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BY
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Introduction

If § is a field and z belongs to an algebraic extension of &, then the alge-
braic properties of x are completely determined by the irreducible polynomial
over ¥ which vanishes at x. Similarly, if ¥ is an ordinary differential field
(i.e., a field with given derivation) of characteristic zero and = belongs to a
differentially algebraic differential field extension of &, the differential alge-
braic properties of z are completely determined by the irreducible differential
polynomial F(y) e F{y} of lowest order which vanishes at x. We shall call
F(y), which is unique up to a nonzero factor in &, the lowest differential poly-
nomsal of x over ¥, and we shall call the differential equation F(y) = 0 the
lowest equation for x over F.

Let ¥ be an ordinary differential field of characteristic zero, and let C, the
field of constants of &, be algebraically closed. Let (z;, - -+, x.) be a funda-
mental system of zeros of a homogeneous linear differential polynomial
L.(y) eF{y} such that the field of constants of F{x, --, x.) is C.
F(x1, *+ , Zay is called a Picard-Vessiot extension of & (hereafter denoted by
P.V.E.), and the group G of automorphisms of F{x;, -+, z.) over § can
be identified with an algebraic group of linear transformations of the vector
space V, over C with basis (21, -+, @.). (See [3].) We sometimes call G
the group of L.(y) over .

It is the purpose of this paper to obtain information about G when the
lowest equation over § for some z € V, is known, and about the lowest equa-
tion for every x ¢ V,, when G is one of the classical groups.

Notation. Throughout this paper § will stand for an ordinary differential
field of characteristic zero whose field of constants C is algebraically closed.
L,(y) will always stand for a homogeneous linear differential polynomial of
order n. Whenever we speak of zeros of L.(y) e F{y}, we restrict ourselves
to zeros which belong to a P.V.E. of . We shall therefore be able to say,
for some L,(y) ¢ F{y}, that every one of its zeros satisfies a differential equa-
tion over § of lower order. If, for a given L.(y) e F{y}, there exist an in-
teger r and L,(y), L.—(y) eF{y} such that 1 < r < n — 1 and

L.(y) = Lau—r(L(y)),

we say that L,(y) is composite over §, that L,(y) is the composite of L.(y)
and L, _.(y), and that L,(y) is decomposable by L.(y) on the right. If an
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element z of an extension of § has a lowest equation over § which is of order
r, we shall say that z is of order r over &.
We repeatedly make use of the following:

(A) If F(y) is the lowest differential polynomial of « over &, then z is a
generic zero of the general component of F(y) over &, and the transcendence
degree of F(x) over ¥ equals the order of x over ¥ For any P(y) ¢ F{y}
vanishing at 2 there exists a natural number ¢ such that S‘P ¢ [F], where S
is the separant of F; if the order of P equals that of F, then P is divisible
by F. (See [4].)

(B) If Gisthealgebraic group of F{z;, - - - , z.) over F, where (z1, - - , &)
is a fundamental system of zeros of L,(y) e F{y}, then the dimension of G
equals the transcendence degree of F{x;, ---, z.) over §. If Gy is the com-
ponent of the identity of G, then Gy is the group of F(x1, - -+, x.) over the
(relative) algebraic closure , of & in F{z;, - - - , Z,), and also of
Fi{wy, -+, za)y Over ¥, where ¥, is the (absolute) algebraic closure of &.
G is reducible (maps a nontrivial proper subspace of V, into itself) if and
only if L,(y) is composite over F. Gy is reducible to triangular form if and
only if G, is solvable. (See [3].)

(C) If the dimension of G is < 2, then G, is solvable.
(B) and (C) imply (D).

(D) If the transcendence degree of F{(x;, -+, &) over ¥ is < 2, then
L,(y) is the composite of n homogeneous linear differential polynomials of
order 1 in $o{y}, Fo denoting the algebraic closure of F in F(xy, « - , Zn).

(E) If G is irreducible and a nontrivial zero x of L.(y) is a zero of F(y),
then there exists a fundamental system of zeros of L.(y) consisting of zeros
of F(y).

(F) If L,(y) = Lur(L(y)) and (x1, ---, 2,) is a fundamental system
of zeros of L,(y) such that (z1, ---, z,) is a fundamental system of zeros
of L.(y), then (L.(x,41), ---, L{x,)) is a fundamental system of zeros of
Lu—+(y).

1. Homogeneous elements

DEerINITION. An element z in a differential field extension of & is said to
be homogeneous over § if z is differentially algebraic over § and x — cz is a
specialization over &, where ¢ is a transcendental constant over & (x).

LemMma 1. A necessary and sufficient condition for x to be homogeneous over
F 1s that the lowest equation for x over § be homogeneous.

Proof. Let F(y) be the lowest differential polynomial of x. Suppose x
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homogeneous over §. Then F(cz) = 0 = pyan ¢'Fi(x), where F; is homo-
geneous of degree 7. Since ¢ is transcendental over F(z),

F@(x)=0 (i=0v1"”7m)7

so that each F; is a multiple of F, which is possible only if # is homogeneous.
Suppose F(y) is homogeneous. Then F(cx) = ¢"F(z) = 0. If P(y) eF{y}
is any differential polynomial such that P(z) = 0, then S'P(y) ¢ [F(y)],
where S is the separant of F. Since S(cz) = ¢"'S(z) # 0, P(cx) = 0 and
Z — cx is a specialization over ¥, and « is homogeneous over &.

2. Decomposition of L,(y)

TaroReM 1. Let x be a zero of L.(y) eF{y} of order r over ¥, let F(y) be
the lowest differential polynomial of x over &, and let

Liy) = Z 3y w( 2)y*.

(a) There exists an L,_.(y) e F{x){y} such that L.(y) = Ln.—(L:(y)).

(b) =z s a zero of L.(y) if and only if x is homogeneous over 5.

() If (ur, -+, Unr) 18 a fundamental system of zeros of L.—.(y) and
K(y) is the sum of the terms of F(y) of highest degree, then every zero of L.(y)
which s homogeneous over F{x, Uy, * -+ , Un—r) 1§ @ zero of K(y).

Proof. Let F(y) be of degree m, and let v = z 4+ 2 = = + Y 2aze (for-
mal power series) where the z;,, 1 < 7 < «, are in some differential field ex-
tension of § and e is a transcendental constant over F(z, (2:)1<i<o). v is a
zero of F(y) if and only if F(v), when written as a power series in e, vanishes
identically in e.

F() = F(z) + (E il (Z e aym) F(y))m

= :gl (Lr(zs) + Qx(zl g * " zs..l))e’,

where
Ql =0
and
Qseg{x,z],“',zs—l}, 1§3<°°,

L.(y) is of order r, for (9F/ay™)(x) # 0. If we choose the z,, successively,
to be zeros of

Lr(y) + Qs(zl y T Zg_l),

v will be a zero of F(y). Now z is a specialization of v over §. Since z is
of order r, » must also be of order r. Therefore » — x is a generic specializa-
tion over § and L.(») = 0. Since L.(y) is linear, L,(») = D51 La(2:)e* = 0,
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8o that L,(2;) = 0,1 = 7 < . Since we may choose z; to be any zero of
L,(y), any zero of L,(y) must be a zero of L,(y), so that

La(y) = Ln-+(L:(y)) with Ln(y) eF{x){y}.

To prove (b) note that if F(y) is homogeneous then the differential poly-
nomial P(y) = D 5o yPoF/ay"” equals mF(y). Conversely, if L,(z) = 0, z
is a zero of P(y) eF{y}, and consequently P(y) = aF(y), a ¢eF. Equating
coefficients we see that @ is an integer, and by Euler’s theorem F(y) is homo-
geneous.

To prove (¢) we note that, for 1 < s < m,

o~ () o).

plus terms all of which have at least one factor z{” with 1 < ¢ < s and
0 =4 = r. Let w be any zero of L.(y) which is homogeneous over
F@, Ur, +++, Unr). Letz = wand suppose that

((; w"’ 3 (:)) F(y)) = 0, 1<s<it,

where ¢ is a natural number < m, while

((g w? ym) F (y))m > 0.

Thenwe may set, successively, 2, = 0 for 1 < s < ¢, and 2; a solution of

(1) Ly) = —<<§w 3 (,)> F(y)>y=x.

Since L,(2) = 0, L.(2;) is a zero of L,_.(y) and L.(2,) e F(x, Uy, -+, Un-r).
Now the specialization w — cw over F(x, Uy, - -+ , un—) leaves the left-hand
side of (1) invariant while it multiplies the right-hand side of (1) by ¢, which
is impossible. Hence

((; w 8y(”> F<y)>,,=, =0, 1<s=m
((72:6 y? a;(,)) (y)) = m! K(y),

we see that w is a zero of K(y).

Since

CoroLLARY 1. With notation and hypotheses as in Theorem 1, let L.(y) have
a zero of order r over F(x, uy, - -+ , Un_), and set L} (y) = (0F /oy ) L.(y).
The coefficients of Ly (y) are algebraic over &, and K(y) is divisible by L) (y).

Proof. Let w be a zero of L.(y) of order r over F(x, u1, - -+ , Un—r). Then
w is homogeneous over F{(x, uy, * - , Un—r) and, by Theorem 1, w is a zero
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of K(y). Since the order of K(y) is =< r, K(y) is divisible by L.(y) and there-
fore by L¥(y); because one of the coefficients in the latter is 1 and the coeffi-
cients in K(y) all belong to &, all the coefficients in L) (y) are algebraic
over J.

Remark. 1t is well known (e.g. see [2]) that if an Ls(y) ¢ F{y} has a non-
trivial zero of order =< 1 over § then L.(y) is composite over an algebraic
extension of §. Indeed, if Ly(y) is not composite over ¥, and if F(y) denotes
the lowest differential polynomial of = over &, then L(y) has a fundamental
system of zeros (v1, v2) consisting of zeros of F(y); as the transcendence de-
gree of F{v1, v:) over F is then =< 2, Ly(y) is composite over an algebraic ex-
tension of &.

CoroLLARY 2. If Li(y) eF{y} has a nontrivial zero of order < 1 over &,

then Ls(y) is decomposable on the right by a homogeneous linear differemiial
polynomial of order 1 with coefficients which are algebraic over F.

Proof. Let x be a nontrivial zero of L;(y) of order < 1 over §; denote the

lowest differential polynomial of x over &§ by F, and set
Li(y) = 22i-0 OF /3y ) (@)y".

As L;(y) is decomposable on the right by ¥’ — (¢//z)y, we may suppose that
x’'/x is not algebraic over ¥, so that F is of order 1 and not homogeneous.
By Theorem 1 we may write Ly(y) = Ls(Li(y)), with La(y) ¢ F{z){y}, and
Ly(z) ¢ 0. Let w be a nontrivial zero of Li(y). By the remark preceding
the present corollary, we may suppose that z is not a zero of any homo-
geneous linear differential polynomial in F{y} of order 2. It easily follows
that F(y) has a zero » such that (z, v, w) is a fundamental system of zeros
of Ly(y). Obviously (Li(z), Li(v)) is a fundamental system of zeros of L,(y).
If w is of order 0 over F(x, L;(v)), then the transcendence degree of F(x, v, w)
over § is =< 2, and our result follows from (D) of the introduction. If w is
of order 1 over F{x, Li(v)), then, by Corollary 1, the coefficients in

Li(y) = (3F /9y’ (x)) " La(y)

are algebraic over &, and obviously Ls(y) is decomposable by LY (y) on the
right.

3. Dimension of G

A group of linear transformations of an n-dimensional vector space is said
to be reducible to diagonal form if the space is a direct sum of » invariant
one-dimensional subspaces. We shall say, for any divisor r of =, that the
group is reducible to r-diagonal form, if the space is a direct sum of n/r in-
variant r-dimensional subspaces.

THEOREM 2. Let L.(y) e F{y}, and suppose that the group G of L.(y) over
F s irreducible. If L.(y) has a nontrivial zero x of order r over &, then either
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the dimension of G is < (n — 1)r, or the dimension of G is (n — 1)r + 1 and
x 28 homogeneous over F, or r divides n and the component of the identity Gy of
G is reductble to r-diagonal form.

Proof. Let V, denote the vector space over C formed by the zeros of
L.(y), and let x be an element of V, of order r over §. Using the notation
of Theorem 1, we may write L,(y) = Ln-.(L.(y)). Suppose L,(y) has a non-
trivial zero w of order r over F(x, U1, -+, Un_r), Where (uy, -, Un_y)
is some fundamental system of zeros of L,_.(y); then the coefficients in the
differential polynomial L;(y) of Corollary 1 to Theorem 1 are algebraic over
F, so that L} (y) e Fofy}, where %, is the algebraic closure of & in F(V,),
whence gL} (y) € Fo{y} for every g e Gy. Denoting the set of zeros of L (y)
by V., we see that gV, , which is the set of zeros of gL, (y), is an r-dimen-
sional subspace of V, invariant under Go. If V, contains a nontrivial proper
subspace invariant under Gy, then L,(y) has a nontrivial zero of order < r
over ¥, and therefore over &, so that (because G is irreducible) V, has a basis
consisting of such zeros, and the transcendence degree of F(V,) over &, that
is, the dimension of @, is £ n(r — 1) £ (n — 1)r; on the other hand, if V,
(and therefore each ¢gV,) contains no such invariant subspace, then V,,
which because of the irreducibility of G is the sum of the subspaces gV, , is
the direct sum of certain of them, whence r divides » and G, is reducible to
r-diagonal form.

Suppose, then, that L.(y) has no nontrivial zero w as above. By Theorem
1 and the irreducibility of G there exists a fundamental system of zeros,
(@1, ***, Tnr, w1, -+, W, of L,(y), such that each F(z;) = 0, (wy, --- , w,)
is a fundamental system of zeros of L.(y), and either z is not homogeneous
over § and x = 2, or x is homogeneous over § and + = w;. Since

(Lf(xl)y B Lr(wn—1))

is a fundamental system of zeros of L.-.(y), the order of w;, for each ¢ with
1 £ ¢ £ r in the nonhomogeneous case and for each ¢ with 2 < 7 < r in the
homogeneous case, over

5(“’: L"(xl)7 Tty Lr(xn-7)> c Sf(:l), X1yt xn—r),
is < r. Asz and each z; have order < r over &, the transcendence degree of
FLy, "y Tnp, Wi, -, WyoverFis<(m —nr)yr +r@r—1) = @n — r

in the nonhomogeneous caseandis < (n — r + 1)r + (r — 1)’ = (n — Dr + 1
in the homogeneous case.

CoroLLARY 1. Let G be an irreducible algebraic group of linear transforma-
tions of an n-dimensional vector space V over an algebraically closed field of
characteristic zero, let H be the subgroup of G leaving invariant a fixed nonzero
element v ¢ V, and denote the dimension of G and H by s and t respectively.
Then, either s — t = m, or s — t < n and s — t divides n and the component
of the identity Gy is reducible to (s — t)-diagonal form, or

s—1/(n—-1)y=ss—t<n

Proof. It is known (see e.g. [3]) that we may regard V as the space of
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zeros of some L,(y) e F{y} with group G; then s equals ¢ plus the order of v
over F, sothat s — t < n. If s — ¢t < n, then by Theorem 2 either

s=E(n—-1DE—-1t+1,

thatis,s — t = (s — 1)/(n — 1), or else s — ¢ divides n and Gy is reducible
to (s — ?)-diagonal form.

CoROLLARY 2. Let G be an irreducible algebraic group of linear trans-
formations of an n-dimensional vector space V over an algebraically closed field
of characteristic zero, and suppose that the component of the identity Go leaves
invariant an r-dimensional subspace of V, 0 < r < n. Then either the dimen-
ston of @ is = (n — 1)r 4+ 1, or else r divides n and Gy is reducible to r-diagonal
form.

Proof. As in the proof of Corollary 1, we may suppose that V is the space
of zeros of some L,(y) e F{y} with group G. If there exists a nontrivial zero
v of L,(y) such that order of v over § is < r, it follows from the irreducibility
of G that the dimension of Gis < n(r — 1) < (n — 1)r 4+ 1. Since G, leaves
invariant an r-dimensional subspace of V, L.(y) has a nontrivial zero v such
that the order of v over F is r, and the conclusion follows from Theorem 2.

4. Transitivity of @

Lemma 2. Let L.(y) eFly}. A mnecessary and sufficient condition that
every nontrivial zero of L.(y) be of order n over F is that the group G of L.(y)
over § operate transitively on the space of zeros of L,(y).

Proof. Let every zero of L.(y) be of order n over §. Then every non-
trivial zero is a generic zero of the prime differential ideal [L.(y)]. Hence
given any two nontrivial zeros w, v of L,(y), there exists an automorphism
g € G such that g(u) = ». Therefore G is transitive.

Conversely, let G be transitive, and let x be any nontrivial zero of L.(y).
Every F(y) eF{y} vanishing at x must vanish at every zero of L.(y) and
therefore belongs to [L.(y)]; every such F(y) has order = n so that the order
of x over F is n.

CoROLLARY. Let the group of L.(y) over T be either the general linear group
GL,(C), the unimodular group SL,(C) (n = 2), or the symplectic group Sp.(C)
(n even). Then L.(y) s the lowest differential polynomial over § of each of its
nontrivial zeros.

5. The orthogonal group

TuroreM 3. Let L.(y) e F{y}, suppose the coefficient of y'"™ in La(y) is 1,
and let F(y) be the lowest differential polynomial over § of a nontrivial zero of
L.(y) of order n — 1 over §. There exists p € F such that

(8F/oy'" )L, = F' + pF.
If F; denotes the homogeneous part of F of degree <, then, for every ¢ for which
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F; % 0, each irreducible factor of F; is of order n — 1, and every nonsingular
zero of such a factor is a zero of L, ; if ¢; e C and Y, ¢; Fi % 0, then every non-
singular zero of Y, ¢; F; is a zero of Ly, .

Proof. Let x be a nontrivial zero of L,(y) of order n — 1 over ¥ having
F(y) as lowest differential polynomial over §. (3F/dy" )L, — F’ vanishes
at = and obviously has order < n — 1, and therefore is divisible by F;
consideration of degrees shows that (8F/0y" )L, — F' = pF with p .
It immediately follows that

(0F /3y ™)L, = F; + pF;

for each 2. Suppose F; # 0, let @ be an irreducible factor of F;, and write
F; = Q'P with P not divisible by Q. If the order of Q were less thann — 1,
the above equation would show that @' is divisible by @, which is impossible
as @' has the same degree as @ but higher order. The same equation then
shows that

(t(8Q/3y" )P + Q8P /oy ™))L, = tQ'P + QP' + pQP;

it follows that a generic point over & of the general manifold of @ over F is
a zero of L, , so that every nonsingular zero of @ is a zero of L, . Finally,
again by the same equation,

O e F)/oy" )Ly = Qi F3) + p2ei Fi,
so that every zero of Y ¢; F; which is not a zero of 8> ¢: F)/ay™™ is a
zero of L, .

TueoreM 4. Let L.(y) eF{y}, and suppose that the group of L.(y) over &
is the orthogonal group 0,(C), n = 2. Then there exists an trreducible non-
zero homogeneous differential polynomial Q(y) e F{y} of degree 2 and order
n — 1 such that, for every nontrivial zero x of L.(y), Q(x) € C and Q(y) — Q(x)
is the lowest differential polynomial of x over F.

Proof.! By hypothesis there exists a fundamental system of zeros
(1, -+, zn) of L,(y) such that the equations

gr; = D agisn Gij Ti, L=sjsn, geG,

establish an isomorphism of the group of automorphisms G of F{xy, - - , Za)

over & onto the group 0,(C) of orthogonal matrices (a;;) with coefficients in
C. For the matrix

@ gignisizn
we obviously have (gz{"™) = (%)(ai), so that if we denote the inverse
of (zi™) by (wi;) then (gwi;) = (a:;) (wi;) = ‘(a:i;)(ws;). It follows that
if we set (gs;) = ‘(wi;)(w;;) then
(99:) = ‘(W) (i) “(a:)(wis) = (gis),
so that ¢;; € F, and also ¢;; = ¢ji .

1 This proof was conveyed to me by E. R. Kolchin.
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Define the differential polynomial B(y, 2) € F{y, 2} by the formula
B(y,z) = Z qij y(i_l)z(j_l)-

1<i<n,l<i=n

For any zeros u, v of L,(y) we may write w = > cx&n, v = 2 d ¥ , where
each ¢, and di is an element of C'; clearly u“_l). = > ¢ ", so that
e = 2 swr u ", and similarly di = D_;wi; 0. Thus

(=1), (5=1)
cdyp = Z” Whs Wh; U 07 7,

whence D nendi = D qi; u 0™, so that B(u, v) = > ¢id;. Defining
the differential polynomial Q(y) e F{y} by the formula Q(y) = B(y, y), we
see that for every zero u = D c; x; of Ln(y), Q(u) = D ci eC.

We now show that every nontrivial zero u of L,.(y) is of order n — 1 over
F. Indeed, if Q(u) = 0, the set of all solutions v of L,(y) with B(u, v) = 0
is an (n — 1)-dimensional vector space over C' not containing u; the group
pf L.(y) over F(u) is obviously isomorphic with 0,_;(C) and therefore is of
dimension #(n — 1)(n — 2), so that the order of u over F is equal to

inmn—1) —3n — 1D(n —2) =n — 1.
On the other hand, if Q(u) = 0, then u, ;1 + V(—1)z2, 21 — vV (—1)zz all
have the same order over §. For if u, v are any two nontrivial zeros of
L,(y) such that Q(u) = Q(v) = 0, there exists an automorphism of

€F<21,"',$n>

over § which maps u onto v (e.g., see [1] Proposition 5, p. 18). Since the
group of L,(y) over F{x1 + vV(—1ax2, 21 — v/(—1)az) is 0,»(C) and is
thus of dimension i(n — 2)(n — 3), we conclude that the transcendence
degree of F{x; + v/ (—1)az, 21 — v/ (—1)x2) over & is equal to

intn — 1) — 3(n — 2)(n — 3) = 2n — 3.
If the order of u over & were < n — 2, then the transcendence degree of
Flor + V(=Daz, 11 — /(= 1))

over § would be = 2n — 4. Therefore u is of order n — 1 over &.

This being the case, since Q(y) has order < n — 1 and vanishes at the zero
21 ++v/(—1)xy of L,(y), the order of Q(y) must be n — 1. If Q(y) were
reducible over ¥, one of its irreducible factors L,_;(y) would vanish at
the nontrivial zero z; + ~/(—1)x. of L,(y), which is impossible since 0,(C)
is irreducible.

Remark. If n = 3, the same theorem holds for the proper orthogonal
group 0%(C) (same proof). If n = 2, then Q(y) is no longer irreducible, as
then

Qy) = (mar — 1) (21 + 25 A+ () A_(y),
where

As@) = ¥ — (2l + 23) (wmrr + ware = V(= 1)@z — 2220 -
For a zero x of Ly(y) such that Q(x) £ 0 the lowest differential polynomial
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over ¥ is still Q(y) — Q(z), but for an x such that Q(z) = 0 the lowest dif-
ferential polynomial over & is one of the two linear factors A.(y) of Q(y).
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