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EXTENSION THEOREMS FOR THE FOURIER TRANSFORM
ASSOCIATED WITH NONDEGENERATE QUADRATIC
SURFACES IN VECTOR SPACES OVER FINITE FIELDS

ALEX IOSEVICH AND DOOWON KOH

Abstract. We study the restriction of the Fourier transform to
quadratic surfaces in vector spaces over finite fields. In two di-
mensions, we obtain the sharp result by considering the sums

of arbitrary two elements in the subset of quadratic surfaces on

two dimensional vector spaces over finite fields. For higher di-
mensions, we estimate the decay of the Fourier transform of the

characteristic functions on quadratic surfaces so that we obtain

the Tomas–Stein exponent. Using incidence theorems, we also

study the extension theorems in the restricted settings to sizes of

sets in quadratic surfaces. Estimates for Gauss and Kloosterman
sums and their variants play an important role.

1. Introduction

Let S be a subset of Rd and dσ a positive measure supported on S. Then
one may ask that for which values of p and r does the estimate

(1.1) ‖f̂ dσ‖Lr(Rd) ≤ Cp,r ‖f ‖Lp(S,dσ) for all f ∈ Lp(S,dσ)

hold? This problem is known as the extension theorems. See, for example, [1],
[5], [7], [9], and the references contained therein on recent progress related to
this problem and its analogs. In the case of p = 2 in (1.1), Strichartz [6] gave a
complete solution when S is a quadratic surface given by S = {x ∈ Rd : Q(x) =
j}, where Q(x) is a polynomial of degree of two with real coefficients and j is a
real constant. In this paper, we study the analogous extension operators given
by quadratic forms in the finite field setting, building upon earlier work of
Mockenhaupt and Tao [3] for the paraboloid in vector spaces over finite fields.
We begin with some notation and definitions to describe our main results. Let
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Fq be a finite field of characteristic char(Fq) > 2 with q elements, and let Fd
q

be a d-dimensional vector space over Fq . Given a function f : Fd
q → C, d ≥ 1,

define the Fourier transform of f by the formula

f̂(m) = q−d
∑
x∈Fd

q

χ(−x · m)f(x),

where χ is a nontrivial additive character on Fq . When Fq = Z/qZ for some
prime q, we could take χ(t) = e2πit/q, and the calculations in the paper are
independent of the exact choice of the character. Recall that the Fourier
inversion theorem is given by

f(x) =
∑

m∈Fd
q

χ(x · m)f̂(m).

Also, recall that the Plancherel theorem says in this context that∑
m∈Fd

q

|f̂(m)|2 = q−d
∑
x∈Fd

q

|f(x)|2.

Let S ⊂ Fd
q be an algebraic variety in Fd

q . We denote by dσ normalized
surface measure on S defined by the relation

f̂ dσ(m) =
1

#S

∑
x∈S

χ(−x · m)f(x),

where #S denotes the number of elements in S. In other words,

q−d · σ(x) = (#S)−1 · S(x).

Here, and throughout the paper, E(x) denotes the characteristic function,
χE , of the subset E of Fd

q . We therefore, denote by E dσ the measure χE dσ.
For 1 ≤ p, r < ∞, define

‖f ‖p
Lp(Fd

q ,dx)
= q−d

∑
x∈Fd

q

|f(x)|p,

‖f̂ ‖r
Lr(Fd

q ,dm) =
∑

m∈Fd
q

|f̂(m)|r

and

‖f ‖p
Lp(S,dσ) =

1
#S

∑
x∈S

|f(x)|p.

Similarly, denote by ‖f ‖L∞ the maximum value of |f |.
Observe that the measure on the “space” variables, dx, is the normalized

measure obtained by dividing the counting measure by qd, whereas the mea-
sure on the “phase” variables, dm, is just the usual counting measure. These
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normalizations are chosen in such a way that the Plancherel inequality takes
the familiar form

‖f̂ ‖L2(Fd
q ,dm) = ‖f ‖L2(Fd

q ,dx).

We now define the nondegenerate quadratic surfaces in Fd
q in the usual way.

Let x = (x1, x2, . . . , xd) ∈ Fd
q . Denote by Q(x) a homogeneous polynomial in

Fq[x1, . . . , xd] of degree 2. Since char(Fq) > 2, throughout this paper, we can
express Q(x) in the form

Q(x1, x2, . . . , xd) =
d∑

i,j=1

aijxixj with aij = aji.

If the d × d matrix {aij } is invertible, we say that the polynomial Q(x)
is a nondegenerate quadratic form over Fq . For each j ∈ F∗

q = Fq \ {0}, the
multiplicative group of Fq , consider a set Sj in Fd

q given by

(1.2) Sj = {x ∈ Fd
q : Q(x1, . . . , xd) = j},

where Q(x) is a nondegenerate quadratic form. We call such a set Sj a
nondegenerate quadratic surface in Fd

q . For example, the sphere

Sd−1 = {x ∈ Fd
q : x2

1 + x2
2 + · · · + x2

d = 1}
is a nondegenerate quadratic surface in Fd

q .

1.1. Extension theorems and main results of this paper. Let 1 ≤
p, r ≤ ∞. We define R∗(p → r) to be the best constant such that the extension
estimate

‖f̂ dσ‖Lr(Fd
q ,dm) ≤ R∗(p → r)‖f ‖Lp(Sj ,dσ)

holds for all functions f on Sj . The main goal of this paper is to determine
the set of exponents p and r such that

R∗(p → r) ≤ Cp,r < ∞,

where Cp,r is independent of the size of Fq . We note that

(1.3) R∗(p1 → r) ≤ R∗(p2 → r) for p1 ≥ p2,

and
R∗(p → r1) ≤ R∗(p → r2) for r1 ≥ r2,

which will allow us to reduce the analysis below to certain endpoint estimates.
Let S be an algebraic variety in Fd

q with #S ≈ qk for some 0 < k < d. Here,
and throughout the paper, X � Y means that there exists C > 0, independent
of q such that X ≤ CY , and X ≈ Y means both X � Y and Y � X . Mock-
enhaupt and Tao [3] proved that R∗(p → r) is uniformly bounded (O(1) with
constants independent of the size of Fq) only if

(1.4) r ≥ 2d

k
and r ≥ dp

k(p − 1)
.
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For the detailed proofs of these assertions, see [3], pages 41–42.
Mockenhaupt and Tao also showed that R∗(2 → r) is uniformly bounded

whenever

(1.5) r ≥ 2d + 2
d − 1

if
S = {(x,x · x) : x ∈ F d−1

q },

an analog of the Euclidean paraboloid. Moreover, when d = 3 and −1 is not a
square in Fq , they improved the result in (1.5) by showing that for each ε > 0
there exists Cε > 0, such that

(1.6) R∗
(

8
5

→ 4
)

� 1 and R∗
(

2 → 18
5

)
≤ Cεq

ε.

If we replaced the paraboloid by a general nondegenerate quadratic sur-
face, the extension problem becomes more complicated, in part because the
Fourier transform of quadratic surfaces cannot be computed by simply con-
sidering the Gauss sums, as was pointed out by the authors in [3]. Using
generalized Kloosterman sums, we estimate the decay of the Fourier trans-
form of nondegenerate quadratic surfaces. As a result, we obtain Theorem 1
below which gives the same exponents as (1.5) (see Figure 1).

Theorem 1. Let Sj be a nondegenerate quadratic surface in Fd
q defined as

in (1.2). If d ≥ 2 and r ≥ 2d+2
d−1 , then

R∗(2 → r) � 1.

Figure 1. Tomas–Stein exponent and extension estimates
in a restricted setting to big sets (q

d+1
2 � #E � qd−1).
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In the case d = 2, Mochenhaupt and Tao [3] showed that the necessary con-
ditions for the boundedness of R∗(p → r) in (1.4) are also sufficient when S is
the parabola. Theorem 2 below implies that this also holds in the case when S
is a nondegenerate quadratic curve. To see this, observe from Corollary 10
that #S ≈ q for d = 2. Thus, the necessary conditions in (1.4) take the form

(1.7) r ≥ 4 and r ≥ 2p

p − 1
.

Combining (1.3) with Theorem 2 below, we see that

(1.8) R∗(p → 4) � 1 for 2 ≤ p ≤ ∞.

By direct estimation, we have

(1.9) R∗(p → ∞) � 1 for 1 ≤ p ≤ ∞.

Interpolating (1.8) and (1.9), we see that the necessary conditions given by
(1.7) are in fact sufficient as we claim once we establish the following result.

Theorem 2. Let d ≥ 2. Let Sj be the nondegenerate quadratic surface in
Fd

q defined as in (1.2). Then we have

R∗(2 → 4) � 1.

Observe that Theorem 2 is stronger in two dimensions. Theorem 1 and
Theorem 2 are the same in three dimensions, and Theorem 1 is stronger in
dimensions four and higher. Using incidence theory, we are able to improve
the exponents above in a restricted setting. See Theorem 3 and Figure 1 for
extension theorems restricted to big sets, and also see Theorem 4, Figures 2, 3,

Figure 2. Extension estimates in a restricted setting (1 �
#E � q

d−1
2 ).
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Figure 3. Extension estimates in a restricted setting (1 �
#E � q

d+1
2 , d > 5).

Figure 4. Extension estimates in a restricted setting (1 �
#E � q

d+1
2 , d < 5).

and 4 for extension theorems restricted to small sets. These results are analo-
gous to those obtained by Mockenhaupt and Tao as described in (1.6) above.
While the aforementioned authors use combinatorial methods to prove their
incidence theorems, we use Fourier analytic methods which eventually reduce
proofs to the estimates for Kloosterman and related sums.
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Theorem 3. Let Sj be a nondegenerate quadratic surface in Fd
q and E be

a subset of Sj . Then we have the following estimate:

(1.10) ‖Ê dσ‖L4(Fd
q ,dm) � ‖E‖L4/3(Sj ,dσ) for q

d+1
2 � #E � qd−1.

Theorem 4. Let Sj be a nondegenerate quadratic surface in Fd
q and E be

a subset of Sj . Then for every p0 ≥ 2, we have the following estimates:

(1.11) ‖Ê dσ‖Lr(Fd
q ,dm) � ‖E‖Lp(Sj ,dσ) for 1 � #E � q

d−1
2

where the exponents p and r are given by

p ≥ (6d − 2)p0 − 8d + 8
(3d − 5)p0 − 4d + 12

and r ≥ (6d − 2)p0 − 8d + 8
(3d − 3)p0 − 4d + 4

,

and

(1.12) ‖Ê dσ‖Lr(Fd
q ,dm) � ‖E‖Lp(Sj ,dσ) for 1 � #E � q

d+1
2 ,

where the exponents p and r are given by

p ≥ (6d − 10)p0 − 8d + 24
(3d − 9)p0 − 4d + 20

and r ≥ (6d − 10)p0 − 8d + 24
(3d − 7)p0 − 4d + 12

.

1.2. Outline of this paper. In Section 2, we shall introduce few theorems
related to bounds on exponential sums. As an application, we get the decay
of the Fourier transform of the characteristic functions on the nondegenerate
quadratic surfaces in vector spaces over finite fields (see Lemma 9 below). In
Section 3, we shall prove Theorem 1 which can be obtained from the results
of Lemma 9. In Section 4, the proof of Theorem 2 will be given. In the final
section, we prove Theorem 3 and Theorem 4.

2. Classical bounds on exponential sums and consequences

In this section, we shall estimate the decay of Fourier transform of the
characteristic functions on nondegenerate quadratic surfaces in Fd

q using the
classical bounds on exponential sums. To do this, we first introduce the well
known theorems for exponential sums. The following theorem is a well-known
estimate for Gauss sums.

Theorem 5. Let χ be a nontrivial additive character of Fq, and ψ a mul-
tiplicative character of F∗

q . It follows that

Ga(χ,ψ) =
∑
t∈F∗

q

χ(at)ψ(t) = O
(
q

1
2
)
, a ∈ F∗

q .
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Proof. If ψ = 1, the result is obvious, so we may assume that ψ is a non-
trivial multiplicative character of F∗

q . We have

|Ga(χ,ψ)|2 =
∑
t∈F∗

q

∑
s∈F∗

q

χ(at − as)ψ(ts−1)

=
∑
t∈F∗

q

ψ(t)
∑
s∈F∗

q

χ(ast − as)

=
∑
t∈F∗

q

ψ(t)
(

−1 +
∑
s∈Fq

χ(st − s)
)

= −
∑
t∈F∗

q

ψ(t) +
∑
t∈F∗

q

∑
s∈Fq

χ
(
(t − 1)s

)
= 0 + q = q.

Thus,
|Ga(χ,ψ)| = q

1
2

and the proof is complete. �
The following theorem gives us the relation between more general expo-

nential sums and Gauss sums in Theorem 5. For a nice proof, see [2].

Theorem 6. Let χ be a nontrivial additive character of Fq, n ∈ N, and ψ
a multiplicative character of F∗

q of order h = gcd(n, q − 1). Then∑
s∈Fq

χ(tsn) =
h−1∑
k=1

ψ−k(t)G(ψk, χ)

for any t ∈ F∗
q , where G(ψk, χ) =

∑
s∈F∗

q
ψk(s)χ(s).

The following theorem is well known as the estimation of the Salié sum,
often referred to as the twisted Kloosterman sum (see [4]).

Theorem 7. Let ψ be a multiplicative character of order two of F∗
q , q odd,

and a, b ∈ Fq. Then for any additive character χ of Fq,∣∣∣∣∑
t∈F∗

q

ψ(t)χ(at + bt−1)
∣∣∣∣ � q

1
2 .

The following is a classical estimate for Kloosterman sums due to Wey [8]
(see also [2]).

Theorem 8. If χ is a nontrivial additive character of Fq, and a, b ∈ Fq are
not both 0, then we have ∣∣∣∣∑

t∈F∗
q

χ(at + bt−1)
∣∣∣∣ � q

1
2 .
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With the same notation as above, we have the following estimate on the
Fourier transform of the characteristic function of a nondegenerate quadratic
surface.

Lemma 9. Let Fq, q odd, be a finite field. Then

|Ŝj(m)| =
∣∣∣∣q−d

∑
x∈Sj

χ(−x · m)
∣∣∣∣ � q− d+1

2

if m 
= (0, . . . ,0), and

Ŝj(0, . . . ,0) ≈ q−1.

From Lemma 9, we obtain the following corollary.

Corollary 10.
#Sj ≈ qd−1.

Proof. Using the second part of Lemma 9, we have

Ŝj(0, . . . ,0) = q−d
∑
x∈Fd

q

Sj(x) ≈ q−1,

and the result follows. �

2.1. Proof of Lemma 9. We first observe that

Ŝj(m) = q−d
∑
x∈Sj

χ(−x · m)

= q−d
∑
x∈Fd

q

χ(−x · m)q−1
∑
t∈Fq

χ
(
t
(
Q(x) − j

))
= q−1δ0(m) + q−d−1

∑
t∈F∗

q

χ(−jt)
∑
x∈Fd

q

χ
(
tQ(x) − x · m

)
,

where δ0(m) = 1 if m = (0, . . . ,0) and δ0(m) = 0 otherwise. To complete the
proof of Lemma 9, it suffices to show that for j 
= 0, m ∈ Fd

q ,

(2.1) D(j,m) � q
d+1
2

where

(2.2) D(j,m) =
∑
t∈F∗

q

χ(−jt)
∑
x∈Fd

q

χ
(
tQ(x) − x · m

)
.

Let
Wt(m) =

∑
x∈Fd

q

χ
(
tQ(x) − x · m

)
for m ∈ Fd

q , t ∈ F∗
q . We shall need the following theorem (see [2]).
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Theorem 11. Every quadratic form Q(x) =
∑d

i,k=1 aikxixk over Fq, q odd,
can be transformed into a diagonal form a1x

2
1 + · · · + adx

2
d over Fq by means

of a nonsingular linear substitution of indeterminates. Moreover, if Q(x) is a
nondegenerate quadratic form, then ai 
= 0 for all i = 1,2, . . . , d.

Using Theorem 11, we may write that for some m′ = (m′
1, . . . ,m

′
d) ∈ Fd

q ,
and ai ∈ F∗

q for all i = 1,2, . . . , d,

Wt(m) =
∑
x∈Fd

q

χ(t‖x‖a + x · m′),

where m′ ∈ Fd
q is determined by m ∈ Fd

q and ‖x‖a is given by

‖x‖a = a1x
2
1 + · · · + adx

2
d.

Since χ is an additive character of Fq , we have

Wt(m) =
d∏

k=1

∑
xk ∈Fq

χ(takx2
k + m′

kxk)

=
d∏

k=1

∑
xk ∈Fq

χ
(
tak

(
xk + (2tak)−1m′

k

)2 − (4tak)−1m′
k
2)

=
d∏

k=1

χ(−(4tak)−1m′
k
2)

∑
xk ∈Fq

χ(takx2
k).

Using Theorem 6, we see that∑
xk ∈Fq

χ(takx2
k) = ψ−1(tak)G(χ,ψ),

where ψ is a multiplicative character of F∗
q of order two and G(χ,ψ) =∑

s∈F∗
q
χ(s)ψ(s). Thus, we obtain that

Wt(m) = ψ−d(t)ψ−1(a1 · · · ad)(G(χ,ψ))d
d∏

k=1

χ(−(4tak)−1m′
k
2)(2.3)

= ψ−d(t)ψ−1(a1 · · · ad)(G(χ,ψ))dχ

(
t−1

d∑
k=1

−(4ak)−1m′
k
2

)
.

Combining above fact in (2.3) with (2.2), we obtain that

(2.4) D(j,m) = ψ−1(a1 · · · ad)(G(χ,ψ))d
∑
t∈F∗

q

χ(−jt + t−1M)ψ−d(t),

where M is given by

M =
d∑

k=1

−(4ak)−1m′
k
2
.
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Since ψ is a multiplicative character of order two, we see that ψ−d = 1 for d
even, and ψ−d = ψ for d odd. Therefore, in order to get the inequality in (2.1),
we can apply Theorems 5 and 7 to (2.4) for d odd. On the other hand, if d is
even, we can apply Theorems 5 and 8 to (2.4) because j 
= 0. This completes
the proof of Lemma 9.

3. Proof of the Tomas–Stein exponent (Theorem 1)

Theorem 1 is a result from Lemma 9 in this paper and Lemma 6.1 in [3].
We first introduce Lemma 6.1 in [3]. Let S be an algebraic variety in Fd

q with
a normalized surface measure dσ. We introduce the Bochner–Riesz kernel

K(m) := d̂σ(m) − δ0(m),

where δ0(m) = 1 if m = (0, . . . ,0) and δ0(m) = 0 otherwise. We need the
following theorem. For a nice proof, see Lemma 6.1 in [3].

Theorem 12. Let p, r ≥ 2, and Fd
q be a d-dimensional vector space over

Fq. Suppose that

‖K‖L∞(Fd
q ,dm) = ‖d̂σ − δ0‖L∞(Fd

q ,dm) � q− d̃
2

for some 0 < d̃ < d. Then for any 0 < θ < 1, we have

R∗
(

p → r

θ

)
� 1 + R∗(p → r)θq− d̃(1−θ)

4 .

We are now ready to prove Theorem 1. Recall that we are working with a
nondegenerate quadratic surface Sj in Fd

q . We now check that

(3.1) ‖K‖L∞(Fd
q ,dm) � q− (d−1)

2 .

In fact, if m = (m1,m2, . . . ,md) 
= (0, . . . ,0) then we have

K(m) = d̂σ(m) = (#Sj)−1
∑
x∈Sj

χ(−x · m)

= (#Sj)−1
∑
x∈Fd

q

χ(−x · m)Sj(x)

= (#Sj)−1qdŜj(m).

From Corollary 10 and Lemma 9, we have

(#Sj) ≈ qd−1 and |Ŝj(m)| � q− d+1
2 for m 
= (0, . . . ,0).

We therefore, obtain that

|K(m)| � q− d−1
2 for m 
= (0, . . . ,0).

On the other hand, we have

K(0, . . . ,0) = d̂σ(0, . . . ,0) − 1 = 0.
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Thus, the inequality in (3.1) holds. We now claim that

(3.2) R∗(2 → 2) ≈ q
1
2 .

To justify above claim, we shall show that

(3.3) ‖f̂ dσ‖L2(Fd
q ,dm) ≈ q

1
2 ‖f ‖L2(Sj ,dσ)

for all functions f on Sj . We first note that

|f̂ dσ(m)|2 = (#Sj)−2
∑
x∈Sj

χ(−x · m)f(x)
∑
y∈Sj

χ(y · m)f(y)

= (#Sj)−2
∑

x,y∈Sj

χ
(
(y − x) · m

)
f(x)f(y).

We have

‖f̂ dσ‖L2(Fd
q ,dm) =

( ∑
m∈Fd

q

|f̂ dσ(m)|2
) 1

2

= (#Sj)−1

( ∑
x,y∈Sj

∑
m∈Fd

q

χ
(
(y − x) · m

)
f(x)f(y)

) 1
2

= (#Sj)−1q
d
2

( ∑
x∈Sj

|f(x)|2
) 1

2

= (#Sj)−1q
d
2 (#Sj)

1
2 ‖f ‖L2(Sj ,dσ) ≈ q

1
2 ‖f ‖L2(Sj ,dσ).

In the last equality, we used the fact that #Sj ≈ qd−1. Thus, our claim in
(3.2) is proved. Using Theorem 12 with (3.1) and (3.2), we obtain that for
any 0 < θ < 1,

R∗
(

2 → 2
θ

)
� 1 +R∗(2 → 2)θq− (d−1)(1−θ)

4

� 1 + q
θ
2 q− (d−1)(1−θ)

4 .

Taking 0 < θ ≤ d−1
d+1 , we have

R∗
(

2 → 2
θ

)
� 1.

Thus, Theorem 1 is proved with r = 2
θ .

4. Proof of the L2 → L4 estimate (Theorem 2)

To prove Theorem 2, we make the following reduction.
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Lemma 13. Let Sj be a nondegenerate quadratic surface in Fd
q defined as

in (1.2). Suppose that for any x ∈ (Fd
q)

∗ = Fd
q \ (0, . . . ,0), we have∑

{(α,β)∈Sj ×Sj :α+β=x}
1 � qd−2.

Then for d ≥ 2,
R∗(2 → 4) � 1.

Proof. We have to show that

‖f̂ dσ‖L4(Fd
q ,dm) � ‖f ‖L2(Sj ,dσ)

for all functions f on Sj . Using Plancherel, we have

‖f̂ dσ‖L4(Fd
q ,dm) = ‖f̂ dσf̂ dσ‖

1
2
L2(Fd

q ,dm)

= ‖f dσ ∗ f dσ‖
1
2
L2(Fd

q ,dx)

and so it suffices to show that

‖f dσ ∗ f dσ‖2
L2(Fd

q ,dx) � ‖f ‖4
L2(Sj ,dσ).

It follows that

‖f dσ ∗ f dσ‖2
L2(Fd

q ,dx)

= q−d|f dσ ∗ f dσ(0, . . . ,0)|2 + ‖f dσ ∗ f dσ‖2
L2((Fd

q)∗,dx).

Thus, it will suffice to show that

(4.1) q−d|f dσ ∗ f dσ(0, . . . ,0)|2 � ‖f ‖4
L2(Sj ,dσ)

and

(4.2) ‖f dσ ∗ f dσ‖2
L2((Fd

q)∗,dx) � ‖f ‖4
L2(Sj ,dσ).

We first show that the inequality in (4.1) holds. We have

|f dσ ∗ f dσ(0, . . . ,0)| ≤
∑

m∈Fd
q

|f̂ dσ(m)|2

= (#Sj)−2qd
∑
x∈Sj

|f(x)|2

= (#Sj)−1qd‖f ‖2
L2(Sj ,dσ) ≈ q‖f ‖2

L2(Sj ,dσ).

Thus, the inequality in (4.1) holds because d ≥ 2. It remains to show that the
inequality in (4.2) holds. Without loss of generality, we may assume that f is
positive. Using the Cauchy–Schwarz inequality, we see that

f dσ ∗ f dσ(x)(4.3)

= (#Sj)−2qd
∑

{(α,β)∈Sj ×Sj :α+β=x}
f(α)f(β)
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≤ (#Sj)−2qd

( ∑
{(α,β)∈Sj ×Sj :α+β=x}

1
) 1

2

×
( ∑

{(α,β)∈Sj ×Sj :α+β=x}
f2(α)f2(β)

) 1
2

= (dσ ∗ dσ)
1
2 (x)(f2 dσ ∗ f2 dσ)

1
2 (x).

From our hypothesis, and the fact that #Sj ≈ qd−1, we obtain that for x 
=
(0, . . . ,0),

(4.4) dσ ∗ dσ(x) ≈ q−d+2
∑

{(α,β)∈Sj ×Sj :α+β=x}
1 � 1.

From Fubini’s theorem, we also have

(4.5) ‖f2 dσ ∗ f2 dσ‖L1(Fd
q ,dx) = ‖f ‖4

L2(Sj ,dσ).

Using Hölder inequality, and estimates (4.3), (4.4), and (4.5), we obtain that

‖f dσ ∗ f dσ‖2
L2((Fd

q)∗,dx) = ‖(f dσ ∗ f dσ)2‖L1((Fd
q)∗,dx)

≤ ‖(dσ ∗ dσ) · (f2 dσ ∗ f2 dσ)‖L1((Fd
q)∗,dx)

≤ ‖dσ ∗ dσ‖L∞((Fd
q)∗,dx)‖f2 dσ ∗ f2 dσ‖L1((Fd

q)∗,dx)

� ‖f ‖4
L2(Sj ,dσ).

Thus, the inequality in (4.2) holds and so the proof of Lemma 13 is complete.
�

We now prove Theorem 2. By Lemma 13, it is enough to show that for
any x ∈ (Fd

q)
∗, d ≥ 2,

(4.6)
∑

{(α,β)∈Sj ×Sj :α+β=x}
1 � qd−2,

where Sj is the nondegenerate quadratic surface in Fd
q . Using Theorem 11,

we may assume that the nondegenerate quadratic surface in Fd
q is given by

Sj = {y ∈ Fd
q : a1y

2
1 + · · · + ady

2
d = j 
= 0}

for all ak 
= 0, k = 1,2, . . . , d. Therefore, the left-hand side of the equation in
(4.6) can be estimated by the number of common solutions α = (α1, . . . , αd)
in Fd

q of the equations

a1α
2
1 + · · · + adα

2
d = j,(4.7)

2a1x1α1 + · · · + 2adxdαd =
d∑

k=1

akx2
k
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for x = (x1, . . . , xd) 
= (0, . . . ,0) and ak 
= 0 for all k = 1,2, . . . , d. Note that
2akxk 
= 0 for some k = 1,2, . . . , d because x 
= (0, . . . ,0) and ak 
= 0. Thus,
a routine algebraic computation shows that the number of common solutions
of equations in (4.7) is less than equal to 2qd−2. This means that the inequality
in (4.6) holds and so we complete the proof of Theorem 2.

5. Incidence theorems and the proofs of Theorem 3 and
Theorem 4

The purpose of this section is to develop the incidence theory needed to
prove both Theorem 3 and Theorem 4.

Theorem 14. Let Sj be a nondegenerate quadratic surface in Fd
q defined

as before. If E is any subset of Sj , then we have∑
{(x,y)∈E×E:x−y+z∈Sj }

1 � (#E)2q−1 + (#E)q
d−1
2

for all z ∈ Fd
q where the bound is independent of z ∈ Fd

q .

Proof. Fix E ⊂ Sj . For each z ∈ Fd
q , consider∑

{(x,y)∈E×E:x−y+z∈Sj }
1

=
∑

(x,y)∈Fd
q ×Fd

q

E(x)E(y)Sj(x − y + z)

=
∑

(x,y)∈Fd
q ×Fd

q

E(x)E(y)
∑

m∈Fd
q

χ
(
m · (x − y + z)

)
Ŝj(m)

= q2d
∑

m∈Fd
q

|Ê(m)|2χ(m · z)Ŝj(m) = I + II ,

where
I = q2d|Ê(0, . . . ,0)|2Ŝj(0, . . . ,0)

and
II = q2d

∑
m �=(0,...,0)

|Ê(m)|2χ(m · z)Ŝj(m).

Using Lemma 9 and Plancherel, we obtain that

I ≈ (#E)2q−1,

and

|II | � q2dq− d+1
2

∑
m �=(0,...,0)

|Ê(m)|2

≤ q2dq− d+1
2 q−d

∑
x∈Fd

q

|E(x)|2 = q
d−1
2 (#E).
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This completes the proof. �
Corollary 15. Let Sj be a nondegenerate quadratic surface in Fd

q and E
be any subset of Sj . Then we have∑

{(x,y,z,s)∈E4:x+z=y+s}
1 � min

{
(#E)3, (#E)3q−1 + (#E)2q

d−1
2

}
.

Proof. Since E is a subset of Sj , we have∑
{(x,y,z,s)∈E4:x+z=y+s}

1 ≤
∑
z∈E

∑
{(x,y)∈E2:x−y+z∈Sj }

1.

Thus, Corollary 15 is the immediate result from Theorem 14 and the obvious
fact that ∑

{(x,y,z,s)∈E4:x+z=y+s}
1 ≤ (#E)3. �

5.1. Proof of Theorem 3. In order to prove Theorem 3, we first expand
the left-hand side of the inequality in (1.10). It follows that

‖Ê dσ‖L4(Fd
q ,dm) =

( ∑
m∈Fd

q

|Ê dσ(m)|4
) 1

4

(5.1)

=
( ∑

m∈Fd
q

∣∣∣∣ 1
#Sj

∑
x∈Sj

χ(−x · m)E(x)
∣∣∣∣4) 1

4

=
1

#Sj

( ∑
x,y,z,s∈E⊂Sj

∑
m∈Fd

q

χ
(
(x − y + z − s) · m

)) 1
4

=
q

d
4

#Sj

( ∑
{(x,y,z,s)∈E4:x+z=y+s}

1
) 1

4

.

Since q
d+1
2 � #E � qd−1 from the hypothesis, we use Corollary 15 to obtain

that

(5.2)
∑

{(x,y,z,s)∈E4:x+z=y+s}
1 � (#E)3q−1.

Combining (5.1) and (5.2), we have

(5.3) ‖Ê dσ‖L4(Fd
q ,dm) � q

d−1
4 (#E)

3
4

#Sj
.

On the other hand, by expanding the right-hand side of the inequality in
(1.10), we see that

(5.4) ‖E‖
L

4
3 (Sj ,dσ)

=
(

#E

#Sj

) 3
4

.
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Since #Sj ≈ qd−1 by Corollary 10, comparing (5.3) with (5.4) yields the in-
equality in (1.10) and completes the proof.

5.2. Proof of Theorem 4. In order to prove Theorem 4, we need the
following lemma.

Lemma 16. Let Sj be a nondegenerate quadratic surface in Fd
q and E be a

subset of Sj . For p0 ≥ 2, we have the following estimates:

‖Ê dσ‖L4(Fd
q ,dm) � q

−3d+5
8 + d−1

2p0 ‖E‖Lp0 (Sj ,dσ) for 1 � #E � q
d−1
2 ,(5.5)

‖Ê dσ‖L4(Fd
q ,dm) � q

−3d+9
8 + d−3

2p0 ‖E‖Lp0 (Sj ,dσ) for q
d−1
2 � #E � q

d+1
2 ,(5.6)

and

(5.7) ‖Ê dσ‖L4(Fd
q ,dm) � q

−3d+9
8 + d−3

2p0 ‖E‖Lp0 (Sj ,dσ) for 1 � #E � q
d+1
2 .

Proof. We first prove the inequality in (5.5). Since 1 � #E � q
d−1
2 , using

Corollary 15 we have ∑
{(x,y,z,s)∈E4:x+z=y+s}

1 � (#E)3.

Combining this with the fact in (5.1), we obtain that

(5.8) ‖Ê dσ‖L4(Fd
q ,dm) � q

d
4 (#E)

3
4

#Sj
.

As before, we note that

(5.9) ‖E‖Lp0 (Sj ,dσ) ≈
(

#E

#Sj

) 1
p0

.

From (5.8) and (5.9), it suffices to show that for every 1 � #E � q
d−1
2 ,

(5.10)
q

d
4 (#E)

3
4 − 1

p0

(#Sj)
1− 1

p0

� q
−3d+5

8 + d−1
2p0

Since p0 ≥ 2 and #Sj ≈ qd−1, the inequality in (5.10) follows by a direct cal-
culation. Thus, the inequality in (5.5) holds. In order to prove the inequality
in (5.6), just note from Corollary 15 that since q

d−1
2 � #E � q

d+1
2 , we have∑

{(x,y,z,s)∈E4:x+z=y+s}
1 � (#E)2q

d−1
2 ,

and then follow the same argument as in the proof of the inequality (5.5).
The inequality in (5.7) follows from the inequalities in (5.5) and (5.6) because

q
−3d+5

8 + d−1
2p0 � q

−3d+9
8 + d−3

2p0 , for p0 ≥ 2.

Thus, the proof of Lemma 16 is complete. �



628 A. IOSEVICH AND D. KOH

We now return to proof of Theorem 4. From (3.3), recall that we have

(5.11) ‖Ê dσ‖L2(Fd
q ,dm) ≈ q

1
2 ‖E‖L2(Sj ,dσ)

for all characteristic functions E(x) on Sj . Therefore, Theorem 4 can be
obtained by interpolating (5.11) and the inequalities in Lemma 16.
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