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1. Introduction

We deal here with the operation of an r-dimensional toroid T on a co-
homology manifold X which resembles euclidean n-space in a sense that is
described below. Our main results give a detailed description of the action
of T on X" when n =<_ 2r -f- 1 and T operates effectively. We prove for
example that the fixed point set F is either a point or a line, that all the
isotropy subgroups are connected, that T has exactly 2 isotropy subgroups,
2 fixer subgroups, and r weights (see Section 3 for definitions).

In the case of a general r and n, we prove the inequality 0 =< dim F -<__
dim X 2r, provided that T operates almost effectively. Here F is a non-
empty cohomology manifold resembling a euclidean space in the sense of our
definition. Most of the proofs rely on recursion processes, which are based
on the existence of star circle subgroups, that is, circle subgroups P of T whose
fixed point sets are not the fixed point sets of any connected subgroup
properly containing P (see Section 3).

In the case of an effective T on an HLC euclideanlike X with n _-< 2r -k 1
(in view of the aforementioned inequality, n 2r or 2r -- 1), we prove (Sec-
tion 6) that the space of principal orbits U admits a global cross section and
U B X T where B is a euclideanlike cohomology manifold. The added
hypothesis that X is an HLC space has been introduced, in order to allow
us to employ Poinca% duality for open cohomology manifolds over the integers
(see Section 4, Corollary 4.1). The proof of the existence of the global cross
section involves a generalization of the fact that any map of euclidean space
is homotopic to a constant (see Section 5).
Our results show that for the cases considered the action is closely related

to the known linear action. The reader may find it helpful to keep the linear
case in mind and interpret the definitions in this light. It can be shown that
the action need not be equivalent to a linear action, however. This is not
immediate but could be concluded, for example, from making use of some
recent results of Bing (to appear in Annals of Mathematics) showing that
E is the product of a line and a space which is not a manifold.

2. Generalized manifolds

All of the spaces considered in this paper are locally compact, Hausdorff,
and finite-dimensional. The cohomology groups (Alexander-Spanier) with
coeificients in a group L are denoted by H(X, L) and those with compact
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carriers by H(X, L). The group H*(X, L) is the direct sum of the groups
H(X, L), and *H (X, L) is the direct sum of the groups H(X, L). A space
is called clc over L if for any x in X and compact neighborhood B of X, there
is a compact neighborhood A of x such that A B and the natural map

H(B, L) --) H’:(A, L)

is trivial for all i. If A is any closed subset of X, there is the natural map
H*(X, L) -- H (A, L). If U is an open subset of X there is also a natural
map

H*c U, L) -- H* (X, L),
which will be denoted by Iux. If / is compact, H*(U, L) can be identified
with the relative group H*(X, X U, L). We denote the group of integers
by Z and integers modulo p by Z.

DEFINITION. The space X is said to have local L-cohomology groups at x
if for each sufficiently small open neighborhood U of x, there exists a graded
subgroup H*(x, U, L) of H*c(U, L) satisfying

(a) For all open neighborhoods V satisfying x V U, Iw maps
H*(x, V, L) isomorphically onto H*(x, U, L);

(b) Given a U for which H*(x, U, L) exists, there is an open V such that
V U, x e V, and Iv maps Hc (V) into H*(x, U, L). If H*(x, U, L) exists,

c(V); v $ ); w $ p)it is clearly isomorphic to lim (lim (I H*
The local L-cohomology group at x, H*(x, X, L), is taken to be any one

of the groups H*(x, U, L). A space X which has local L-cohomology groups
at each point is said to have locally constant local L-cohomology groups if for
any x in X and sufficiently small open neighborhood U of x, there is an open
V such that x e V, V U, and for any y in V, H*(y, U, L) H*(x, U, L).

DEFINITION. The space X is a cohomology manifold over L if
(a) X is locally compact finite-dimensional;
(b) X has locally constant local L-cohomology groups;
(c) For each x X, H(x, X, L) L for some i and is trivial for all other i.

When we deal with the group H*(X, L) (closed supports) we shall require
that X be paracompact in addition.
A cohomology manifold over L is called a cohomology n-manifold over

L if its local n-dimensional groups are isomorphic to L at all its points. It
is readily seen that a connected cohomology manifold is a cohomology n-mani-
fold for some n.

DEFINITION. A cohomology n-manifold X over L is called orientable over L
if the sheaf (or the local system) of local n-dimensional cohomology groups
Hn(x, X, L) is constant.

Various definitions of manifolds in the sense of homology and cohomology
have been introduced, notably by Wilder and Smith. More recently these
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definitions and their interrelations have been studied by Yang [12], Conner-
Floyd [3], and Borel [1].
The definition that we adopt here coincides with Conner-Floyd’s when

L Z, apart from the requirement of paracompactness, and with Borel’s
when L is a field. Moreover, it permits us to utilize the results of both as
well as Smith’s results on fixed point sets of transformations of homology
manifolds.

In view of the various meanings attributed to "cohomology manifold"
in the literature, we state explicitly below the properties that we use.

2.1. Translating a proof of Wilder for homology manifolds over a field
into the language of cohomology over a general coefficient group L, Borel
has proved in [1]

A cohomology manifold over L is clc over L, provided that L is a principal
ideal ring.

2.2. Conner-Floyd’s definition of a cohomology manifold X is ours plus
the requirement that X be clc over Z. In view oi’ 2.1, a cohomology manifold
over Z in our sense is also one in the sense of Conner-Floyd. Upon consider-
ing the exact cohomology sequences associated with 0 -- Z -- Z -- Zp --* 0
one proves just as in [3], that a cohomology n-manifold over Z is a cohomology
n-manifold over Zp for every p.

2.3. Smith has given a definition of a homology manifold over Z ([9]).
Its formulation in cohomology over an arbitrary principal ideal ring L is
seen to coincide with our definition by a result of Yang (see [12] appendix,
and [1] Section 1.4). Thus our cohomology manifolds over Z are Smith
manifolds and we can apply the results of Smith on transformations. The
relation of Smith manifolds to Wilder manifolds is described by Borel in [1].

DEFINITION. If X and Y are spaces, we mean by X f’L Y that He(X, L)
kyand He( L) are isomorphic groups for each k. We say X =L Y if X and Y

are each cohomology n-manifolds over L and in addition X -L Y.

2.4. If X is a cohomology n-manifold over L, then n is the cohomological
dimension of X over L in the sense of Cohen-Wallace [2] and is at most equal
to the topological dimension, of course. We ctm assert the following "in-
vriance of domain" result:

2.4.1. If Y is a subset of a cohomology n-manifold X over L, and if in its
relative topology Y is also a cohomology n-manifold over L, then Y is open in X.

Proof. Since Y is locally compact, U n Y is closed in U for sufficiently
small open sets U of X. The exact cohomology sequence of a pair-- H:(U, L) H:(U n Y, L) -- H’+I(U, U n Y, L) --

For separable cohomology manifolds, one can say more; cf. Subsection 4.2.
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yields that He (U, L) -- He" (U n Y, L) is surjective, since all (n + 1)-dimen-
sional cohomology over L vanishes (cf. [12]). Suppose now that y e Y and
y is not an interior point. Select an open neighborhood U of y in X such
that U n Y is closed in U, H*(y, U, X) exists, and H*(y, U c Y, Y) exists.
Since the local L-cohomology groups are locally constant, there exists an
open neighborhood V in U Y with Iw H:(V, L) Hn(y, U, L), and an
open neighborhood W of y i U with Iw H:(W, L) Hn(y, U, L), and
H(W c Y, L) mapping onto Hn(y, U Y, Y). From the commutativity
of the diagram

H:(V, L) H:(U, L) H:(U Y, L)

H:(W, L) -- He (W Y, L)

it follows at once that the image of H(V, L) in H:(U c Y, L) is isomorphic
to L. On the other hand, since V U Y is empty, the image of H:(V, L)
in H(U Y, L) is zero, a contradiction. Hence each point of Y is an interior
point, that is, Y is open in X.
We shall require the following result on orientable cohomology manifolds.

In the special case that L is a field, a proof has been given by Borel in [1]
based on Poincar duality for cohomology manifolds. See also Yang [12]
for a proof in his formulation. We sketch a proof.

2.4.2. Let X be a connected cohomology n-manifold over L. Then
H(X, L) L or 0 according as X is orientable over L or not.

Proof. Let C be the family of all connected open subsets Y with compact
closure in X having the following property: for each open set U c Y and
point x e U for which H*(x, U, L) exists, Iv maps Hn(x, U, L) monomorphi-
cally into H: (Y, L).

Consider the Mayer-Vietoris exact sequence for open subsets of X with
closure (see also the last section of [1])

---> Hq(u U, L) ,,> Hqc(U1, L) -- Hqc(U2, L)

A
Hqc(U1 o U,, L) ---+ Hqc+l(U [a U2, L) ---+,

where a (I,, I.,) and A I,z Iv,,.. (This cor-
responds to the relative Mayer-Vietoris sequence; cf. Eilenberg-Steenrod,
Foundations of Algebraic Topology, p. 44.) Since X is n-dimensional over
L, 0 Hn+a(A, B, L) H:+I(A B, L) for any compact pair by a result
of H. Cohen [2]. Hence H:(U u U2, L) is generated by the images of
H:(U, L) and He"(Vz, L) if V, Ve C.

Since each set Y in C is a finite union of small subsets, we find that H: (Y, L)
H’(V, L) with V small The hypothesis thatis generated by the images Ivy.

X is orientable means that Ivy, H(V, L) Iv. Hc(W, L) for any two suffi-
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ciently small open sets V and W in a connected open set Y. Consequently
H:(Y, L) L for any Y in C.
Upon identifying H:(Y, L) with L, we can describe the image

oH:(U1 n U2, L) as the diagonal of L -t- L, provided U1 n U. is not empty
and U1, UeC. Consequently, H:(U o U, L) L -4- L/L L if U1,
U2 e C; that is, if U and U: are in C, then U o U e C. Since X is connected,
we get readily from the definition of H*c(X, L) that H*(X, L)
lim {H*(Y, L), iy.y, over the directed set C. Consequently Hc(X,L)* L.
The converse follows at once from the fact that I,x maps Hn(x, U) onto

H:(X) for any sufficiently small open neighborhood of a point x e X.

2.5. We state here for future reference some fundamental theorems of
P. A. Smith on the fixed point sets of p-groups (that is, groups whose orders
are powers of p). If G is a group of transformations in a space X, we denote
by F(G, X) the subset of points of X that are fixed under all the transforma-
tions of G. We consistently denote by r a finite group of transformations
of a space X.

THEOREM A. If X ’zp S with X compact and r is a p-group, then
F(r, X) zp S for some m.

(Here S denotes two points and S-1 the empty set.)

THEOREM B. [f X is a cohomology manifold over Z, and is a p-group,
then F(r, X) is a cohomology manifold oer Z, of lower dimension. If X is a
compact orientable cohomology n-manifold over Z,, then any connected com-
ponent in F(-, X) is orientable oer Z,.

An orientable nonempty connected cohomology manifold has nontrivial
global cohomology groups by 2.4.2. Thus one has as the immediate corollary

STHEOREM C If X with X compact and if - is a p-group, then
mF(r, X) with m <_ n, and F(-, X) is connected if m 0

If G is a compact connected r-dimensional abelian Lie group, then it is a
toroid, that is, a direct product of r circle groups. If we denote by r the
subgroup of G whose elements x satisfy p% 0, then r is of order pkr and
the union of all the r is dense in G. If G operates on a space X, then
F(G, X) lim F(r, X). It follows at once from Theorem C that if

SX z with X compact and p prime, then F(G, X) F(-, X) for some
]c. Hence

COROLLARY C. Let X S with X compact and p prime. Let G be a
Storoid group operating on X. Then F(G, X) , with m n, and indeed

F(G, X) F(-, X) for some p-group r in G.

S S- S S-It is worth noting that if X z, or then X or
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THEOREM D. Let r be a commutative group whose elements all have prime
order p. Let X be a compact space with X z Sn. Assume F(g, X) F(-, X)
for all g -. Then - is cyclic.

2.6. Now we state some basic results of Floyd on fixed point sets of toroids.
Further results in this area have been obtained by Conner and Floyd.

THEOREM E. Let G be a compact abelian Lie group operating on a compact
cohomology manifold over Z. Then G has only a finite number of distinct
isotropy subgroups.

THEOREM F. Let X be clc over Z and compact. Then the Z-cohomology
groups of X are finitely generated.

THEOREM C. Let G be a circle group, and let X be a cohomology manifold
over Z. Assume G has only a finite number of distinct isotropy subgroups.
Then F(G, X) is a cohomology manifold over Z.

If G is a toroid operating on X, a compact cohomology manifold over Z,
then the point set union of all the isotropy subgroups other than G is a finite
sum and cannot cover G. Hence this union fails to contain some one-pa-
rameter subgroup C. Clearly F(C, X) F(G, X), for if z F(C, X), then C
is contained in the isotropy subgroup of x and the latter must therefore be G.
Thus one obtains

COROLLAY I. Let G be a toroid operating on X, a compact cohomology
manifold over Z. Then F(G, X) is a cohomology manifold over Z.

COROLLARY 2. Let G be a toroid operating on X. Assume X is compact
and X =z Sn. Then F(G, X) =z S’nwith m n.

Proof. X z, S for all p by the argument in 2.2. Hence F(G, X)
with m, < n for each prime p, by Corollary C of 2.5. Suppose first that some
m0 is positive; then F(G, X) is connected, and therefore it is a cohomology
m-manifold over Z for some m. Hence m m and F(G, X) , S for
all primes p. Since the Z-cohoraology groups of F(G, X) are finitely gen-
erated, F(G, X) has the Z-cohomology groups of S. Hence F(G, X) = S".
If on the other hand, m 0 for all p, then we see easily that all m are equal,
and F(G, X) S or F(G, X) S-. Here F(G, X) S or F(G, X) S-.
We observe that the argument establishing Corollary 1 actually proves

the following:

COROLLR 3. Let G be a toroid operating on a cohomology manifold X oer
Z. Assume that G has only a finite number of distinct isotropy subgroups.
Then F(G, X) is a cohomology manifold over Z. For each prime p, there is
a p-subgroup of G with F(G, X) F(r, X).

The second assertio comes from the fact that no finite point-set union of
proper closed subgroups can cover all the p-subgroups of G.
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2.7. We shall be dealing with cohomology manifolds which resemble
euclidean space in varying degrees. For that reason we list here some par-
ticulars which will be used repeatedly in the sequel.

Let X be a locally compact space, and suppose X ’i. En, that is, H*(X, L)
is isomorphic to the compact(-support) L-cohomology groups of n-dimensional
euclidean space En. If n > 0, then X is not compact since He(X, L) O.
We denote the one-point compactification of X by X u . From the co-
homology sequence of the pair (X u , ) it follows at once that
Xu --S,n > 0. IfL Z and r is a p-group operating on X, then
r becomes a transformation group on X o o if we define r(oo) o. By

S if p is prime. Since F(r, X o oo)Theorem A of 2.5, F(r X o
contains , we are certain that m
least two points. That is, F(-, X) is not empty. If X z n > 0, then
we get X "-"z E by considering the cohomology sequence associated with
0 -- Z - Z -- Z -- 0. In this case too F(r, X) isnot empty forany p-group.

EIf X z E, then X z In this case, the sheaf of local Z-cohomology
groups is constunt on every connected component C of X and indeed
H:(C, Z) Z. Hence H’2(X, Z) s.Z: where s is the number of con-

[l)nnected components in X. Since H Z:) Z, it follows that s 1 and
EX is connected. If X =z and G is a toroid operating on X, then F(G, X)

is a cohomology manifold over Z [3] nd hence over Z:. By the preceding
argument each connected component of F(G, X) makes nonzero contribu-
tion to H*(F(G, X), Z). Since F(G, X) "z E for some m, we conclude
that F(G, X) is a connected m-cohomology manifold over Z. Indeed
F(G, X) "z E’" for all primes p. However we infer F(G, X) =z E only
after making some additional assumption such as Hc(F(G, X), Z) is finitely
generated. For in that case, H’2(F(G, X), Z) contains Z as a factor; from
this it follows that m, m for all primes p.
Suppose that X o is a cohomology n-manifold over Z. Then

S" The results of 2.5 and 2.6 can then be applied to yield that.Xu c --z
F(G, X) z E’, m < n, if G is toroid operating on X; also F(, X) z, E,
m < n, if r is a p-group with p prime and F(, X) is connected.

3. Star circle subgroups, fixers, and weights
Throughout this section, G denotes an r-dimensional toroid group operating

on locully compact finite-dimensional space X. If Y X and H is a sub-
group of G, we cll the intersection of M1 the isotropy subgroups H.v, y ranging
over Y, the fixer of Y in H. If - subgroup H is a fixer in G, then H is the
fixer of F(H, X). A point x e X is called n weight point if its isotropy (or
fixer (subgroup G is (r- 1)-dimensionul. The homomorphism G -- G/G is
called the weight of G associated with x. If H G, we denote by H+(G)
the intersection of all the fixers in G contuining H.

In order to have H+(G) contain H, we adopt the convention of regarding
G as the fixer of the empty subset of X. We denote by H*(G) the connected
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component of the identity in H+(G). When there is no danger of ambiguity,
we write H+ and H* for H+(G) and H*(G) respectively. A circle subgroup
H of G is called a star circle of G if H*(G) H.
IfH G, thenH+ 1 Gx, allxeF(H, X). HenceH+isthe fixer of

F(H,X) andF(H+,X) F(H,X). Also, (H+)+ H+. IfHandKare
fixers, then H n K is the fixer of F(H, X) u F(K, X).

This section is devoted to a discussion of fixer subgroups of toroids operating
on euclideanlike spaces. It is convenient to introduce the following definition.

DEFINITION. Let G be a toroid operating almost effectively on a space X.
We say that (G, X) satisfies Hypothesis F if

(1) X = E,
(2) G has only a finite number of distinct isotropy subgroups,
(3) H*(F(H, X), Z) =z E for any toroid subgroup H,
(4) F(r, X) =z E for any p-subgroup r and F(r, X) is connected.

We shall mean by "dim X" the Cohen-Wallace dimension of X over Z.

LEMMA 3.1. Let Y be an n-dimensional, locally compact (resp. and para-
compact) space whose Z-cohomology groups with compact (resp. closed) supports
vanish in all dimensions except n and possibly m, 0 <= m < n. Let - be a

finite group operating freely on Y and trivially on H*(Y, Z). Then
(1) H"-m+l(rr, HY(Y, Z)) A/qA, where q order rr, A H(Y, Z).
(2) /f rr (1) and H*(Y, Z) is free, then n m is odd (resp Hm(y, Z)

in place of H’(Y, Z).

Proof. We will carry out the proof for the case of cohomology with com-
pact supports. The argument in the case of closed supports is exactly the
same.

Let F denote the complex of Alexander-Cech Z-cochains with compact
supports. Then

H(rr, Y_) II(_Y_ ) H*(Y/rr, Z)

(see [8](c), p. 11-10). Moreover, there is a filtration for H@, _Y)with the E2
term of the associated spectral sequence given by

E ’q H’(r, Hqc(Y, Z)),

where p is the filtration degree and p + q is the total degree. Since Hq(Y, Z)
vanishes for q m or n, we get by a simple familiar argument (ibid., p. 10-05)
the exact sequence

"E H(, ) E
with ’E E2-n’n and "i E-m’m. Setting lc n, we obtain-- H(Y/rr, Z) -- H(r, H(Y, Z)) -- Hn-m+l(rr, H(Y, Z)) ---+ 0

using the fact that H+I(y/r, Z) 0 since Y/r is n-dimensional. Thus
H-m+(r, H(Y)) is isomorphic to the quotient of H(r, H(Y, Z)) by the
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image of H(Y/r, Z). This latter image can be identified with the image of
H(Y/rr, Z) in H(Y, Z) (ibid., pp. 12-03, 04) and is therefore qH(Y, Z)
where q order r. Hence Hn-’+l(r, H(Y, Z)) A/qA. (Note in par-
ticular that H2(Y.., Z) 0 if q 1 and A is not divisible by q.)
Suppose now r (1) and H*(Y, Z) is free. Then r contains a nontrivial

cyclic subgroup rr’ of order p. Applying the foregoing to r’, we have
Hn-m+i(r’, H(Y, Z)) A/pA O. From the well-known formula for the
cohomology groups of a cyclic group (see ibid., p. 3-07), we see that
H(rr’, H’(Y, Z)) vanishes for/ odd. Hence n m q- 1 is even; that is
n m is odd.
The next lemma is a direct application of Lemma 3.1. The second half

of the conclusion can be inferred from P. A. Smith’s theorem on commuting
transformations (Theorem D of 2.5) under special circumstances. However,
we shall require the full generality indicated below. See Cartan-Eilenberg,
Homological Algebra for related results and further details on cohomology of
groups and spectral sequences of a covering.

LEMMA 3.2. Let (G, X) satisfy Hypothesis F, and let H be a connected
subgroup of G. Then

(1) dim X dim F(H, X) is even.

(2) Any finite subgroup of G operating freely on X F(H, X) is cyclic.

Proof. Since H and its topological closure/7 have the same fixed point set,
and since/7 is a toroid, n.o generality is lost in asuming that H is a toroid.
By hypothesis, F(H, X) has finitely generated compact Z-cohomology groups.
Since X =z En, we get F(H, X) = E’, m < n (see 2.7). Set
Y X F(H, X). From the cohomology (with compact supports) se-

quence for a pair, we obtain at once that H*(Y, Z) is a free abelian group,
vanishing in all dimensions except n and m q- 1. By Lemma 3.1, n (m q- 1)
is odd. Consequently, n m is even. Also H:(Y, Z) Z and
U+(Y, Z) Z.

Suppose now that is a finite subgroup of the toroid G and that r operates
freely on Y. In order to prove that r is cyclic, it suflqces to show that r does
not contain Zp q- Zp for any prime p. Indeed, if r contained a subgroup
isomorphic to Zp q- Zp, then we would have H’-m(Z, q- Z,, Z) Z,,., by
Lemma 3.1 applied to Z, q- Z. But since Z, is a direct factor of Z q- Zp,
H-m(z, Z) Z, should be a direct factor of Hn-m(z, q- Z, Z) Z,
which is not the case. It follows that r is cyclic.

LEMMA 3.3. Let (G, X) satisfy Hypothesis F.
(1) G has a star circle subgroup if G # (1).
(2) 0 -< dim F(G, X) <= dim X- 2 dim G.

Then

Proof. We can assume that G # (1). By hypothesis, G has only a finite
number of (distinct) isotropy subgroups. Inasmuch as any fixer subgroup is
an intersection of isotropy subgroups, G has only a finite number of fixer sub-
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groups. Let M be a fixer subgroup of minimal positive dimension; let U be
the subgroup generated by all the fixer subgroups properly contained in M1,
the connected component of the identity in M. U is a finite group, and for
any elementg inM1- U, (g)+D M1. Hence F(g, X) F(M1,X). Let
s dim M and let p be a prime number not dividing the order of U. Let

be the subgroup of M1 of elements of order p. Then is isomorphic to
s.Z, the sum of s copies of Z. Moreover operates freely in

Y X F(M1, X).

Since F(M, X) =z with m < n and n m even, we find from the coho-
mology sequence of the pair (F(M, X), X) that H(Y, Z) Z for/c n,
m -t- 1 and 0 otherwise. Applying Lemma 3.2, we find that r is cyclic.
Hences 1 and Ml is a circle. SinceM’ M1, Ml is a star circle sub-
group of G.

In order to prove 0 =< dim F(G, X), we must prove that F(G, X) is not
empty. Inasmuch as G hs only finite number of isotropy subgroups,
F(G, X) F(, X) for some p-subgroups v with prime, by Corollary 3 of

S for some m, since2.6. By Smith’s Theorem A of 2.5 F(r, X ) z
X z Since keeps fixed, m 0. HenceF(,X ) con-
tains more than one point and F(, X) is not empty. Consequently, F(G, X)
is not empty.
Letr dimGandn dimX. We prove dim F(G, X) n 2rby

induction on r. We observe that for any subgroup P of G, G/P+ operates
effectively on F(P, X). In particular if P is a star circle, G/P is almost
effective on F(P, X). It is obvious from what has been said above that if
(G, X) satisfies Hypothesis F, then (G/P, F(P, X)) satisfies Hypothesis F.
Hence by the induction hypothesis,

dim F(G, X) dim F(G/P, F(P, X)) <= dim F(P, X) 2(r 1).

We know from Lemma 3.2 that dim X dim F(P, X) is a nonzero even
number. Hence 2 -<_ dim X dim F(P, X), and

dim F(G, X) <- dim F(P, X) 2r + dimX dim F(P, X) <= n 2r.

The proof of Lemma 3.3 is now complete.

THEOREM 3.1. Let G be an r-dimensional toroid operating almost effectively
n.on a locally compact (Hausdorff) space X. Assume that X t =z Then

(1) G is spanned by its star circle subgroups.
(2) 0 -<_ dim F(G, X) <= n- 2r.
(3) F(G,X) t =z Sm, m <__ n- 2r.

Proof. By Floyd’s Theorem E of 2.6, G has only a finite number of
isotropy subgroups on X u . By Corollary 1 and Theorem F of 2.6,
F(H, X u o has finitely generated integral cohomology groups. It follows
readily that (G, X) satisfies Hypothesis F. The assertion (2) now follows
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from Lemma 3.3. Assertion (3) follows from (2), Corollary 2 of 2.6, and
2.4. Also the existence of at least one star circle follows. We will establish
the existence of additional ones by an induction argument. But first we
take up separately the case r 2.

Let P be a star circle subgroup of a two-dimensional toroid, nd suppose
that G contains no other star circle. Then for all x X F(P, X), the
isotropy subgroup G is discrete. Let U be the subgroup generated by all
the G, x X F(P, X). Since G has only finite number of isotropy sub-
groups, U is finite. Let p be a prime number not dividing the order of U;
let r be the subgroup of G of elements of order p. Then r Z, - Zp and
n U (1). Also, for anyge, (g)+ P. HenceF(g, X) c F(P,X),

and r operates freely on X F(P, X). On the other hand by Lemma 3.2,
is cyclic. This contradiction establishes the existence of a star circle sub-

group distinct from P in the case r 2.
Now we assume inductively that Theorem 3.1 is valid if the dimension of

the toroid is less than r. Let Pr be a star circle subgroup of the r-dimensional
toroid G. Then G/P+ operates effectively on F(Pr, X) and G/Pr operates
almost effectively on F(Pr X). By Corollary 2 of 2.6, F(Pr X u z Sm.
Hence F(Pr, X) u = S and (G/P, F(P, X)) satisfies the hypotheses
of Theorem 3.1. Applying the induction hypothesis, G/P is spanned by
r 1 of its star circle subgroups Q,... Qr-.

Let p denote the natural homomorphism of G ontoG/Pr. Let Ti p-i(Qi),
i 1,...,r-- 1. Clearly

p(H+(G)) c (p(H)) + (p(G))

for any H c G. Hence p(T+(G)) is a finite extension of Q and T*.(G) T
(i 1,... n). Now each T is a two-dimensional toroid; we can therefore
assert the existence of a circle (distinct from P) subgroup P T with
P(T) P (i 1,..., n 1). Inasmuch as 7(G) T, we have
p *P (T) P (G), nd Pi is a star circle subgroup of G, i 1, r 1.
The circles P, P_, P obviously span G. Proof of the theorem is now
complete.

LEMMA 3.4. Let - be a p-group operating on a connected locally compact
nspace X with X = p prime and n 0 Assume that r operates trivially

on H:(X F(r, X), Z,). Then F(-, X) z, E with m <- n 2.

Proof. That F(r, X) "z, E with m < n follows at once from Smith’s
TheoremsAandBof2.5. It remains only to prove thatm n- 1. We
suppose m n 1, and we shall produce a contradiction.
From the cohomology sequence of the pair (X, F(r, X)) we find that

Hc(X F(-, X), Z) is Zv A- Z for ]c n and is zero for all other k. On
the other hand, the sheaf of local n-dimensional Zv-cohomology groups on X
is constant since H(X, Zv) 0 (see 2.4.2). Hence each connected com-
ponent of X F(r, X) has nonzero n-dimensional compact Zv-cohomology.
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Since the connected components of X F(r, X) are both open and closed,
it follows that X F(r, X) has exactly two connected components, say YI
and Y2. Moreover YI’zE (i 1, 2). Hence Yi =zE (i 1, 2).
The hypothesis on r implies that r keeps the connected components invari-
ant. Hence F(Tr, Y1) iS not empty, by 2.7. This contradicts the fact that
Y1 n F(r, X) is empty. Consequently m n 1.
Note. The above lemma asserts something that is not already contained

in the well known results of Floyd [6], and Liao [7] only in the case p 2.
For p 2, Floyd’s result sates that n m is even for any p-group; for
H*c(X, Z) finitely generated and r operating trivially on H:(X Z), Liao’s
result shows that n m is even when p 2. Whether n m is even under
the hypotheses of Lemma 3.4 remains open.

LEMMA 3.5. Let (G, X) satisfy Hypothesis F, let G be effective, and assume
moreover that the fixed point set of any star circle in G has codimension 2 in X.
Let P be a star circle in G. Set Y X F(P, X), X1 Y/P, and
G G/P; let Cp denote the orbit map of Y onto X1, and let O, denote the natural
homomorphism of G onto G1. Then

(1) P operates freely on Y.
(2) (G1, X) satisfies the hypothesis imposed on (G, X) in this lemma.
(3) Given a closed connected subgroup H in G, there exists a unique sub-

group H in G such that Op(H) H and F(H, Y) F(H1, X1); i addition,
0, maps H isomorphically and H H+ r 01(H1).

(4) P+ P (in G).
(5) O, maps the star circles of G other than P biuniquely onto the star circles

Of G1.

For notational convenience we denote 0 and by 0 and respectively in
the course of the proof of this lemma.

Proof of (1). Suppose for some x e Y, the isotropy subgroup Px (1).
Then Px contains a cyclic subgroup r of prime order p, p > 1. By Hy-

Em.pothesis F, F(r, X) =z, By Lemma 3.4, m -< n 2. Since
n--2F(r, X) D F(P, X) and F(P, X) z E we find that m n- 2. Hence

F(P, X) is open as well as closed in the connected set F(, X). Therefore
F(P, X) F(v, X) and + D P, a contradiction. Thus P (1) for all
x e X F(P, X), that is, P operates freely on X F(P, X).

Proof of (2). The space X F(P) is fibered by the circle P. The co-
homology of the fibre forms a constant system of coefficients over X. Thus
there is Gysin’s exact sequence- H It( Y) H-(xl) +,Hc (X) (X1)
where H 0 for s < 0. For k < n 1, we get H(Xl) H-2(X). Now
Hc(X) 0 since X1 has no compact connected components. Thus
H(X) 0 for k < n 1. For ]C > n 1, H(X1) 0 since X is (n 1)-
dimensional. From

H(X) H H- H"+c() (x,) (x)
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Hn-l vwe infer that \xi] Hc (Y). In short, X1 has the compact integral
cohomology of En-1. Inasmuch s small neighborhoods in Y are products
of neighborhoods in X by line segments, one cnn verify that X1 is co-
homology mnifold over Z just as Y is. Hence X =z En-i

Given any xX, we have -1x Py with yY and )y Py.
Since P is transitive on Py, - G -() P= o0 (G) G P. Hence G (G
where y cn be tken as any element in -x. Since G has only finite num-
ber of isotropy subgroups on Y, the same is true of G on X. Given now
nny toroid subgroup H of G it follows from 2.7 that F(H1, Xi) is connected.
Furthermore for ny x e F(H, X) nnd for nny y e-x, we hnve
O-(H) 0- H) O-(Hi)P. Since P operates freely on Y,
O-(H), n P (1) and thus o-i(Ui)y is isomorphic to H for ll
y e-F(H, Xi). Inasmuch as nearby closed isomorphic subgroups of
toroid coincide nd -iF(H X) is connected O-(Ht), is constant s y ranges
over -F(H1, X); we denote it by H. Then -iF(Hi, Xi) F(H, Y). The
converse inequality is obvious. Hence F(H, XO F(H, Y). The sub-
group H is unique for it is the connected component of the identity of the
fixer in 0-i(H) of -F(H1, Xi). Thus (3) is proved.

Still remaining to establish in our proof of (2) is that
() F(H, X) z E for every toroid subgroup H of G and that
(b) F(, X) z E nd is connected for every p-subgroup of G, p prime.

By the results in 2.7, we cnn ssert F(H, X) = E once we know that
H(F(H, Xt), Z) is finitely generated. In turn, this follows by Gysin’s se-

quence from the fact that F(H, X) is the finite-dimensiona.1 base space of
fibre mp with circles s fibre nd total space Y having finitely generated

compact integral cohomology groups. Thus () is proved.
Le be p-subgroup of G with p prime. For ny x e F(r, X) let

x 0-(v) n G where y is nny point of -ix. Since P is transitive on
4-x, we see that v P 0-i(v). Thus 0() v nnd x e F(v, Y); nlso
r is p-group. Consequently, F(1, X) is the union of ll subsets of the
form CF(, Y), with r p-group in G such that 0(r) By definition of
Hypothesis F, F(, X) z. E" with some m for every p-subgroup r of G,
and also F(r, X) is connected. Hence F(, X) is n orientable cohomology
m-manifold over Z,. It follows that F(, Y) is orientable over Z. Since

4 is n principnl fibering, with circle ns fibre on F(, Y), it follows that
F(, Y) is an orientble cohomology mnifold over Z,. Inasmuch as

F(, X) is a cohomology mnifold over Z,, and simultaneously finite
union of orientable connected cohomology mnifolds over Z, ech of its
connected components is n orientable cohomology mnifold over Z nd
makes nonzero contribution to H(F(1, X), Z). But F(t, X) z E
since X z, E- (by Smith’s result; see 2.7). It follows thnt X is connected
nd F( Xt) z E Proof of (2) is now complete

Proof of (4). In (3) we tke H Gi/p. Then we get G PH with
F(H, Y) F(H1, Xi). Since F(H1, Xi) is not empty by 2.7, it follows that
F(H, X F(P, X)) is not empty. Now consider P+ n H where P+ is the
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fixer of F(P, X) in G. if P+ n H (1), it has a subgroup r of prime order
p. Then F(r, X) keeps fixed the (n 2)-dimensional subspace F(P, X)
together with some points in X F(P, X). It follows by Lemma 3.4 that
r must operate trivially on X. If we assume therefore that G is effective on
X, it follovs that P+nH (1). KenceP+ P(P+nH) P, andP+is
connected.

Proof of (5). Let Q be a star circle subgroup of G distinct from P. By
hypothesis, F(Q, X) has codimension 2 in X. Since F(P, X) n F(Q, X)
F(PQ, X), its codimension is at least 4 by Lemma 3.3. Hence F(Q, Y) has
codimension 2 in Y. It follows at once that F(Q, Y) has codimension at
least 2 in X1.

Since F(O(Q), X1) F(Q, Y), F(Op(Q), X1) has codimension at least 2. On
the other hand F(O(Q), X1) =z Em, and it has nonzero even codimension in

X1. Hence F(O,(Q), X1) has codimension 2. Let H be the connected com-
ponent of the identity in O(Q)*. Then F(H1, X1) has codimension 2 in X1.
From the fact that G is effective on X, it follows immediately that G is effec-
tive on X. Then H operates freely on X1 F(H1, X1)---otherwise the
fixed point set of some of its elements would have to be of even codimension
less than 2 and greater than 0. Let s be the dimension of H1, and let p be
a prime number. Then H contains a subgroup isomorphic to sZ, which
operates freely on Y XI F(H, Xi). Since Y. has compact integral
cohomology in only two dimensions, sZ must be cyclic by Lemma 3.2.
Hence s 1 and O(Q)* o(Q). That is, O(Q) is a star circle subgroup of
G1"

Conversely, suppose Q is a star circle subgroup of G1. By part (3) above,
there is a unique circle subgroup Q in G with O(Q) Qt and rhF(Q, Y)
F(Q, X1). Since O(Q+) (o(Q)) +, Q+ o-(o(Q) +) 0-1(Q1). But
Q Q+ n 0-I(Q1) by part (3). Hence Q Q+ and Q is a star circle sub-
group in G. We can now assert that 0" maps the star circles of G biuniquely
onto the star circles of G1.

THEOREM 3.2. Let G be an r-dimensional toroid operating effectively on a

space X. Assume that X ,J =z S and that n 2r or 2r + 1. Then
(1) G has exactly r star circle subgroups and is their direct product.
(2) All the fixer subgroups are connected.
(3) For any two subgroups S and T, (ST)+ S+T+.
(4) G has exactly r weights, 2 fixer subgroups, and 2 isotropy subgroups.

Proof. We follow the notation of Lemma 3.5.

Proof of (1). Let P, P be r star circle subgroups which span G,
their existence being assured by Theorem 3.1. Let 01 0,, and inductively
define 0:, Or--i by the formula 0 0e-0_1, where Q o_I(P). Simi-
larly define spaces X and maps :X F(O(P), X) -- X+I by the in-
ductive definition:
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X1 X F(P1, X)/P1, 1 (P1,
Xk Xk_ F(Qk Xk-1)/Qk k 1, 2, ..., r 1,

where the operation of Ok(G) on Xk is induced from the operation of Ok_l(G)
on Xk_l. Clearly Ok(G) is isomorphic to the total group G/P P2"" Pk,
and by repeated applications of Lemma 3.5 (Ok(G), Xk) satisfies the hypothesis
of Lemma 3.5. Since Or_(G) is a circle, it has only one star circle subgroup.
By repeated applications of Lemma 3.5, part (5), we deduce that the group
Ok(G) has exactly r lc star circles (lc 1, r 1) and that G has ex-
actly r star circles.

In order to prove that G PI" P2 Pr as a direct product, it suffices
to showthat (PIP P) n Pk+l (1). By repeated application of Lemma
3.5, parts (3) and (5), 0k is an isomorphism of Pk+l onto Ok(P+). Since

PI"" P is in the kernel of 0k, we get PIP"" Pk n P+ (1).
Proof of (2). Let H be a fixer subgroup of G. Let H1 denote the con-

nected component of its identity element. By Theorem 3.1, HI is spanned
by its star circle subgroups. Since Hi* HI in G, any star circle in H1 is a
star circle in G. Thus H1 PIP P, where each P is a star circle in
G. Then

Os-(H+) (Os-(H1)) + (Os-l(])s)) - Os-l(Ps),
the last equality because star circle subgroups in O_(G) are fixers according
to Lemma 3.5, part (4). Hence (H1) + P P.... P. and H1 (H)+. Let
Y F(H1, X). Since H1 is normal in G, GY Y.
For any g G, let p(g) denote the restriction of g to Y. Then Y z S

by Theorem C of 2.5. From the definition of p it follows at once that the
kernel of p is (H1) + and that p(K+) p(K) + for any subgroup containing
H. Thus

p(H)+= p(H+) p(H) H/H.
That is, p(H) is a discrete fixer subgroup of p(G).
By Theorem 3.1, 0 =< dim F(H) <= n 2s, where n dim X

ands dimH. Hence dim Y_<- n- 2s <- 2dim. p(G) + 1. Sincep(G)
is effective on Y, we have, again by Theorem 3.1, that0 _-< dim Y 2 dim p(G).
Therefore dim Y 2 dim p(G) or 2 dim p(G) - 1.

In short, (p(G), Y) stisfies the hypotheses imposed on (G, X) in Theo-
rem 3.2, and p(H) is discrete. Thus assertion (2) of Theorem 3.2 has been
reduced to"

(2’) Any discrete fixer subgroup of G is trivial.

This assertion will follow from the following lemmas.

LEMMA 3.6. Let X be a locally compact space such that X ,J S, p
prime. Let G be an r-dimensional toroid operating almost effectively on X.
Then

(1) G has a star circle subgroup.
(2) 0 n- 2r.
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Proof. The proof of (1) is patterned after the proof of Lemma 3.4 with
P. A. Smith’s theorem on commuting transformations taking the place of
Lemma 3.1.
We let M be a minimal fixer subgroup of positive dimension in G; the con-

nected component of the identity in M is denoted by M1. By Corollary C
of 2.5, there is a maximal p-subgroup U of M1 such that F(U, X) F(MI, X).
Let H G/U+, and let N denote the image of M in H; set Y F(U, X).
Then H operates effectively on Y and F(n, Y) F(L, Y) for any element n
of order p in N. Let r denote the subgroup of all elements of order p in L.
We have r s.Zwhere s dimL dimM. By Smith’s TheoremD
of 2.5, r is cyclic. Hence s 1 and Mt is a star circle subgroup of G.
By Corollary C of 2.5 together with Lemma 3.5, we know that

t.mF(P, X u ) =zp with 0 -< m _< n 2 for any circle subgroup P in G.
By repeated application of assertion (1), we can find a sequence of r star
circles P, P2, Pr in the r groups G, G/P, C, which operate almost effec-
tively on the r compact Z,-cohomology manifolds X u , F(P, X u ),
F(P2, F(P1, X u )), Setting S0 X u , $1 F(P, X u ),
we have that F(G, X u F(P S_). By Lemma 3.5, F(P S_) zp
Sm with me __-< m_ 2. Also 0 -< me since F(P, S_). It follows
immediately that 0 -__< mr <= n 2r.
We now return to the proof of assertion (2’). Under the hypotheses of

Theorem 3.2, any discrete fixer subgroup is trivial. To see this, let r be a
nontrivial p-subgroup of a nontrivial discrete fixer subgroup of G. Then
F(r, Xu ) =z withm_< 2r- lbyLemma3.4. On the other hand
G/r+ is an r-dimensional toroid that is effective on F(r, X u );therefore
m => 2r by Lemma 3.6. This contradiction establishes assertion (2’). Proof
of (2) is now complete.

Proof of (3). By applying assertions (5) and (4) of Lemma 3.5, it follows
easily by induction that any product of star circles is a fixer.

Proof of (4). Since all the fixer subgroups are toroids, they can be described
as m products of the r star circle subgroups P, P,., 0 -< m -< r. There
are 2 such subgroups, and among these exactly r are (r 1)-dimensional.
Thus there are exactly r weights.

Let H be a fixer subgroup of G. It remains only to prove that H is the
isotropy subgroup of some point. Let H, H be the fixer subgroups
containing H. Since G/H is effective on F(H, X), F(H, X) is a closed
nowhere dense subset of F(H, X) for each i.

Set U F(H,X) (F(H1,X) u... uF(H,X). Clearly Uisanopen
dense subset of F(H, X). Also G H for u U. Hence H is an isotropy
subgroup.

4. Poincar duality for open Z-manifolds

4.1. The Poincar6 duality theorem has been proved for an orientable
paracompact n-dimensional cohomology manifold X over a field L by Wilder
[11]; in Borel’s formulation [1], it states that
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Hn-k(X, L) HomL (H(X, L), L).

In case X is an orientable paracompact n-dimensional cohomology manifold
over the integers Z, one means by Poincar6 duality the assertion that the
sequence

0 --+ Ext (H+(X, Z), L) --+ H-(X, L) --+ Horn (Hkc(X, Z), L) --+ 0

is exact for any coefficient group L. The proof of Borel in the case L a
field would yield Poincar6 duality in case L Z if only one knew that
the group of Alexander-Spanier cochains defining H(X, Z) were projective.
We prove here that Poincar duality holds for an orientable n-dimensional

cohomology manifold over Z if X is separable and HLC (i.e., small singular
cycles bound small singular chains). Inasmuch as singular cohomology
coincides with Alexander-Spanier cohomology in an HLC space (see [8] (a),
Ch. 16, p. 12), the usual sheaf argument (ibid., Ch. 17, p. 1) for
H(X, Z) n--(X, Z) combined with the Universal Coefficient Theorem
for/n_(X, L) will yield the Poincar Duality Theorem for X as soon as we
know that /(X, X x, Z) ik, Z, where xX, /(X, Y, L)
(resp. / (X, L)) denotes the relative (resp. absolute) singular homology
group of the pair (X, Y) (resp. space X) with coefficients in L, and i, is the
Kronecker symbol. Quite directly one sees that

(X, X x, Z) lira (/k(X, X U, Z); U x),

where U ranges over the open neighborhoods of x. We evaluate this direct
limit in the following subsections.

4.2. Since X is locally compact and separable, a compact neighborhood
in X is a compactum. If U is an open set in X with compact, then by
excision,

H*(X, X U, L) H*(F, F U, L),

where F is a compact neighborhood of U. For the compact pair, we have
the Universal Coefficient Formula

0 ---+ H(F, F U, Z) (R) L --+ H(F, F U, L)

--+ Tor (H+(F, F U, Z), L) --+ 0
for any coefficient group L.

Let U0 be an open neighborhood of x with 20 compact and such that the
subgroup H*(x, Uo, Z) of H*(X, X Uo, Z) exists (see Section 2). Let
U, U2, Ua be open neighborhoods of x with Ua U2 U U0 and such
that Iv_ maps H*(X, X U, Z) ontoH*(x, U+_, Z), i 1, 2, 3. Since
Ivv_ is an isomorphism on H*(x, U, Z), we see that H*(X, X U, Z)

If x is a separable compact cohomology manifold, we can prove Poincar6 duality
over Z without the added hypothesis that X is HLC. We have learned that these facts
about duality have been observed by F. Raymond and E. Dyer. By HLC we mean
that any small singular cycle bounds a small singular chain.
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H*(x, Ui, Z) + kernel Ivivi_l (direct) for i 1, 2, 3.
neighborhood of 0. Upon identifying Hk(X, X
Hk(F, F Ui, L), we get the commutative diagram

Let F be a compact
U, L) with

where the rows are exact, and the vertical maps are induced by Iviv_,
i 3, 2, 1. Since H(x, Uk, Z) i Z, the induced maps of the Tor terms
are zero; we find that

k. a H(X, X Ua L) 2(H (X, X U. Z) (R) L)

il o2(H(X, X U2 Z) (R) L)

il(kn Z (R) L)

=L (/c 0, 1,

for any coefficient group L. Thus H*(x, U, L) exists and X is an n-cohomol-
Hogy manifold over any coecient group L More precisely,I c(U L)

L.

4.3. Since Ui is an HLC space (i 1, 3), we may identify H(U, L)
with the singular cohomology group H(Ui, L). Taking for L, the group T
of reals modulo one, we have

Ivav (Ua, T) T, /c 0, 1,....

We denote by/(X, F, L), the derived group of the group of L-wlued singu-
lar cochains which vanish on singular chains in F.
On the other hand, if X F is n open set with compact closure in X,

the group/(X F, L) is cnonicMly isomorphic with the derived group of
the group of L-valued cochains which vanish on singular chains lying in some
neighborhood of F. Thus if W, V, U are open sets with compact closure
such that W V V U, we have the following commutative diagram"
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If U is a sufficiently small open neighborhood of x and if V is a sufficiently
small open neighborhood in U, it follows that zwv’* /(X, X W, T) tkn T.
Now the group of relative singular chains being projective, we can apply the
Universal Coefficient Formula to obtain

0 -- Ext (/k_l(X, X U, Z), T) -/(X, X U, T)-- Hom (/(X, X U, Z), T) -- 0.
Inasmuch as T is injective, we have

/(X, X U, T) =Hom (/ (X, X U, Z), T).
.$The map *wv being the transpose of the injection iwv of/k(X, X U, Z)

into/k(X, X W, Z), we can conclude that

iv (X, X U, Z) Z, k O, 1, ....
From this it follows at once that

/(X, X x, Z) li__m (/, (X, X U, Z); U z) a, Z.

Poincar6 duality for X now follows by the remarks in 4.1.
As an immediate consequence of Poincar6 duality, we have"

COROLLARY 4.1. Let X =z E". Assume that X is a separable HLC space.
Then Hk(X, L) o L, k O, 1, 2, ....

5. Maps of euclideanlike Z-manifolds
5.1. Let X be locally compact, pracompct spce which is clc over

coefficient group L.
If a is locMly finite cover of X, we denote by N(a) the nerve of a. The

support of simplex of N(a) is defined to be the intersection of the sets cor-
responding to the vertices of the simplex.

Let a nd/ be locally finite covers of X by closed sets with refining a.

With Floyd [5], we say that "ft strongly L-refines a up to n" if there exists
support enlarging projection r of N() into N(a) such that *, Hk(S, L) O,
k 1, n and * Hr (S, L) L for the support S of every simplex in
N(a). If a is ny cover of clc space over L nd n is ny integer, there exists
a refinement ft which strongly L-refines a up to n. If L Z,/ cn be selected
so as to strongly Z-refine a up to n, simultaneously for all integers q (see
2.1). If in additon X is separable, one can get simultaneous strong G-refine-
ments for all coefficient groups G, by proving that X is clc over G with the
method of 4.2. Two covers a and/ are sid to determine H*(X, L) up to n,

H(N(a) L) isomorphically onto H(X, L)if refines a nd if r maps r
1; 0, n, where r is support enlarging projection of N(/) into N(a)
and r. is the cnonicl map of H*(N(), L) into H*(X, L). In such case,
(a, #) is cglled determining L-pair tp to n. The basic fcts bout the re-
la,tion between strong refinements nd determining pirs were first proved by
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Floyd [5] in the case of homology with compact coefficient groups on com-
pact spaces. We call a cover open, closed, or compact according as its sets
are open, closed, or compact. Results of this same kind have also been ob-
tained by A. Grothendieck, Bull Soc. Math. France, vol. 84 (1956), pp. 1-7.
We require the following analogue for cohomology:

THEOREM 5.1. Let X be a locally compact, paracompact space. Let
O/1 O/2nq-1 b locally finite closed (resp. compact) covers of X with a strongly
refining c_1, i 1,..., 2n if- 1. Then Olnq_l, lX2nnUl determine H*(X, L)
(resp. H*c(X, L)) up to n.

A short proof can be obtained by comparing the E. terms of the spectral se-
quence of a cover (see [8] (c), p. 20-11) associated with the covers a0, a2+l

THEOnEM 5.2. Let X be a locally compact, paracompact, finite-dimensional
space such that Hk(X, Z) 0 for ]c O, H(X, Z) Z, and X is clc over Z.
Let Y be a lc-simple, for all to, finite polyhedron, and let f be a continuous map of
X into Y. Then f is homotopic to a constant.

Proof. Let af be the cover of X whose sets are the nonempty f-l(st y),
where St y denotes the star of a verex y in Y. Let K] denote the nerve of
ax, and let a denote the simplicial map of Kf into Y which sends each vertex
f-l(St y) of Ks into the vertex y of Y. Then is a monomorphism of K
into Y. Let be any continuous map of X into the geometric complex K
which is subordinate to ; that is, for any set A a and for any x A,
the image (x) is in St A. (Such a map can be constructed canonically from
any partition of unity subordinate to af .) Then f ( is homotopic
to f) since ((x)) and f(x) lie in the same simplex of Y for each x X.

Let n be the classical covering dimension of X. Since X is clc over Z,
there exists a sequence of n-dimensional locally finite coverings al, a2, an
such that for all integers q, (a, a+) is a Zq-determining pair of covers
(i 1, n 1) and 19/1 refines az. Let a0 af. Let r be a refinement
projection of K-- Ki-i (i 1,..., n) where Ki denotes the nerve of
ai(i 0, ,n). Set orlor2o--. ori, r0 ,andletK denote
the p-skeleton of K (i 0, n).
We prove by induction that rIK, the restriction of r to the/-skeleton

of K., is homotopic to a constant. This is true when i 0. For
H(X, Z) Z implies that X is connected. Since (Kz) can be described as
the smallest closed subcomplex of Y containing f(X), it follows that (Ks) is
connected. Hence IK is homotopic to a constant map, and the induction
is proved for i 0.

Let y0 e (Ks), and let C be the constant map of K into y0. We prove
that r is homotopic to C (i 0, n). This has been proved for i 0.
Suppose it is true for i -< ]c. Then rklK is homotopic to C. As is well
known, there exists an extension r of C to a map of K with r r. Since
rk r+l r r+l, it sutfices to prove that r r+l K+I C+t.
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Now re re+l maps Ke+l into the point y0, since re e) y0. Consider
now the deviation cohomology class 3’e+l"(re +, C+), which we denote
by hTM. It is n element of H+I(K+, f*+(Y)), where h+(Y) is the
local system of coefficients defined by the (k + 1)-dimensional homotopy
group of Y, and f*h+(Y) is the induced system on K+. By hypothesis,
Y is (k + 1)-simple. Hence h+l(Y) is constant system of coefficients, and
thus f*X+n(Y) is constant also. Inasmuch aS Ck+l C k+l where C is
the constant map of into y0, and inasmuch as

we obtain he+l He+lr+l (Ke, f*he+l(Y)); since (Ke, Ke+l) is a Zq-deter-
mining pair, ve know that

?l’e+l Hk+(Ke Zq) He+(X, Zq) for lc => O, q O, 1,2,....

From the exact cohomology sequence associated with the exact sequence
0 - Z - Z -- Zq -- 0, we find that He+I(x, Zq) 0 for all nonnegative
integers k and q. Since Y is a finite polyhedron, the homotopy groups of Y
are finitely generated, and therefore f*he+l(Y) is a direct sum of groups
Zql A- -f- Z. Consequently

Hk+(X,f*Xe+(Y)) H+(X, Zq) -4- A- H+(X, Za) 0

for all integers / >__ 0. It follows at once that the deviation h+ 0 and
re re+ Ce+ The induction proof is now complete.
Let be a map of X intoK that is canonically associated with a. partition

of unity subordinate to the cover a. Then rl r r is subordinate
to the cover az. Hence

f (1 71"n o) (o" T’I 71"n) o Tn o Cn o.
Since c is the constant map onto the point y0, the theorem is proved.

COROLLARY 5.3. Let X be a locally compact, paracompact finite-dimensional
space such that He(X, Z) 0 for k O, H(X, Z) O, and X is clc over Z.
Then any principal fibering with a compact connected Lie group as fibre and
X as base space is trivial.

Proof. Let n be the classical covering dimension of X, and let G be the
compact connected Lie group. Let Y be the base space of an n-universal
bundle N. As is well known, Y can be taken to be a finite polyhedron. Since
N is simply connected and G is connected, Y is simply connected. Any
principal G-bundle with X as base is induced by a map f of X into Y, and it is a
trivial bundle if and only if f is homotopic to a constant. The corollary is
now seen to follow immediately from the theorem above.

6. A cross section of the principal orbits

Suppose that G is an r-dimensional toroid operating effectively on a locally
compact space X such that X u oo =z S with n =< 2r -- 1. Then of course
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n 2r or 2r q- 1 by Theorem 3.1. If P is a star circle subgroup of G, then
G/P is almost effective on F(P, X). Consequently F(P, X) has codimension
at most 2, by Theorem 3.1. On the other hand, by 2.5, F(P, X) F(-, X)
for some p-subgroup of P with p prime; hence F(P, X) has codimension at
least 2 (by Lemma 3.6 or [6] or [7]). Thus F(P, X) has codimension 2 for
any star circle subgroup P.

Let U denote the subset of points of X whose isotropy subgroup consists
only of the identity. By repeated applications of Lemma 3.5 we can describe
U as X F(Pi, X) where P1, Pr is the set of star circle subgroups
of G. Thus U is a nonempty open dense subset of X which is fibered prin-
cipally by the orbits of G; that is the fibres are r-dimensional toroids.

Let denote the projection, and let B denote the base space. Then gain
by r repeted applications of Lemm 3.5, we see that B =z This
means by definition that B is a cohomology manifold over Z, and that
H*(B, Z) ***cv,- ,Z).

THEOREM. Let X, G, U, B continue to have the same meaning as above.
Assume moreover that X is HLC and separable. Then U B X G.

Proof. Clearly B is locally compact and separable. Hence it is para-
compact. Since G is a compact Lie group, the orbit fibering of U admits
local sections. From this one sees readily that B is an HLC space. Knowing
that B z we conclude by Poincard duality that

H(B, Z) H(En-r, Z) k,n-r Z, 0, 1,

We can therefore apply Corollary 5.3 to conclude that U B X G.
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