$$

for each i. Suppose $F_i \neq 0$, let Q be an irreducible factor of F_i , and write $F_i = Q^i P$ with P not divisible by Q. If the order of Q were less than n-1, the above equation would show that Q' is divisible by Q, which is impossible as Q' has the same degree as Q but higher order. The same equation then shows that

$$(t(\partial Q/\partial y^{(n-1)})P + Q(\partial P/\partial y^{(n-1)}))L_n = tQ'P + QP' + pQP;$$

it follows that a generic point over \mathfrak{F} of the general manifold of Q over \mathfrak{F} is a zero of L_n , so that every nonsingular zero of Q is a zero of L_n . Finally, again by the same equation,

$$(\partial (\sum c_i F_i)/\partial y^{(n-1)})L_n = (\sum c_i F_i)' + p \sum c_i F_i$$
,

so that every zero of $\sum c_i F_i$ which is not a zero of $\partial (\sum c_i F_i)/\partial y^{(n-1)}$ is a zero of L_n .

THEOREM 4. Let $L_n(y) \in \mathfrak{F}\{y\}$, and suppose that the group of $L_n(y)$ over \mathfrak{F} is the orthogonal group $O_n(C)$, $n \geq 2$. Then there exists an irreducible nonzero homogeneous differential polynomial $Q(y) \in \mathfrak{F}\{y\}$ of degree 2 and order n-1 such that, for every nontrivial zero x of $L_n(y)$, $Q(x) \in C$ and Q(y) - Q(x) is the lowest differential polynomial of x over \mathfrak{F} .

*Proof.*¹ By hypothesis there exists a fundamental system of zeros (x_1, \dots, x_n) of $L_n(y)$ such that the equations

$$gx_j = \sum_{1 \le i \le n} a_{ij} x_i, \qquad 1 \le j \le n, \quad g \in G,$$

establish an isomorphism of the group of automorphisms G of $\mathfrak{F}\langle x_1, \dots, x_n \rangle$ over \mathfrak{F} onto the group $O_n(C)$ of orthogonal matrices (a_{ij}) with coefficients in C. For the matrix

$$(x_j^{(i-1)})_{1 \le i \le n, 1 \le j \le n}$$

we obviously have $(gx_i^{(i-1)}) = (x_i^{(i-1)})(a_{ij})$, so that if we denote the inverse of $(x_i^{(i-1)})$ by (w_{ij}) then $(gw_{ij}) = (a_{ij})^{-1}(w_{ij}) = {}^t(a_{ij})(w_{ij})$. It follows that if we set $(q_{ij}) = {}^t(w_{ij})(w_{ij})$ then

$$(gq_{ij}) = {}^{t}(w_{ij})(a_{ij}) {}^{t}(a_{ij})(w_{ij}) = (q_{ij}),$$

so that $q_{ij} \in \mathfrak{F}$, and also $q_{ij} = q_{ji}$.

¹ This proof was conveyed to me by E. R. Kolchin.

Define the differential polynomial $B(y, z) \in \mathfrak{F}\{y, z\}$ by the formula

$$B(y,z) = \sum_{1 \le i \le n, 1 \le j \le n} q_{ij} y^{(i-1)} z^{(j-1)}.$$

For any zeros u, v of $L_n(y)$ we may write $u = \sum_{i=1}^{n} c_i x_i$, $v = \sum_{i=1}^{n} d_i x_i$, where each c_i and d_i is an element of C; clearly $u^{(i-1)} = \sum_{i=1}^{n} c_i x_i^{(i-1)}$, so that $c_i = \sum_{i=1}^{n} w_{i} u^{(i-1)}$, and similarly $d_i = \sum_{i=1}^{n} w_{i} u^{(i-1)}$. Thus

$$c_h d_h = \sum_{i,j} w_{hi} w_{hj} u^{(i-1)} v^{(j-1)},$$

 $c_h d_h = \sum_{i,j} w_{hi} w_{hj} u^{(i-1)} v^{(j-1)},$ whence $\sum_h c_h d_h = \sum_i q_{ij} u^{(i-1)} v^{(j-1)}$, so that $B(u, v) = \sum_i c_i d_i$. Defining the differential polynomial $Q(y) \in \mathfrak{F}\{y\}$ by the formula Q(y) = B(y, y), we see that for every zero $u = \sum_{i=1}^{n} c_i x_i$ of $L_n(y)$, $Q(u) = \sum_{i=1}^{n} c_i^2 \epsilon C$.

We now show that every nontrivial zero u of $L_n(y)$ is of order n-1 over Indeed, if $Q(u) \neq 0$, the set of all solutions v of $L_n(y)$ with B(u, v) = 0is an (n-1)-dimensional vector space over C not containing u; the group pf $L_n(y)$ over $\mathfrak{F}\langle u\rangle$ is obviously isomorphic with $O_{n-1}(C)$ and therefore is of dimension $\frac{1}{2}(n-1)(n-2)$, so that the order of u over F is equal to

$$\frac{1}{2}n(n-1) - \frac{1}{2}(n-1)(n-2) = n-1.$$

On the other hand, if Q(u) = 0, then $u, x_1 + \sqrt{(-1)x_2}, x_1 - \sqrt{(-1)x_2}$ all have the same order over \mathfrak{F} . For if u, v are any two nontrivial zeros of $L_n(y)$ such that Q(u) = Q(v) = 0, there exists an automorphism of

$$\mathfrak{F}\langle x_1, \cdots, x_n \rangle$$

over \mathfrak{F} which maps u onto v (e.g., see [1] Proposition 5, p. 18). Since the group of $L_n(y)$ over $\mathfrak{F}\langle x_1 + \sqrt{(-1)x_2}, x_1 - \sqrt{(-1)x_2} \rangle$ is $O_{n-2}(C)$ and is thus of dimension $\frac{1}{2}(n-2)(n-3)$, we conclude that the transcendence degree of $\Re\langle x_1+\sqrt{(-1)}x_2, x_1-\sqrt{(-1)}x_2\rangle$ over \Re is equal to

$$\frac{1}{2}n(n-1) - \frac{1}{2}(n-2)(n-3) = 2n - 3.$$

If the order of u over \mathfrak{F} were $\leq n-2$, then the transcendence degree of

$$\Re \langle x_1 + \sqrt{(-1)}x_2, x_1 - \sqrt{(-1)}x_2 \rangle$$

over \mathfrak{F} would be $\leq 2n-4$. Therefore u is of order n-1 over \mathfrak{F} .

This being the case, since Q(y) has order $\leq n-1$ and vanishes at the zero $x_1 + \sqrt{(-1)}x_2$ of $L_n(y)$, the order of Q(y) must be n-1. If Q(y) were reducible over \mathfrak{F} , one of its irreducible factors $L_{n-1}(y)$ would vanish at the nontrivial zero $x_1 + \sqrt{(-1)x_2}$ of $L_n(y)$, which is impossible since $O_n(C)$ is irreducible.

Remark. If $n \geq 3$, the same theorem holds for the proper orthogonal group $O_n^+(C)$ (same proof). If n=2, then Q(y) is no longer irreducible, as then

$$Q(y) = (x_1 x_2' - x_2 x_1')^{-2} (x_1^2 + x_2^2) A_{+}(y) A_{-}(y),$$

where

$$A_{\pm}(y) = y' - (x_1^2 + x_2^2)^{-1}(x_1x_1' + x_2x_2' \pm \sqrt{(-1)(x_1x_2' - x_2x_1')})y_2.$$

For a zero x of $L_2(y)$ such that $Q(x) \neq 0$ the lowest differential polynomial

over \mathfrak{F} is still Q(y) - Q(x), but for an x such that Q(x) = 0 the lowest differential polynomial over \mathfrak{F} is one of the two linear factors $A_{\pm}(y)$ of Q(y).

REFERENCES

- J. Dieudonné, Sur les groupes classiques, Actualités scientifiques et industrielles, no. 1040, Paris, Hermann, 1948.
- 2. L. Koenigsberger, Lehrbuch der Theorie der Differentialgleichungen mit einer unabhängigen Variabeln, Leipzig, B. G. Teubner, 1889.
- 3. E. R. Kolchin, Algebraic matric groups and the Picard-Vessiot theory of homogeneous linear ordinary differential equations, Ann. of Math. (2), vol. 49 (1948), pp. 1-42
- J. F. RITT, Differential algebra, Amer. Math. Soc. Colloquium Publications, vol. 33, 1950.

STEVENS INSTITUTE OF TECHNOLOGY HOBOKEN, NEW JERSEY