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AUTOMORPHISMS OF C(K)-SPACES AND EXTENSION OF
LINEAR OPERATORS

N. J. KALTON

ABSTRACT. We study the class of separable (real) Banach spaces
X which can be embedded into a space C(K') (K compact metric)
in only one way up to automorphism. We show that in addition
to the known spaces co (and all it subspaces) and ¢; (and all
its weak”-closed subspaces) the space c¢o(¢1) has this property.
We show on the other hand (answering a question of Castillo
and Moreno) that £, for 1 < p < oo fails this property. We also
show that ¢, can be embedded in a super-reflexive space X so
that there is an operator T': £, — C(K) which has no extension,
answering a question of Zippin.

1. Introduction

Throughout this paper, all Banach spaces will be real. It is well known
that injective Banach spaces must be nonseparable, and classical results of
Goodner [15], Nachbin [36], and Kelley [26] classify isometrically injective
Banach spaces as spaces of continuous functions C(K) where K is extremally
disconnected. On the other hand, ¢ is separably injective (Sobczyk [42]) and
it is a deep result of Zippin [44] that ¢y is the only separably injective space.

The problem of determining conditions so that operators with range in an
arbitrary C(K)-space can be extended has a long history dating back to the
memoir of Lindenstrauss [28]. The general problem is to determine conditions
on a pair (E,X) where E is a subspace of X so that every bounded linear
operator T : E — C(K) can be extended to an operator T : X — C(K). Under
these hypotheses, we say that (F,X) has the C-extension property; if we
can guarantee ||T|| < A||T|| we will say that (E,X) has the (\,C)-extension
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property. If we restrict attention to the case when X is separable, then we may
consider the case K is a compact metric space and indeed we may restrict to a
special case such as K = [0, 1] without loss of generality by Miljutin’s theorem
[35], [43].

In 1971, Lindenstrauss and Pelczynski [29] show that for every subspace
E of ¢g, (E,cp) has the ((1+ ¢),C)-extension property for every € > 0. Later
Zippin [45] showed for every subspace E of ¢, for 1 < p < co the pair (E, /)
has the (1,C)-extension property; then Johnson and Zippin [17] showed that
if E is a weak®-closed subspace of ¢1 = ¢ then (E,¢;) has the C-extension
property. However, there are subspaces E of £1 so that the pair (E, /) fails
the C-extension property; see [19] for results on a partial converse to the
Johnson—Zippin result. See also [22] for more recent results on, for example,
Orlicz sequence spaces. However, for most spaces very little is known; see the
handbook article of Zippin [46] for a full discussion of open problems in the
area.

In this paper, we will also consider automorphism problems. In [31], Lin-
denstrauss and Rosenthal showed that if two subspaces X,Y of ¢y of infinite
codimension are linearly isomorphic then there is an automorphism U of ¢ so
that U(X) =Y. Thus, there is essentially only one way (up to automorphism)
to embed a Banach space into ¢g. They also proved a dual result for quo-
tients of 1 and some analogous results for /.. The Lindenstrauss—Rosenthal
theorem for ¢y depends heavily on separable injectivity. Thus, one cannot
expect a similar result for C[0, 1]. However, it follows from the Lindenstrauss—
Pelczyriski theorem cited above that if X and Y are isomorphic subspaces of
C[0,1] and X is isomorphic also to a subspace of ¢o then there must be an
automorphism of C[0,1] mapping X to Y. Let us call a separable Banach
space X C-automorphic if whenever X; and X, are subspaces of C[0,1] (or
any C(K) when K is uncountable and compact metric) with X; ~ Xo &~ X
then there is an automorphism mapping X; to Xs (i.e., there is only one way
to embed X into C[0,1] up to automorphism).

Recently, Castillo and Moreno [10] proved a result that showed this problem
is strongly connected with extension problems and asked specifically if ¢
is C-automorphic. We will slightly improve the Castillo-Moreno result by
showing that a separable Banach space X is C-automorphic if and only if
it has the universal separable C-extension property, i.e., if whenever Y is
any separable Banach space containing X then (X,Y’) has the C-extension
property.

Of course ¢p and all its subspaces are C-automorphic by [29]. Recently
in [22] we showed that ¢; and all its weak*-closed subspaces have the universal
separable C-extension property (with constant 1+¢), and hence these are also
C-automorphic.

In this paper, we study the class of C-automorphic spaces and give some
more examples. We show, for example, that co(¢1) is also C-automorphic.
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We then study the spaces £, for 1 <p < oo and give necessary and sufficient
conditions on a separable Banach space X containing ¢, so that (¢,,X) has
the C-extension property. Based on these conditions, we are able to show
that if 1 <p < oo then ¢, fails to be C-automorphic (answering the question
of Castillo and Moreno). Indeed, we also answer a question of Zippin [46] by
showing that £, can be embedded in a super-reflexive space with an uncondi-
tional basis so that (¢,, X) fails to have the C-extension property. This is the
first example of a separable super-reflexive space with a subspace where one
cannot extend C(K)-valued operators.

On the other hand, we show that if £, is embedded in a UMD-space X
with an unconditional basis (or a UFDD) then (¢,,X) has the C-extension
property. The appearance of the UMD-condition here is quite mysterious.

Terminology. We use standard notation for Banach space theory. We will
assume all Banach spaces are real (although our results can easily be ex-
tended to the complex case). We write (UFDD) for an unconditional finite-
dimensional decomposition. We write X = £,,(F,,) with (F},) finite-dimensional
to mean that (F,,)52, is a (UFDD) of X such that

n=1

n

>

k=1

p n
:Z”fkup, flGFl,'-'foEFn~
k=1

(Thus, we regard the (F),) as subspaces of X.) We write Z;’;nﬂ F; for the
linear span of (F})52,, 4.

We recall that a Banach space X has the approximation property if for every
compact set K C X and € > 0 there is a finite-rank operator 7' : X — X with
[Tz — x| <e for z € K. If T can additionally be chosen with ||T|| <1 then X
is said to have the metric approzimation property (MAP). If X is separable,
then it has (MAP) if and only if there is a sequence of finite-rank operators
T, : X — X with lim, o ||T|| =1 and lim,, oo Tpx =z for € X. X is said
to have the unconditional metric approzimation property (UMAP) if there is
a sequence of finite-rank operators T, : X — X with lim, . || —2T,]| =1
and lim, o, T,x = for € X. Note that (UMAP) implies (MAP).

A Banach space X is a UMD-space (for unconditional martingale differ-
ences) if for some (equivalently every) 1 < p < oo there is a constant C =
C(p,X) so that for any X-valued martingale (My)}}_, we have (if dMy= M,
and then de = Mk — Mk—1)7

(E i a; dM]
7=0

These spaces were introduced by Burkholder [7].

p\ 1/p
) < C max |aj|(E||M,|[P)*?, ai,...,a, €R.

0<j<n
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2. Preliminaries

If X is a Banach space, then an enlargement of X is a Banach space Y
containing X, or more formally, a Banach space Y and an isometric embedding
J: X =Y. IfY is separable, we refer to Y as a separable enlargement (of
course X must also be separable for this to be possible). We shall need some
facts about separable enlargements.

ProOPOSITION 2.1. Let J;: X — Y1 and Jy: X — Yy be two separable en-
largements of X. Then there is a separable Banach space Z and isometries
J3s: Y1 = Z and Jy: Yo — Z so that the following diagram commutes:

/\
\/

Proof. As pointed out by the referee, this is the standard push-out con-
struction. We define Z to be the quotient of Y; @1 Y5 by the subspace
G= {(Jlx —Jgac) x € X}. Let Q be the quotient map and Ry : Y1 — Y] @ Vs
and Rs : : Yo — Y] @1 Ys be the canonical embeddings. Then let J3 = QR;
and Jy = QRQ. We leave the details to the reader. O

Z is thus a common enlargement of Y7 and Y. We may regard Z as a
separable Banach space so that Z D Y; D X for j =1,2. We will use this
viewpoint in future.

PrROPOSITION 2.2. Let X be a separable Banach space and let Y, be a
sequence of separable enlargements of X. Then there is a separable Banach
space Z so that Z DY, D X for every n.

Proof. This follows by induction: let Zs be a common enlargement of Y7, Y5
and then inductively let Z, be a common enlargement of Z,,_1,Y,, for n > 3.
Finally, let Z be the completion of | J, -, Z,. O

ProOPOSITION 2.3. Let X be a separable Banach space and suppose E is
a closed subspace and T : E — X is a bounded operator. Then there is a
separable enlargement Z of X and a bounded operator T : Z — Z with ||T| =
|T|| and T =T

Proof. Let X¢g =X and then by embedding X in /. find a separable en-
largement X; of X so that T': F — X has an extension T; : Xg — X; with
|71 ]| = ||T||. Continuing by induction, we find an increasing sequence of sep-
arable Banach spaces (X,,) and operators T, : X,,_1 — X,, with ||T,| = ||T|
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and Ty |x, , = Ty—1 for n > 2. Let Z be the completion of J°° , X,, and let T
be the induced operator. O

Let us also note that if X is only isomorphically embedded in a super-
space Y then Y can always be renormed to be an enlargement of X.

Let X be a Banach space and suppose F is a closed subspace. Then we
say that (F,X) has the (linear) (A,C)-extension property if every bounded
operator T : E — C(K), where K is a compact Hausdorff space, has an ex-
tension T : X — C(K) with | T|| < A||T||. (E,X) has the (linear) C-extension
property if every bounded operator T : E' — C(K) has a bounded extension
T:X —C(K).

x L)
T T
|7

Let us here recall the Zippin criterion for the C-extension property (see [45]
and [46]):

PROPOSITION 2.4. Suppose X is a Banach space E is a closed subspace
of X. Then X has the (A C)-extension property if and only if there is a
weak™ -continuous map ® : Bg« — ABx« such that ®(e*)|g =e* for e* € Bg.

We shall refer to a map ® : Bg~ — X* as a Zippin selector if it is weak*-
continuous and ®(e*)|g = e* for * € Bgx.

It is also true that if (£, X) has the C-extension property, then there exists
A>1 so that (E,X) has the (A, C)-extension property.

We will be primarily interested in the case when X is separable. In this
case, it is easy to see that we can restrict K to be metrizable. In fact, every
C(K) is isometric to a l-complemented subspace of C(A), where A is the
Cantor set (cf. Proposition 3.1 of [21] combining results of [4] and [35]).
Thus, we may always take K = A in the definition.

We say that a separable Banach space X has the separable universal (lin-
ear) (A, C)-extension property if whenever Y is a separable enlargement of X
then (X,Y’) has the (A,C)-extension property. X has the separable universal
C-extension property if for every separable enlargement Y of X then (X,Y)
has the separable universal C-extension property.

It may be shown that if X has the separable universal C-extension property
then for some A > 1 it has the separable universal (\,C)-extension property.
This follows simply from Proposition 2.2.

We now connect this with ideas of Castillo and Moreno [10]. Suppose
(X;);j=1,2 are Banach spaces and E; is a closed subspace of X; for j =1,2.
Suppose V : E; — Es is a isomorphism. Then we will say that (E7, X;) and
(E9, X2) are equivalent if we can find an invertible operator U : X; — X3 so
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that U(E;) = Eo; we say that they are V-equivalent if we can choose U so
that U|E1 =V.

Suppose 0 — X; = Y; — Z; — 0 for j = 1,2 are two short exact sequences
of Banach spaces. We say that these sequences are isomorphically equiva-
lent if there exists invertible linear operators U : X1 — X3, V : Y] — Y5 and
W : Z1 — Z3 so that the following diagram commutes:

0 X4 Y; Z4 0
o) vl ]
0 Xo Y Zs 0.

Note that (Eq,X1) and (Eq, X3) are equivalent in our sense if and only if
the short exact sequences 0 — E; — X; — X,;/E; — 0 (j = 1,2) are isomor-
phically equivalent.

Now suppose X is a separable Banach space, and K7, K5 are uncountable
compact metric spaces. Let S; : X — C(Kj;) be linear embeddings. We shall
say that S; and So are equivalent if (S1(X),C(K1)) and (S2(X),C(K2)) are
equivalent and strongly equivalent if (S1(X),C(K7)) and (S2(X),C(K3)) are
S257 L_equivalent. Both equivalence and strong equivalence are equivalence
relations of the set of all possible embeddings.

We now give two results due to Castillo and Moreno (Proposition 4.6
of [10]).

PROPOSITION 2.5. Suppose X has the separable universal C-extension prop-
erty, and that S; : X — C(K;) are linear embeddings such that C(K;)/S;(X)
has a nonseparable dual for j =1,2. Then S1 and Sy are strongly equivalent.

Proof. For completeness, let us prove this in our language. It is enough
to prove the result when K; = Ky = A say. By a result of Rosenthal [40],
the quotient map ¢; : C(A) — Y7 :=C(A)/S1(X) is an isomorphism on some
subspace Z isomorphic to C(A). Now by a result of Pelczynski [39], ¢(2)
contains a subspace G isomorphic to C(A) and complemented in Y;. Fur-
thermore, G = E @ F, where E and F are each isomorphic to C(A). Let
E=q¢ 'ENZand F=q 'FNZ; then both E and F are isomorphic to C(A)
and C(A)=E @ F @& H for some space H D S1(X). Now E& F ~C(A) so
that FO H~E® F® H ~C(A). Let Vi : X — C(A) be the map induced by
the map z —= (0,S512) of X into F @ H. Then S, is strongly equivalent to
00V1: X —>C(A)®C(A).

Similarly, So is strongly equivalent to an embedding 0 & V5 : X —
C(A)YsC(A).

Now consider the embedding V3 @& Vo : X — C(A) @ C(A). Since X has
the separable universal C-extension property, there is a bounded operator
T:C(A) — C(A) with T|y,(xy = VoV;"'. Consider the automorphism of
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C(A) ®C(A) given by the matrix

o5 )

Then U(V; ®0) = V1 @ Vs so that S is strongly equivalent to V3 @ Va; similarly
So is strongly equivalent to V; @ V5. [l

PROPOSITION 2.6. Suppose all embeddings S : X — C(K) are equivalent.
Then X has the separable universal C-extension property.

Proof. Suppose X CY where is a separable Banach space. Then X CY C
C(By~) via the canonical embedding. But then (X,C(By~)) is equivalent to
(X,C(Bx~)) and the later pair has the (1,C)-extension property. O

We now show the following theorem.

THEOREM 2.7. Let K be an uncountable compact metric space. If X is
a subspace of C(K) such that C(K)/X has separable dual, then X fails the
separable universal C-EP.

Proof. We first observe that by Miljutin’s theorem ([35], [41]) we can spe-
cialize to the case K = [0,1]. We use an example of Aharoni and Linden-
strauss [1]. Let V' be the subspace of all bounded functions on [0, 1] consisting
of all functions which are right-continuous at all ¢ € [0, 1], have left-hand lim-
its at all t € [0,1] and such that lim,_¢— f(¢) = f(t—) = f(£) except possible
at the set Qg of all dyadic rationals in (0,1). Then V is isometric to C(A)
where A is the Cantor set and C[0,1] is an uncomplemented subspace of V.
Furthermore, V/C[0,1] can be identified with ¢q(Qq) with the quotient map
given by

w(f)(a) =3 (f@) - Sa-)), a€Qu
Let us denote by e, the canonical basis vectors in ¢o(Qq). Then e, = 7(gq)
where

9q = (X[q,l] - X[o,q)), q € Qq.
We identify X as a subspace of C[0, 1] with C[0, 1]/ X having separable dual.
Thus Y = V/X also has separable dual. Let mx : V — Y be the corresponding
quotient map.

Let us assume that X has the separable universal C-EP. Then there is a
bounded linear operator T': V — C[0,1] with T'f = f for f € X. We let

fq =9gq—Tgq.

Note that I — T factors in the form (I —T) = Smy, where S: Y —V is
bounded with ||S]| < ||T'||. Hence,

fq=5mx(gq)-
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Let (On)nen be a countable base for the topology of (0,1) and let (¥ )nen
be a dense countable subset of Y*. Then for each n we can find q,,r, €
Qq N O, with g, # r, so that

vk (mx (9, — 9r))| <277, 1<k <n.

We now claim the existence of an increasing sequence of natural numbers,
(my)22,, and a sequence of signs €, = £1 so that

(2.1) Ompir €Oy n>1
and
(2.2) en(fam, @) = frn (£) 21/2, €O, ., n>1.

To start the construction, let my = 1. Then if m,, has been chosen, we note
that

W(fqmn - frmn) = W(gqmn - grmn) =Cqm, ~ Crm,
Hence, f,. — fr,, has a jump of size 2 at ¢m, € Om,. We may therefore
select My 41 > my, so that Oy, ., C Op,, and a sign €, so that (2.2) holds.
Now by construction the sequence (7x (g4, —gr,, )22, is weakly null. Hence,
Stx(9q, — 9rn) = fq, — fr,, is also weakly null. This contradicts (2.2) which
implies the existence of some v* € V* so that |v*(f,,, — fr,, )l >1/2 for
all n. 0

The referee points out that an alternative proof of the preceding theorem
can be given based on Lemma 2.2 in [8] and a result of Lohman [33].

From this, we will conclude the following improvement of Proposition 4.6
of [10].

THEOREM 2.8. Let X be a separable Banach space. Then the following are
equivalent:

(i) All embeddings of X into a space C(K) for K an uncountable metric
space are equivalent.
(ii) All embeddings of X into a space C(K) for K an uncountable metric
space are strongly equivalent.
(iii) X has the separable universal C-extension property.

Proof. (i) = (iil). Proposition 2.6 above.
(iii) = (ii). Combine Proposition 2.5 and Theorem 2.7.
(i) = (i). Trivial. O

For simplicity, we refer to spaces X satisfying the conditions (i)—(iii) of
Theorem 2.8 as C-automorphic spaces. This is a slight variation of the termi-
nology of Castillo and Moreno [10].

Let us conclude this section by listing the previously known examples of
C-automorphic spaces:
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THEOREM 2.9. The following spaces are C-automorphic:

(i) Any subspace of cy.
(ii) Any dual of a subspace of cp.

Proof. (i) This follows from a result of Lindenstrauss and Pelczyiiski [29]
and the fact that ¢y is separably injective. In fact, each such space has the
separable universal (2 + ¢,C)-extension property for any € > 0.

(ii) This follows from results in [22]; indeed all such space have the separable
universal (1 4 ¢,C)-extension property for any £ > 0. O

3. Remarks on the class of C-automorphic spaces

We now make a few remarks concerning the class of C-automorphic spaces
(equivalently space with the separable universal C-EP). Our first remark is
well known (and indeed used by Johnson and Zippin in [17]).

PRrROPOSITION 3.1. Suppose 0 —» X —Y — Z — 0 is a short exact sequence.
Suppose X and Z are C-automorphic; then' Y is also C-automorphic.

Proof. Suppose T : Y — C(K) is a bounded operator and than W is a Ba-
nach space containing Y. Then T'|x has a bounded extension S : W — C(K)
and T'— S : Y — C(K) factors to an operator R : Z — C(K). Thus, R extends
to an operator R : W/X — C(K). Now S+ RQ : W — C(K) extends T, where
Q@ : Y — Z is the quotient map. O

Now it follows that any extension of ¢y by ¢; is C-automorphic and it is
known that there are nontrivial examples [8].

Let X,Y be Banach spaces. We write Ext(X,Y) = {0} if every extension
of X by Y splits, i.e., every short exact sequence 0 - Y — Z — X — 0 splits.
This is equivalent to the requirement that whenever Z is a Banach space
containing Y and Tp : X — Z/Y is bounded then Ty has a lifting T': X — Z
with QT =Ty, where Q : Z — Z/Y is the quotient map.

e
To
X — Z/Y

We shall that X has the C-lifting property if Ext(X,C(K)) = {0} for every
compact metric K. We say that X has the (A C)—lifting property if in the
above diagram we can find T with ||T'|| < A||Tp]|- The following result is then
immediate.

PRrROPOSITION 3.2. Let X be a subspace of 1. Then X is C-automorphic
if and only if ¢1/X has the C-lifting property.
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Proof. The proof is quite formal and essentially due to Johnson and Zip-
pin [17]. We show that X has the separable universal C-EP. If Ty : X — C(K)
is a bounded linear operator then we can extend Ty to a bounded opera-
tor Th : €1 — Lo (K). If Q : £oo(K) — oo (K)/C(K) is the quotient map then
QT : l1 — Lo(K)/C(K) factors to a map S: £1/X — £o(K)/C(K). Thus,
QT) = SQx where Qx : {1 — ¢1/X is the quotient map. Now S has a lifting
S 01/ X — lo(K) and then T =T, — SQx is an extension of T, mapping ¢,
to C(K). Since ¢; has the separable universal C-EP, this implies that X has
the same property.

0 X A 9x 0/ X 0
s
To T S
l |
00— C(K) — loo(K) —= (oo(K) /C(K) — 0. O

Our next results concern the notion of Kadets distance between Banach
spaces. If X and Y are subspaces of a Banach space Z, we define the gap
between X and Y by

AX)Y) :max{ Setg:) d(y,Bx), setgo d(l’,By)}.
Y Y T X

Now if X and Y are arbitrary Banach spaces we define the Kadets distance
between X and Y by

dg(X,Y) =inf{A(X,Y)},

where the infimum is taken over all Banach spaces Z which contain isometric
copies X, Y of X, Y. We refer to the survey [38] and also [23] for further details.

We now discuss the question whether the set of C-automorphic spaces is
open for the Kadets metric. Notice first that the collection of spaces isomor-
phic to a subspace of ¢y is open for this metric.

PROPOSITION 3.3 (cf. [23]). Let X be a Banach space isomorphic to a
subspace Xq of co. If Y is a Banach space with dx (X,Y) < (1+2d(X, X)) ™!
then Y is isomorphic to a subspace of cg.

Proof. Suppose X is isometrically embedded in a Banach space Z and Y
is a subspace of Z with A(X,Y) < 1. Then Y is separable and we can assume
Z is separable. For § > 0, we can find a bounded operator T : X — ¢y with
[z]| < [Tz for x € X and [T < d(X,Xo) + 6. T can then extended to a
bounded operator T : Z — ¢y with ||T|| < 2||T||. Now if y € Y with [jy|| =1
we may find x € Bx with [y —z|| <A(X,Y) + 4. Thus,

ITyll > | = 20 TN (AX,Y) +8) = 1= 2T + D) (AX,Y) +56).
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Thus, T|y is an isomorphism if
A(X,Y) 46 < (1+42d(X, Xo) +26)
and so the result follows. O

THEOREM 3.4. Let X be a separable Banach space which is both C-auto-
morphic and has the C-lifting property. Then there exists € >0 so that if Y
is a Banach space with dx(X,Y) <e, then Y is also C-automorphic.

Proof. Suppose X has the separable universal (A\,C)-EP and the (u,C)-
lifting property. Suppose & < 3(1+X)"*(1+ 1)~! and that dx (Y, X) <e. Let
Z be a separable Banach space containing Y and let Ty : Y — C(K) be an
operator with [|Tp|| = 1.

We can construct a separable Banach space W containing Y and (an
isometric copy of) X so that A(X,Y) <e. Let Z’ be a Banach space con-
taining both W and Z. This can be constructed as in Proposition 2.1 as
the quotient of W @; Z by the subspace {(y,—y): y € Y}. We first ex-
tend T:Y — C(K) to an operator S: Z' — loo(K) with ||S|| =1. Then
if « € Bx there exists y € By with [z — y|| <e and so ||Sz — Sy|| <e.
Hence, d(Sz,C(K)) <e. If Q: loo(K) — £y /C(K) is the quotient map we
have ||QS|x|| <e. By the C-lifting property for X, we can find an opera-
tor R: X — lo(K) with |R]| < pe and QR = QSx. Now S — R maps X
into C(K) and ||S — R|| <1+ pe. Let V: Z' — C(K) be an extension with
IVII <A1+ pe). If y € By there exists x € Bx with || — y|| <e. Hence,

Vy =Tyl =[[Vy — Syl
<|Va— Sz + (1+ M1+ pe))e
< (p+A+14Ape)e
<(@T+NA+pe.
This implies that the restriction map R : £(Z',C(K)) — L(Y,C(K)) has the
property that if || T|| = 1 there exists V with ||[V|| < A(1+p) and |T—R(V)| <
I+MN(1+pe< % By a version of the open mapping theorem, this implies

that R is surjective and indeed if ||T|| =1 there exists an extension T with
1] <271+ 1), .

COROLLARY 3.5. Let X be isomorphic to the dual of a subspace of cy. Then
there exists € >0 so that if dxg(X,Y) <e then'Y is C-automorphic.

Proof. X is C-automorphic by Theorem 2.9. There is quotient map @ :
{1 — X whose kernel is weak*-closed. By Proposition 3.2, X has the C-lifting
property. Il

We know of no example of a subspace X of ¢; which is C-automorphic, but
such that X is not isomorphic to the dual of a subspace of ¢y. We also do not
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know whether the property of being (isomorphically) a dual of a subspace of
co is open for the Kadets metric: compare Proposition 3.3 and Corollary 3.5.

One can also ask similar questions about the C-lifting property. In [19], it
was shown that a separable Banach space with the C-lifting property and a
(UFDD) is isomorphic to the dual of a subspace of ¢y. In this context, we
may mention also that /1 has a subspace X isomorphic to ¢; but uncomple-
mented [5]. Then ¢;/X has the C-lifting property. So, we may ask whether
every subspace of X which is isomorphic to ¢; has the property that ¢;/X is
isomorphic to the dual of a subspace of ¢y. By the automorphism results of
Lindenstrauss and Rosenthal [30], this is equivalent to asking whether every
such subspace can be mapped by an automorphism of ¢; to a weak*-closed
subspace. Unfortunately, for this purpose, Bourgain’s construction in [5] is
local in nature and leads to a weak*-closed subspace.

4. The homogeneous Zippin criterion

A map ®: X — Y between normed spaces is called homogeneous if ®(ax) =
a®(z) for « real and = € X.

Suppose X is a Banach space and F is a closed subspace. We will say that
(E,X) satisfies the A-homogeneous Zippin condition if there is a homoge-
neous map ¢ : E* — X* which is weak*-continuous on bounded sets, satisfies
|®]] = sup{||®(e*)] : ||le*]| <1} < X and such that such that ®(e*)|p =e* for
every e* € E*. We shall refer to a map ®: E* — X* as an homogeneous
Zippin selector if it is homogeneous, weak*-continuous on bounded sets and
O(e*)|p=e* for all e* € E*.

Obviously if (F, X) satisfies the A-homogeneous Zippin condition then by
the Zippin criterion, Proposition 2.4 the pair (F, X) has the (), C)-extension
property. In the case when F is finite-dimensional, it is clear that these
two conditions are equivalent, since the map given by Proposition 2.4 can be
homogenized and remains weak*-continuous. Thus, in particular, we have the
following lemma.

LEMMA 4.1. If E is a finite-dimensional subspace of a Banach space X,
then for any € > 0 there exists an homogeneous Zippin selector ® : E* — X*
with ||| <1+e.

In general, as we shall see, the (A, C)-condition does not imply the A-homo-
geneous Zippin condition. It is natural to consider the case of the canonical
embedding of a separable Banach space X into C(Bx+) where Bx« has the
weak™ topology, as the pair (X,C(Bx~)) always has the (1,C)-extension prop-
erty. In the case of ¢, it is contractively complemented in C(By,) via the
projection

Pf=(flen))nZr,
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where e;, denote the biorthogonal functionals to the canonical basis. Thus,
it is trivial that (co,C(By,)) satisfies the 1-homogeneous Zippin condition by
taking ®(z*) =a* o P.

There there is another important special case where we can find an isomet-
ric homogeneous Zippin selector. We consider the space ¢; as a subspace of
C(By_,) (where By has the weak*-topology) in the natural way. Thus, the
unit vector basis (e,)22; of ¢; can be considered as functions on By__

LEMMA 4.2. There is a sequence of maps ¢y, : Lo — [0,00) and a sequence
of maps Yy, : boo — By, such that
(1) FEach @, is weak®-continuous and satisfies on(af) = |a|pn(§) for a e
R, £€ly.
(il) If € € loo with &, =0, then v, (£) =0.
(iii)

(4.1) Z =[l€llc, €€lso

(iv) Each vy, is weak*-continuous on {py, > 0} satisfies the conditions that

PYn(af) = (sgna)vn(§) and (ej,1n(§)) =0 if j <n.

(v)
(42) Z@J ena,l/}] )>:<ena£>:£n7 1§7’L<OO, Eegoo

Proof. We define the sequences of maps h, : £oo — [0,00) for n >0 by
ho(€) =0 and then

hn(f):max(|§l|7’|£n|)a n>1.
We then define a sequence of maps f, : {oo — [—1,1] by

_ €n/hn—1(§) o< |£n| < hn—l(f)a
fnle)= {sgngn if (€] > T ()

Each h,, is weak*-continuous and each f, is weak*-continuous at £ unless

&n=hn_1(§)=01e., hy(§)=0.
Now define

0n (&) =hn(&) —hn_1(8), €€ls, n=1,2,...

and

wn(f) - (0707 s 0, fn(g), fn+1(£)a = )
with the first possibly nonzero entry in the nth position. Then (i)—(iv) are
immediate. For (4.2),

n

> 23 (€)ens (€)= 3 @i (€)Fn(&) = hn(€) fa(©)-
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If [€n] < hn-1(§), then hy(§)fa(§) = hn—1(§)fn(§) =& I [&a] = hn-1(8),
then Ay, (&) frn (&) = hn(§)sgné, =&,. This establishes (4.2). O

THEOREM 4.3. The pair (¢1,C(By,)) has satisfies 1-homogeneous Zippin
condition.

Proof. We define @ : {o, — M(By_ ) by

D(6) = 5 (Bo(6) — Po(~0)),

where o
Do) = i)y, ¢)-
j=1

The only difficulty to establish weak*-continuity of ® on bounded sets. In
fact, it suffices to show that £ — [ F d®(£) is weak*-continuous when F is a

polynomial in eq,...,e, for some fixed n. To do this, note
/ Fd®o(§) = ¢i(&)F (1;(€)) + ( > w(&)) F(0)
j=1 j=n+1

while, using (i) of Lemma 4.2,

/ chbo(—f):Zsoj<—£>F(wj<f))+< > %-(5)) F(0)

j=n+1
so that

@i () F ((8)) — Z%(—f)ﬂ%(—ﬁ))) -

However, the map

n
£= 30, due
j=1
is easily seen to be weak*-continuous by Lemma 4.2(i) and (iv) and we are
finished. O

THEOREM 4.4. If (F},) is a sequence of finite-dimensional spaces and Y =
01(Fy,) then (Y,C(By~)) satisfies the 1-homogeneous Zippin condition.

Proof. The proof is very similar. We identify the unit ball of Y* with
the infinite product of B Fx for n > 1. We will use the maps constructed in
Lemma 4.2. We define a map G : Y* — o, by G((f2)o21) = (I f5])52;. We
define the maps 3 Y* — Y™ by r((f2)32) = ((93)30) where

C_[E i g o,
o if 7 =0.
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We then define p,, : Y* — By~ by
Pn(Y") = Vn(G(Y"))r(y")

where we take the coordinatewise product.
Next, define &g : Y* — M(By~) by

= Z@j(G(y*))‘sm(y*)
j=1
and define )
(y*) = 5(‘1)0( y*) — Po(—y")).
Note that if f € F,, and y* = (f})52, with f #0,

/(f, Ao (y*) () =Y 0 (Gly™ ) en LGy I DI
j=1

= falf):
Thus, for y € Y, we have

/@wwdwwﬂwwzy%w

It is clear that ¥ is homogeneous and weak*-continuity on bounded sets is
proved as in the previous theorem. O

We next show that we cannot expect a similar result for £, when 1 < p < occ.
The following proposition gives the counterexample promised after Lemma 4.2
since (£,,C(By,)) has the (1,C)-extension property.

PROPOSITION 4.5. Suppose 1 <p < oo and % + % =1. Suppose N\, =(1+
(q—1)g7P)/%. Then (£,,C(By,)) fails the A-homogeneous Zippin condition
for any A < Ap.

Proof. Suppose ®: £, — M(By,) is homogeneous and boundedly weak*-
continuous and satisfies

/ﬁnd@(ﬁ)(n)zim €€ty n=1,2,....

Let |®] = A

Let 7=¢'7? < 1. We consider the sequence of measures s, = ®(re; +
(1—79)"4%,). Then p, converges weak* to = ®(re;).

It follows that

1/q
Ts/WMﬂMsM”#”</mwdm>

1/q
<)\1/p71/pliminf</|n1|qd|un|) .
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Thus, we have

liminf/|n1|qd|un| > \"YPr,

Therefore,
(1= 79" < timinf [ ] dln
<liminf [ (1 — |9 |))Y9d|pn|
1/q
< liminf AM/? (/(1 - |771|q)d|:“n|> :
Hence,
)\—q/p(l -7 <A— A"9/Pr
or
I4+7—-71< A\
Substituting the explicit value of 7 gives a contradiction. O

However, there is a general positive result if we are prepared to relax the
constant. This result is due to Castillo and Suarez [11].

THEOREM 4.6. Let X be a separable Banach space and suppose Y 1is an
enlargement of X. Then (X,Y) has the C-extension property if and only if
there is a homogeneous Zippin selector ® : X* — Y*.

Proof ([11]). Let G be the space of weak*-continuous homogeneous maps
f: Bx+» — R. Then by a result of Benyamini [3] G is isomorphic to a
C(K)-space. Hence, there is a bounded linear operator T:Y — G with
Tx(z*) =a*(x) for z € X. Let ®(2*)(y) = Ty(x*) for ||z*|| <1 and extend by
homogeneity. O

REMARK. Observe that if (X,Y’) has the (\,C)-extension property then
(X,Y) satisfies the aA-homogeneous Zippin condition where o depends only
on X (or more precisely the isomorphism constant of G and a C(K)-space).

The following theorem is now immediate.

THEOREM 4.7. Let X be a separable Banach space. Then for some A = Ax,
the pair (X,C(Bx+)) satisfies the A-homogeneous Zippin condition.

5. Applications to the separable universal extension property

First note that by Theorem 4.6 and the remark, we have the following
proposition.
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PROPOSITION 5.1. Let X be a separable Banach space with the separable
universal C-extension property. Then there exists A > 1 so that wheneverY is
a separable enlargement of X then (X,Y) satisfies the A-homogeneous Zippin
condition.

We now observe that using the results of [22], we can prove the following
theorem.

THEOREM 5.2. Let X = /{1 or, more generally, £1(F,) where (F},) is a
sequence of finite-dimensional spaces. Then for every separable enlargement
Y of X and every ¢ >0, (X,Y) satisfies the (1 4 £)-homogeneous Zippin
condition.

Proof. If' Y is a separable enlargement of X, then since X has the separa-
ble universal (1 + ¢,C)-extension property [22], there is an extension T: Y —
C(Bx~) of the canonical injection X — C(Bx~«) with ||T||<14e. If ®: X* —
M(Bx~) is the homogeneous Zippin selector given by Theorem 4.3 or Theo-
rem 4.4 then T o ® is the required homogeneous Zippin selector from X* to
Y* with T* o ®(2*)|x =2* and ||[T* o ®|| < 1+e¢. O

It seems quite likely that this result extends to the case when X is any
dual of a subspace of ¢y. In the special case when X has the approximation
property, such a result comes from the following proposition.

PROPOSITION 5.3. Let Z ={,(G,) where 1 <p < oo (respectively co(Gy))
with (Gn)$2, a sequence of finite-dimensional spaces. Let X be a subspace
of Z so that X has the metric approzimation property. Then for any e >0,
there is a sequence of finite-dimensional subspaces (F,,) of X and operators
A: X —4,(F,) [respectively, A: X — co(F,)] and B : {,(F,) — X [respec-
tively, B : co(Fy,) — X] so that ||All,||B]| <14¢ and BA=1Ix.

Thus for every e >0, X is (14 €)-isomorphic to a (1 + £)-complemented
subspace of a space Ly(F,) (respectively co(Fy,)) where each F, is a finite-
dimensional subspace of X.

REMARK. In [9] page 61, an argument is given which essentially proves an
isomorphic version of this result.

Proof of Proposition 5.3. We start with the observation that X has the
(UMAP); this follows from, for example, [13] Theorem 9.2. (Note that in
this theorem, in the proof of (6) = (1), it can be assumed that the
1-unconditional basis is shrinking by the argument of Li [27].) A direct proof is
also fairly simple. We note that X* also has (MAP) even in the non-reflexive
case by a result of Godefroy and Saphar [14]. If we denote by J: X — Z the
inclusion then if (7,)52 , is a shrinking approximating sequence of finite-rank
operators on X and S, are the partial sum operators on Z then JT,, — S, J
is a weakly null sequence in (X, Z). Passing to a sequence of convex combi-
nations, we can then assume lim, . || — 27},|| =1 so that X has (UMAP).
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It follows that we can find finite rank operators V,,: X — X with the
property that

(1+e)Y2, §;=41, n=1,2,...

Z(sv

andif():mo<m1<m2<m3<-~,

n 1/p 1/p
(146)2 (zuxjnp) z% (4o (an ||p>
j=1

whenever z; € (Viy,_ 41+ + ij_l)(X) for each j (with a corresponding
statement in the co-case. Fix an integer N so that N/(N —2) < (14-¢)'/? and
then for each 1 <r < N, let F,.; = Vyi,—1(X) and then for k> 1 put F, =
(VieN4r—1— V(k—1)N+7-)(X)- We then define an operator By : £,(Frr)3e, — X

by
xk k 1 Zfﬂk

(and similarly in the ¢p-case). We also deﬁne AT. : X — 0y(Fr) by

N4+r—1 2N+r—1
—( Z Vjz, Z V}x,)
j=1

J=N+r+1

Then ||B,|| < (1+¢)/2 while ||A,|| < (14¢). Now let Y = £,(£,(Fr)e )N ;.
Define A: X —Y by

Ar=N"YP(Ayz,... Ayzx)
and B:Y — X by
B(u17"'7uN):Nil/q(u1+"'+uN)
so that ||A]| < (1+4¢) and | B|| < (14 ¢)'/2. Then for = € X, we have
N 1 &
r— BAzx = N Z Vi
j=N+1

so that .

Lx — BAJ < 2/N.
It follows that Ix — BA is invertible and setting B = (I — BA)~' B gives the
conclusion. O

COROLLARY 5.4. If X 1is the dual of a subspace of ¢y and X has the ap-
proximation property then for every separable enlargement Y of X the pair
(X,Y) satisfies the (14 ¢)-homogeneous Zippin condition for every e > 0.

Proof. We need only observe that both X and its predual have (MAP) b
a result of Grothendieck [16] (see also [32], page 39). O
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THEOREM 5.5. Suppose X is a separable Banach space with the property
that for some XA > 1 and any separable enlargement Y, the pair (X,Y) satisfies
the A-homogeneous Zippin condition. Then for any € >0, co(X) has the
separable universal ((2+ &)\, C)-extension property.

In particular, co(X) is C-automorphic, whenever X is C-automorphic.

Proof. Let Z = ¢o(X) and suppose Z C Y where Y is separable. Let
Qn: Z — Z CY be the projection on each coordinate.

Let (F3)32, be an increasing sequence of finite-dimensional subspaces of Y’
with the properties that Fy = {0}, F, N Z = {0} for every k and |J,~, Fi is
dense in Y. Let W, = Fi, + Z. We claim that for each k there exists ﬂo(k) SO
that if n > ng then the operator T : Wi, — X defined by T(f + z) = Q, =z for
f€F, and z € Z has norm ||T]| <2+e¢.

Suppose not. Then there is a sequence (f,)>2, € Fy, and (2,)52 in Z
so that || fn + znl| <1 but [[Quun)2nl|l > 2 + € for some increasing sequence
(m(n))S2,;. Then since Fj, N Z = {0} the sequence (f,)>2; is bounded, and
hence has a convergent subsequence.

It is clear that for each n there exists r(n) > n so that if s >r(n) we have
lzs — zn]l > 2+ €. Thus ||fs — fnl]l =& >0. This contradicts the fact that
(fn)22; has a convergent subsequence.

It follows that we may select an increasing sequence k(n) — oo so that the
operator Ty, : Wi,y — X defined by

To(f+2)=Qnz, fE€Fyn), 2€Z

has norm ||T,,]| <2+e. Now let G,, be a separable enlargement of ¥ such
that there is an operator T}, : G,, — G,, with | T,,|| <2+¢ and T, Wity = Tn-
By assumption, there is a homogeneous Zippin selector ¥,, : (Q,(Z2))* —
G} with ||T,]| < A. We now define ®,, : Z* - Y™ by
,(2%) :T;';\Iln(z*|Qn(Z))|Y.
Clearly ®,, is homogeneous, boundedly weak*-continuous, and we have
190 (Z) I < 2+ )AQ2"], 2" € 2™

Furthermore, if z € Z we have

D, (2")(2) =7, (z* |Qn(Z))QnZ =2"(Qnz).
Thus, if ®(z*) =32 | D, (z*) we have ||®[ < (2+ €)X and
O(z)|z=2%, =z2z"eZ.
It remains to observe that ® is also boundedly weak*-continuous. In fact, if
f € re, Fy then T,, f = 0 for all but finitely many n. Hence, z* — ®(2*)(f) is
weak*-continuous on bounded sets. This implies that ® is boundedly weak*-

continuous. Thus, (Z,Y) satisfies the (2 + £)A\-homogeneous Zippin condi-
tion. g
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Let us note one important corollary.

COROLLARY 5.6. The space co(£1) satisfies the separable universal (2 + ¢,C)-
extension property for every € >0 and is C-automorphic.

6. The spaces ¢, when 1 <p < oo
We now turn to the spaces ¢, for 1 < p < co.

THEOREM 6.1. Suppose 1 <p < oo and letY be an enlargement of £,,. Sup-
pose (€,,Y) has the C-extension property. Then for some X, (£,,Y) satisfies
the A-homogeneous Zippin condition.

More generally, if Y is an enlargement of £,(F,) where (F},) is a sequence
of finite-dimensional spaces so that (£,,Y") has the C-extension property, then
for some A, (£,,Y) satisfies the A-homogeneous Zippin condition.

Proof. We give the proof for £,. Consider the canonical embedding of
¢, into C(By,) and suppose this has an extension 7": Y — C(By,). Then if
L, — M(By,) is the homogeneous Zippin selector given by Theorem 4.7,
we consider ¥ =T o ® : {; — Y* and this is the required homogeneous Zippin
selector. O

We next give a criterion which implies the existence of a homogeneous
Zippin selector.

THEOREM 6.2. Suppose 1 <p < oo and that X = {,(F,) where (F,)

n=1
is a sequence of finite-dimensional normed spaces. Suppose Y is a separable
enlargement of X equipped with a norm so that

(6.1) T ly+ a2 T (] + e llun| )7

whenever y €Y, (uy,)5%; is weakly null sequence in £, and both limits exist.
Then (X,Y) satisfies the (1+ €)c™t-homogeneous Zippin condition.

Proof. Suppose v > 0 is a decreasing sequence of real numbers such that

oo

[[a+w)?<1+e
k=1

We will first prove the theorem under an additional condition.

ASSUMPTION. Assume that there is an increasing sequence (E,)%2; of

n=1
finite-dimensional subspaces of Y whose union is dense and such that we have

(En+ 25 F)N 3252, Fj={0} and
(6.2)
lutal > (L+v)  (Jull? + P alP)?, e B+ Fyye S F
j=1 j=n+1
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Under this assumption, we define a sequence of weak*-continuous homo-
geneous maps &, : X* — Y*. First, for each k, by Lemma 4.1, there ex-
ists a homogeneous Zippin selector Uy, : (Ex_1 + Z?:l F;)* — Y™ such that
[@l] <14 vk In the case k=1, we take Ey = {0}. Let us denote by
Q. : X — F,, the canonical projection.

The construction of (®,,) is inductive. To start the induction, let ®;(z*) =
W1 (27|, ). Note that [0 (") < (1+14)]|Q5a” |

Next suppose k > 2 and that ®;_; has been constructed. Then we define
for * € X* we define oy (2*) € (Ejx—1 + Z?:l F;)* by

k—1
(w+z,0n(x")) = (u,Pp_1(2")) + (z,2"), w€Ep_1+ ZFJ7 x € Fy.
j=1

The map oy, is weak*-continuous and homogeneous and

k(@) < (U v (1251 ()17 + | Qa"[17) 7.
Now define
Op(z¥) = U (ox(2¥)), a*eX™.
Clearly,
1@k (@) < (14 ) > ([ @r—1 (@) | + ¢ Qu™||9).
Iterating this condition gives that

k q k
[@r(z")[|* <™ <H(1 + Vj)2> (Z IQ}‘-:E*IIQ>

j=1 j=1
and from this it follows that
15 (z)[| < (1+e)e ™.
It is also clear from the construction that
(¢, Pp(z")) = (z,2"), ze€F;, 1<j<k

and
(U, Pr(a")) = (v, ;(z7)), yeE;, 1<j<k.

Hence, ®y(x*) converges weak* to a homogeneous map ®: X* — Y™* with
|®]| < (14€)e™t and @(2*)|x = x*. Weak*-continuity on bounded sets follows
by noting that (f, ®(z*)) = (f, ®,,(z*)) whenever f € E,, and, by construction,
each ®,, is weak*-continuous. Thus, ® is the required homogeneous Zippin
selector. This proves the theorem under the assumption.

We now turn to the general case. The sequence ()72 is chosen as before.
We begin with the standard observation that if E is a finite-dimensional closed
subspace of Y and v > 0 then there exists N = N(F,v) so that

If +all = A+ 2) AP+ Nl feB xe Y Fy
j=N+1
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See, for example Lemma 3.1 of [25].

Fix any increasing sequence (E,) of finite-dimensional subspaces of Y
whose union is dense. Then by induction, we can find (my)72, with mg=0
and my =1 so that

]| = (14 vi) 7 (full? + Pl 7) 2,

UEEk+§Fj,1’E i Fj,k:1,2,....

Jj=1 J=mpy1+1
Let Gk - ka71+1 + IR ka.

Now fix N so that
2¢7 141 -1 1/2

and suppose 1 <r < N. Let A, the complement in N of the arithmetic se-

quence (N (k—1)+7)p2; and let X, =[>,., G;]. Then it is clear that using

the decomposition Hy =37~ 1 G (if r > 1) and then Hy, = ng (; 1\2]+]$+:+1G

the space X, satisfies (6. 2) and so we have the existence of a homogeneous
Zippin selector @, : X} — Y* with ||®,|| < (1+¢)/2c7 1.
For z* € X*, we define

1 N
V)= Y 0
r=1

Then for x € X we have, denoting the canonical projection P X—-X,.

(x,¥(x Z — Pox,®,.( ZPxx

Note that

N
ZPTZ‘ =(N-1)x
r=1

so that for xz € X,

_1N

2
5 2 lle = Pralla”]
1
—|— 1
Zux Pyallla”|

1/p
Nl/p | *|<ZII$P$p>

27 41,
= —7p Iz ]l

* * 1 *
[z, ¥ (2") —27)] < llzflle™] +
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Hence,

207t 41,

an |

where p: Y* — X* is the natural restriction. Let ¢(z*) =a* — p¥(z*). We
then can define

lpW (") — ™[ <

oo
O(x™) = Z Uogha*.
n=0
We may then verify easily that ® is a homogeneous Zippin selector and

2¢ 1 +1

-1
W) < (1+€)Cil. D

) <221
THEOREM 6.3. Suppose 1 <p < oo and X ={,(F,) is a sequence of finite-
dimensional spaces. Suppose Y is a separable enlargement of X. The follow-
ing conditions on 'Y are equivalent:
(i) (X,Y) has the C-extension property.
(ii) There is an equivalent norm on'Y so that Y is an enlargement of £,
and

(6.3) iy unl| > T (] + )7

whenever y €Y, (uy)52 is weakly null sequence in X and both limits exist.
(iii) There exists a linear operator T :' Y — Z (for some Banach space Z)
so that for some ¢ >0,

(6.4) lim ([ T(y +un)|| > Tim (|Ty[[? +c? unlP)/*
whenever y €Y, (un)5%, is weakly null sequence in X and both limits exist.

Proof. (i) = (iii): By Corollary 6.1, there is a homogeneous Zippin selector
®: X* —Y*. Define a seminorm on Y by
lyl= sup [(y, ®(u"))].
lurlI<1
u* €Ly
Note that |y| < [|®||||ly|| for y €Y and |u| = |lu]| if v € X.
Let us assume y € Y and (u,)%2 is a weakly null sequence in X. Passing
to a subsequence, we can suppose that the limits

lim ||y + u, |, lim |[u, |, lim |y + uy, |
n—oo n—oo n—oo
all exist.

Let u} € X* be chosen to be the norming functionals for u,. Then (u})

is a weak*-null sequence. Pick v* € X* so that ||[v*|| =1 and (y, ®(v*)) = |y|.
Suppose 7 > 0 is fixed. Then

o+ ru g+ wnl =+, @7 + ), n=1,2,...
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Now
lim (y, ®(v* + Tuy,)) = (y, 2(v")) = |y|

n—oo

by the weak*-continuity of ®. On the other hand,
(tn, R(0" + Tuy)) = 0" (un) + 7|un||

so that
Hm (u,, ®(v* +7u))) =7 Um ||Juy,].
n— oo n—0oo
Furthermore,
lim ||v* +7ul|| = (147919,
n—0o0o
Thus,

lyl + 7 lim |ju,| < (1 —|—7‘q)1/q lm |y+u,|, 0<7<oo.
n— 00 n—0o0
This implies
. V.
Iyl + Tim Jua]?) ™ < Tim [y -+
Taking Z to be the completion of (the Hausdorfl quotient of) (Y,|-|) and T

the identity map, we have (6.4) with ¢=1.
(iii) = (ii). By scaling we can assume ¢ = 1. Define a norm on Y by

lyllo = inf{{ly — vl + 1T (y = 0)|| + [Jv]| : v e X}.

Clearly, |lyllo > |lyl] and |jv|lo = ||v]| for v € X. Now assume that y € Y
and (up) is a weakly null sequence in X. Assume lim, ||y + unllo and
limy, oo (||Y]|8 + ||un||P)1/? both exist. Choose v, € X so that

lim (||y + wn — vnll + [T (y + = vn) | + [val]) = lim [y + unfo-
n—oo n—0o0

The sequence (vy,,) is bounded and so by passing to a subsequence we can
assume it converges weakly to some v € X. Passing to further subsequences
so that required limits exist, we have

lim o, = lim (o= o] + [Jv][?)/7.
n—oo n—oo
Now, using the triangle law in 612, and again assuming all limits exist,
lim |y + unllo
n—oo

. 1
> Tim ([ly = oll + (IT(y = )7 + [l +v = va]|?) /"

+ ([o]]? + o = v, |[)1/7)
> Tim (g = oll + 1T — o)l + ol + ual?) 7
> tim (gl -+ lua[9)7.
(ii) = (i). This follows directly from Theorem 6.2. O

We are now in position to show that the ¢,-spaces are not C-automorphic.
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THEOREM 6.4. Suppose 1 < p < oo. Then there is a separable enlargement
Z of £, such that Z is super-reflexive, has an unconditional basis and (¢, 2)
fails to have C-extension property. In particular, £, fails to have the separable
universal C-extension property and is not C-automorphic.

Proof. Let T denote the standard dyadic tree. The nodes are indexed by ()
and then all finite sequences a = (t1,...,t,) of zeros and ones. We write a <b
if a=(t1,...,tm) and b= (s1,...,s,) where n>m and s; =t; for j < m;
we write @ <b if a <b and a #b. The depth d(a) of a € T is n where
a=(t1,...,t,). A segment 3 is a finite subset of 7 of the form {ay,...,a,}
with a1 < as <--- < a,. Let B be the collection of all segments.

Let coo(7") denote the space of finitely nonzero functions on 7. Let (e4)qer
be the canonical basis. The natural bilinear pairing on coo(7") is given by

<£a77> = Z EaNa

a€T

if 5 = Zae'f €aea and Na = Zae']’ Ta€a-
We first define a norm on ¢yo(7") by

1/q
S e max<(§:|5aQ) ,sup§j|sa|>.
hY% BeB

acT a€T a€p

We define a dual norm

€]l = sup([(€,m)] : [Inlly <1).
Note that
1€l 20 < [1€lle, (7)-

For each a € T let u, = ey + e, where a’,a” are the two successors of a,
ie. a<d,ad” and d(a'),d(a") =d(a) + 1. It is clear that

1/p
> Latta <21/p(§j£a|P> . €€con(T).
Xo

a€T a€T

We will now need the following lemma.

LEMMA 6.5. Suppose g € coo(T). Then there exists £ € coo(T) such that
<§7ua> =Ta fOT a €T and

1/q
lelly < cp(z |na|q) |

a€T

where Cp, = max(1, (2P — 2)*1/17)'
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Proof. Let C,, = C), , be the best constant such that whenever 7 is sup-
ported on {a: a €T, d(a) <n} then we can find £ with ({,u,) =n, forae T

and
1/q
el scn(z |na|q) .

a€T
Observe that Cy < 1. We now obtain an estimate for C,, in terms of C,,_1
when n > 1.

For any 7, we consider n' =} <, Ma€a and 0" =3} -, naeq where of
course (0) and (1) are the two successors of (). By hypothesis, we can find &’
and £ € cgo(7) so that &' is supported on {(0) < a} and &” is supported on
{(1) < a} and such that

1€y < Craalln e,y 1€ 1y < ConalIn”lle, (1)
and
(€ +¢" ua) =04, d(a)>1.
Let B’ be the segment starting at (0) so that
o ’
Z |£a| - %131)3{2 |§a|
acp’ a€f
and similarly let 3" be the segment starting at (1) so that
> I€l=max> 1€
acpB” acp
Let us assume (for convenience; the other case is exactly similar) that
dolel< > L.
acp’ acpB”
Then if [ng| < 3,50 ol — D uep I€al, we will set
§=moe) +& +¢"
I 0] 3 e €]~ Sy 6] we will et
1 1
£=5m (e +eqy) + 3 ( Sl -> |£(/1|> sgnip (eo) —ey) +& +¢€".
acpB’” acp’

In either case, we have

1/
€0y ) < (1m0l + oot 1712 )+ Crot 0”12 ) * < max(L, Coo ) ley .

In the first case,

IgggZKa\ < 18N < Coaln ey (-

aep aep”
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In the second case,

1
w3 el = 5 (Il + Xl + Y 1el1)
a€p agp’ aep”
1
<3 (Ino] + Cralllle, 7y + Cralln"lle,(1))
1
<50+ 208 _ )P |nlle,(1)-

Hence,
1
C, < max(l, Ch_1, 5(1 + 2051)1/17).
It follows that if 27 > 3 we have C,, <1, while if 2P < 3 we have C,, < (2P —
2)~1/P ie.,
C, <max(1,(2P —2)7YP), n=1,2,....

This completes the proof of Lemma 6.5. O

Thus, we have that [ug].e7 is isomorphic to £,.

We let X be the completion of ¢op(7) under the norm || - ||x,. Then (eq)acT
is a 1-unconditional basis for Xy. Furthermore, for any b € 7, we have

D e

a=b

<1.
Xo

LEMMA 6.6. The block basis (ug)act in Xo is equivalent to the canonical
basis of £,.

Proof. We claim that

1/p
' (Tler) " <

a€T

Z Eallg

a€T

1/p
g21/p(§jsa|p) | Ecan(T).
Xo

a€T
Indeed, using Lemma 6.5, we may pick ¢ € coo(7) with (¢, u,) = (sgné&,)|€a P!
and [[¢lly < Cp Yo [6a/00 = Gyt Hence,

D lealP < CllEl i || D Catta

a€T a€eT

Xo

Hence,

1/p
&' (Tler) " =

a€T

1/p
< 21/”(2 Ié“ap) : O
Xo

acT

Z Eallg

a€T

For 0 < 6 < 1, we then define Xy to be the real interpolation space (Xp,
2,(T))gp. It is clear that (eq)qe7 is also a l-unconditional basis for Xy and
that (uq)ecr is equivalent to the canonical £,-basis also in Xy. Furthermore
Xy is super-reflexive (see [2]).
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Now we can renorm Xy so that [u,] is isometric to £, so that Xy becomes
an enlargement of ¢,. Hence, if (¢,, Xp) has C-extension property, there is an
equivalent norm || - ||x,,1 on Xy so that

lim inf
d(a)—o0

1
£+ St 2 (€], 0 +20)7

X1
for some suitable constant ¢ > 0.

We now construct by induction an order-preserving map p: 7 — 7 as
follows. Let p(@) =@. Then if p(b) has been determined for b < a we choose a
with p(a) < a so that

1
TR o Ua
b=<a

p p

+cP.
Xp,1

>
Xg,1

Z €p(b)

b=<a

We then define p(a’) = a’ and p(a”) = @” (denoting as before the successors
of a by a’,a”, etc.).
Consider the Cantor set A = {0,1}" with its canonical measure P. Let %,
denote the o-algebra generated by the sets Ay, ., ={s:s;=1t;, 1 <j<n}.
We define functions F;, : A — X by

Note that
NEn()|x, <1, teA, n=1,2,....

Then we have an estimate:
1B ()2, < Coll @)l N Fn (0112, () < Con®/P.
On the other hand,
E”Fn”Z))@J 2 E”E(Fﬂznfl)”]))@,l
> 4 Bl Fac1l%, .
Thus,
(| Fall, )P = en'/?.

This yields a contradiction and shows that ([tg]eer, Xp) fails the C-extension
property. O

REMARK. We used real interpolation in the above proof simply for consis-
tency with our restriction to real scalars. However, since we are interpolating
spaces with unconditional bases we could equally have used complex interpo-
lation of the complexifications of Xy and ¢, (7).

REMARK. Theorem 6.4 is apparently the first known example of a super-
reflexive space failing the C-extension property. It therefore answers Prob-
lems 4.1 and 4.2 of [17] or, equivalently, Problems 6.7 and 6.8 of [46].
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7. Enlargements of /,-spaces with the C-extension property

In this final section, we give some positive results for extensions from
£,-spaces. We first develop a criterion for the existence of extensions.

THEOREM 7.1. Suppose 1 < p < oo and let X = {,(F,)where (F,) is a
sequence of finite-dimensional normed spaces. Suppose Y is a separable en-
largement of X which is (UMD). Then there is an equivalent norm || - |lo on
Y so that if y €Y and (uy) is a weakly null sequence in X then

1/p
. 1 1 .
(7.1 nlzi.z(§||y+uns+§y—un||§) > tim (gl + un?) /7
provided both limits exist.

Proof. We begin with some notation. Let A = {0,1}" be the Cantor set
with the usual Haar measure, P. We denote by 3; the finite-algebra of the
Borel sets generated by the set A, . 5, ={t:t;=s;, 1 <i<j}. Thus, ¥ is
the trivial subalgebra.

Since Y has (UMD) there is a constant C' with the following property. Let
(M;)jL, be a Y-valued martingale on A adapted to (3;)7L,. Let dM; =
M; — M;_1 and dMo = My. Then for any d; = £1 for 0 < j <m, we have

(E Em:aj dM;
j=1

Now we will utilize the notion of a tree map from [12]. We consider
the infinite branching tree 7o, which we define to consist of all finite sub-
sets {n1,...,ng} of N with ny < ng <--- <ny ordered by {ni,...,ng} <
{mq,...,m} if k <land n; =m; for 1 <j <k. The empty set () is the root of
the tree. A branch of the tree is a sequence ag = and then ay, = {nq,...,nx}
where (ng)52, is a fixed increasing sequence.

We consider a class D of tree maps a — fo, f: T — Ly(A,Y). By de-
finition, a tree map satisfies the condition that for every branch [ the set
{a € pB: f, #0} is finite. We additionally require for f € D that fj is con-
stant, and each fy, .., is Xy—measurable, and we insist that

p\ 1/p
) < C(E[| My ||P)M7.

E(f’l’bl,“.,nk|2k—1):07 k:172,

and if k is even,

(oo}
fonmi() € D FRCX, teA.

Jj=np+1
For each branch § generated by (ng)g,, we define

p 00
- ]EZ ||fn17~-,n2j H;D
j=1

oo

anthIj

Jj=0

AB, f) = (CP+1)E




308 N. J. KALTON

Here, the zero term in the first summation is fy. Note, of course, that our
assumptions on tree maps ensure each such sum is finite. We then define

A(f)= Sl;pA(ﬂ, f)-
We then define

O(y) =if{A(f): fo=y, f€D}, yeY.
It follows that we have that if > ©(y), then there exists a tree map f with
fo=vy and
AB, f) <0

for every branch 5. Now it is we can choose a branch 8 = (ny)72 ; by induction
so that if k> 1, then f,,  n, (t) € D25 | F; for all t € A. Then the

Jj=nak+1
sequence
k
My=y+Y  furm,
J=1

is a martingale adapted to ¥. For some m, we have M}, is constant for & > m.
Thus,

AB, f)=(CP+1)E

o0
—EZ [F—(
j=1

P
=(CP+1E

p

> [lyll”.

Thus, 6 > ||ly||? and it follows that ©(y) > ||y||?.
It is clear that ©(ay) = |a|PO(y) for y € Y and o € R. We next claim that

@<%(y + z)> < %(@(y) +00).

To do this, suppose € > 0 and find f®), f(*) € D so that fqg =y, f(z) z

and A(f¥)) < O(y) + ¢ while A(f*)) < O(2) +&. Let us introduce the map
o : A — A defined by

J(tl,tg,...) == (tg,t4,...).
We then define f € D by fy = %(y + 2) and then

l(yfz)v t1:17
— 2
fn1(t)_{%(z_y)’ t1:07
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and
fn1,n2 = 07 nl < n2
and then for k > 3,

A @), =1,
fn1,n2 ,,,,, ng (t) - (2) o
N3y, N (J(t))v t1=0.
It is then clear that 1
A(f) < 3 (@(y) +0(2) +€).

We deduce that
(72) o(5+2) =5 (00) +6()

Now suppose y € Y and (u,)>2; is a sequence in X such that w, €
> nent1 Fr. We claim that

1
(7.3) O(y) +liminf ||u, [P <liminf 5 (O(y +un) +O(y — un)).

In this case, for ¢ > 0 and for each n, we may tree maps f1) and
f=) so that fé”’ﬂ =y + Uy, fé"’_) =y —up, A(f)) <Oy +uy) +¢
and A(f"7)) < O(y — uy,) +¢. We then define f € D by

f((]:ya fm:(), 1<n;<o0
and then
Un, to=1
e t) = 29 5
f 1, 2() {_unz, t2:0’
and if k>3
fret o (a(t), ta=1,
fn1 ..... nk(t): 1132)—’ ’C( ()) 2
n3,~-7nk(a(t))7 t2—0
Then X
A(f) < sup<(@(y+un) +O(y—uy)) — uﬂp) +e
Therefore,

0() <sup( O+ 1) + 00y ) ~ ).

This implies (7.3).
We next note that from (7.2) it follows that

N
o+ +u) < 1 30y
j=1

whenever N is a power of 2. Let U = {z: ©(y) < 1}. Since U contains the
open unit ball of X, it follows from the above condition that U is also open
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and thus is convex. Thus, U generates an equivalent norm || - ||p on Y and
indeed

O) =lvlg, yeY.
By (7.3), we have that || - ||o satisfies the conclusion of the theorem. O

THEOREM 7.2. Suppose 1 < p < oo and X ={,(F,) where (F,) is a se-

quence of finite-dimensional spaces. Let Y be a separable enlargement of X
such that Y has the (UMD) property and o (UFDD). Then (X,Y) has the

C-extension property.

Proof. Let (E,)5%, be the UFDD for Y and let @, be the associated
projections @, : Y — E,. y € Y. For any sequence ¢ = (4,,)52; where §,, = +1
define

Ssy=>_6;Qjy.
j=1

Let us suppose || - ||o is the norm on Y satisfying (7.1) given by Theorem 7.1.
Suppose sup ||S5]| = K and that C~ |y < |lyllo < C|ly|| for y € Y. We then
define

lyll: ZSgpllssyllo-

Now if y € Y and (u,) is a weakly null sequence in X for given € > 0, we can
pick § so that |ly|l1 < ||Ssyllo +&. But then

o1
liminf (1S5 (y + un)[[§ + 155 (y — un)[15)

n—oo 2

> ||Ssyllh + liminf || Ssuy, |5
n—oo
> |yl — e + (CK) " liminf ||u,||?.
n—oo

It follows that
1

lim = ([ly + wnl[§ + |y = un|[7) > [yl + (CK) ™ lim[fu, |[?
n—oo 2 n—00

whenever all the limits exist. But in (Y, || - ||1), (E,) is a 1-UFDD and so
Tinn [ly+ s = lim iy = ol

whenever one limit exists. We therefore can apply Theorem 6.3(iii) to the
identity map Y — (Y} - ||1) to deduce that (X,Y") has the C-extension prop-
erty. U

REMARKS. We do not know if the above theorem fails without the UFDD-
assumption. Let us remark that the example created in Theorem 6.4 is now
seen to necessarily fail (UMD). The first example of a super-reflexive Banach
lattice failing (UMD) was given by Bourgain in 1983 [6] and is not totally
trivial, so this example may be of some interest.
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Notice that this Theorem 7.2 applies to the case when X =/, and Y = L,.
where 1 <7 <p<2. An isometric result of this nature in proved in [22].

COROLLARY 7.3. Theorem 7.2 holds if X is assumed to be a subspace of a
space Lp(Fy,) with the approzimation property.

Proof. Of course X also has (MAP) and by Proposition 5.3 X is isomorphic
to a complemented subspace of a space Z = ¢,(G,,) where each G, is a finite-
dimensional subspace of X. It follows by the Pelczynski decomposition trick
that X & ¢,(Z) is isomorphic to £,(Z). Thus, (X @ ¢,(2),Y & {,(Z)) has the
C-extension property by Theorem 7.2 and this quickly implies that so does
(X,Y). O

We can now extend our results to the case of subspaces of L; (which is, of
course, not a (UMD)-space).

THEOREM 7.4. Suppose 1 <p<2 and X is a subspace of L1[0,1] which is
isomorphic to a subspace of ¢,, with the approzimation property. Then (X,Lq)
has the C-extension property.

Proof. Since E has nontrivial type we can apply the Maurey—Nikishin fac-
torization theory (cf. [34], [37], or [43]) and via a change of density assume
that X is isomorphically embedded into some L,[0,1] where 1 < p <2. Thus,
there is a constant C' so that || f||, < C| f]j1 for fe X.

Fix 1 <r <p. Let % + % =1and 2+ 1=1. Let (h,)32, denote the
Haar basis of L; and let .S,, be the partial sum operators. Then by Doob’s
inequality, we have an estimate

15 < K flls,  f €Ly

where f* =sup,, |Snf]-

Now apply Theorem 7.2 or Corollary 7.3 there is a (homogeneous) Zippin
selector ® : Bx+ — L. Thus, ® is a weak*-continuous map so that ®(z*)|x =
z*. Let A=||®|. We now choose 7> 0 so that CT!=%/9(K\)*/4 < 1.

Let us define a map o : AB,, — L as follows. We let

o (i anhn> = i On(ao, ... an)anhy,

n=0 n=1

where 0 <6, (ag,...,a,) <1 are chosen inductively to be maximal subject to
the condition

<T

— )

0<t<1.

> 6k(ao, ..., ax)arhi(t)
k=0

It is not difficult to see that each map f — 0;(f) is a continuous function of
aop, - ..,a, and hence that o is weak*-continuous.
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We then define W =00®: Bx« —7Br__. If 2* € Bx~, let g=®(z*) € Ly
and ¢’ = ¥(z*). Then we have
llg = 9'lly < [ (gl +7)x(g-2n ll, < 2ll9" x> |
Now

/ (g*)thgTq*S/ (g*)°dt < (KN\)°197°.
g*>T

g*2>T
Thus,
lg = g'llg < 271 =*/9(EN)*/ 2.
Now if f € X we have,

/f(g—g')df

Hence, if p: Lo, — X* is the standard restriction map we have

< 2r 1= KN £, < 2071 KN) T .

1
lpoW(z*) —a*|| <207 /1K N)*/1 < >

Let ¢(z*) =a* — po U(z*). )
The remainder is standard. We define ¥ : Bx« — Ly, by

U(z*)=> Woek(a")
k=0

and U is the required Zippin selector. O

Let us note that there are subspaces X of L; so that (X,L;) is known
to fail the C-extension property. This follows from the fact there are similar
subspaces of ¢1 (see [19]). On the other hand, it is unknown whether there
is any subspace of L, where 1 < p < 0o so that (X, L,) fails the C-extension
property. This is Problem 6.7 of [46]. Johnson and Zippin [17] showed that
there is a subspace X of L, for which one does not have the isometric (or
even the almost isometric) C-extension property.

The argument of Theorem 7.4 implies that if for every 1 < p <2 and every
X C L, the pair (X, L,) has the C-extension property then the same will be
true for (X, L;) for every reflexive subspace X of L;.

We now give some special results concerning Hilbert spaces. If X is a
separable Banach space, we denote by Lo(X) the space La(A,P; X).

PROPOSITION 7.5. Let X be a separable enlargement of 5. In order that
(La(l2),L2(X)) has the C-extension property it is necessary that there exists
a constant C so that if (M) is an X -valued dyadic martingale and A C

1,2,...,m} is a subset with dM; € Lo(ls) for j € A then
J

(E > dM;

2 1/2
) < C(E|Mo]?)/2.
JEA




AUTOMORPHISMS OF C(K)-SPACES 313

Proof. If (La(f2), Lo(X)) has the C-extension property there is an equiva-
lent norm || - ||o on Lo(X) so that || f]lo = (E|| f||?)*/? for f € Ly(f3) and

lim 1S + gall > [1F15+ lim_[lgnl3
n— 00 n—0oo

whenever g,, € La(f2) is weakly null and the limits exist. We suppose that
CH fllo < EILfI*)2 < ClIfllo for f € La(X).

Now let (M j);”:O be a dyadic martingale adapted to ¥X; and suppose dM; €
Lo(4y) for j € A. Let M; = ;(t1,...,t;) for j=1,2,.... Let U be any non-
principal ultrafilter on N.

Then limy, oo ©j(tky,-- - t;) — @j—1(thys- .o tk,_,) = 0 weakly for each
fixed k1 < kg <---<kj_1. Hence,

. 2 2
liung/{HLp](tk17 .. ’tkj)HO > H(pjfl(tkn' .. 7tkj—1)||07
while if j € A,
Jim g (ty - o tiIE = o1 ey oot + ElldM].
J

Thus,
. . . 2 2
khréluklirlneulgllre%t lom(thss s thn)lo 2 §E||deH '
This implies that
2\ 1/2 1/2
(E > dM; ) = (ZEdeI|2) < C(E| M)/ O

JEA jEA

We conclude the paper by considering twisted Hilbert spaces. A Banach
space X is a twisted Hilbert space if it has a subspace E so that E and X/FE
are both isomorphic to Hilbert spaces; then X can be renormed so that both
spaces are isometrically Hilbertian. Note that a twisted Hilbert space with an
unconditional basis is (isomorphically) a Hilbert space [20]. However, there
are many nontrivial examples where X has a (UFDD) (even into 2-dimensional
spaces, [24]).

THEOREM 7.6. Let X be a separable twisted Hilbert space and let E be
a closed subspace of X so that E,X/E are both Hilbertian. If both pairs
(La(E), La(X)) and (La(E*L), Lo(X*)) have the C-extension property, then X
is (UMD).

Proof. By Proposition 7.5, we may assume that there is a constant C so
that if (M;)]2, is an X-valued dyadic martingale adapted to X; and A is a
subset of {1,2,...,m} so that dM; € Ly(FE) for j € A then

(IE: > dM;

2 1/2
) < C (]| Mol P)/2.
JEA
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Similarly, there is a constant Cy so that if (M), is an X*-valued dyadic

martingale adapted to £; and A is a subset of {1,2,...,m} so that dM; €
Ly(E*) for j € A then

(E
Now let (M;)L, be an X-valued dyadic martingale, adapted to X;, with
My =0, and let A be a subset of {1,2,...,m}. We will show that

<]E > dM;

jEA
This inequality will imply that X has (UMD).
Let (M})jL, be an X*-valued dyadic martingale adapted to ¥; so that
E|| M} |> <1 and dM; € Ly(E*) for j € A. Then

IE< Zde,M;;> = 1E<Mm,ZdM;>

jEA JEA

S

2 1/2
) < Co(E|| M )12,
JEA

2 1/2
) < (Ca + Oy + C1Co) (B[ M, |22

< Co(E[| Mo |*)12.
From the Hahn—Banach theorem, this implies that
nf{(E[| My — Min||*)'/?} < Co(B|| Mn|*)/2,
where (Mj)gnzo runs through all martingales in Ly(E) such that My =0 and
dM; =0 for j € A.
It thus follows that there exists a martingale (M])7", with dM] =0 for
J ¢ A and dM; € Ly(E) for j € A so that

(

> dM;+ Y dM]

J¢A JEA

€

Finally, we deduce as promised

(]E > dM;

JEA

Z(de +dM))

2 1/2
) < Co(E[[ M |2) V2.
JEA

Thus,

2\ 1/2
) < (Co+ 1) (B[ M, |?)/2

(e

and so

S,

2\ 1/2
) < C1(Co + 1) (E| M,y ||}
JEA

20 1/2
> < (Co+ Cy + C1C) (E|| My ||V O
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REMARK. Note that Lo(X) is also a twisted Hilbert space since Lo(X)/
Lo(F) is isometrically isomorphic to Lo(X/FE). There are examples of non-
UMD twisted Hilbert spaces (see [18]). Indeed the method of [18] can be
adapted to show that there are such spaces with (UFDD). This means that
there is also a twisted Hilbert space X with a Hilbertian subspace E so that
X/FE is also Hilbertian but (F, X) fails the C-extension property.
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