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MARTINGALE DIFFERENCES AND THE METRIC THEORY
OF CONTINUED FRACTIONS

ALAN K. HAYNES AND JEFFREY D. VAALER

Abstract. We investigate a collection of orthonormal functions
that encodes information about the continued fraction expansion

of real numbers. When suitably ordered these functions form a

complete system of martingale differences and are a special case

of a class of martingale differences considered by Gundy. By

applying known results for martingales, we obtain corresponding

metric theorems for the continued fraction expansion of almost
all real numbers.

1. Introduction

Throughout this paper, we work with real valued functions defined on the
compact group R/Z. As usual, we regard such functions as defined on R

and having period 1. We frequently regard R/Z as a probability space with
respect to a normalized Haar measure defined on the σ-algebra of Borel sub-
sets, or restricted to a finite sub-σ-algebra. We also work with elements of the
torsion subgroup Q/Z. If β is a point in Q/Z we write β = a/q where q is a
positive integer and a is an integer representing a unique reduced residue class
modulo q. By the height of β, we understand the positive integer h(β) = q,
which is also the order of β in Q/Z. In Section 2, we define a countable collec-
tion of functions fβ : R/Z → R, indexed by points β in Q/Z. These functions
form a complete orthonormal basis for the Hilbert space L2(R/Z), and also
encode information about continued fractions. The functions fβ , which are
the subject of this paper, were used by Hata [9] in a slightly different form to
obtain interesting identities for sums over Farey fractions. In particular, our
Theorem 4 is similar to [9, Lemma 3.1]. We will show that for certain natural
orderings the functions fβ , together with a corresponding sequence of finite
σ-algebras, form a sequence of martingale differences. We will show that the
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value of fβ(α) is determined in an elementary way by the convergents and
intermediate convergents from the continued fraction expansion of α.

Recall that each irrational real number α has an infinite simple continued
fraction expansion

α = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

= [a0;a1, a2, a3, . . . ],

where a0 is an integer and a1, a2, . . . is a sequence of positive integers uniquely
determined by α. Here, we adopt standard notation and terminology as de-
veloped in [10], [11], or [12]. The number an is the nth partial quotient of α.
If α is rational, we write

α = [a0;a1, a2, . . . , aN ]

for one of its two finite continued fraction expansions. The principal conver-
gents from the continued fraction expansion of an irrational real number α
are defined by setting p−2 = 0, q−2 = 1, p−1 = 1, q−1 = 0, and then by the
recursive formulas

(1) pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2

for n = 0,1,2, . . . . Of course, an = an(α), pn = pn(α), and qn = qn(α) depend
on α, but to simplify notation we often suppress this dependence.

If α is an irrational point in R/Z, that is, α does not belong to Q/Z,
then the partial quotient a0 is not uniquely determined. For our purposes, it
will be convenient to set a0 = 0, and so to identify α in R/Z with its coset
representative in the open interval (0,1). Then we also have p0 = 0 and q0 = 1.
We will make use of the convergents and the intermediate convergents from
the continued fraction expansion of α. It will be convenient to organize these
by defining

(2) En =
{

mpn−1 + pn−2

mqn−1 + qn−2
: m = 1,2, . . . , an

}
for n = 1,2, . . . . Each set En contains an distinct fractions, including the
principal convergent pn/qn. The remaining fractions (if any) indexed by m =
1,2, . . . , an − 1 are the intermediate convergents to α. It is easy to check that

(3) En = {[0;a1, a2, . . . , an−1,m] : m = 1,2, . . . , an}.

Again, the set En = En(α) depends on α, but we often suppress this depen-
dence.

For each point β in Q/Z the function fβ : R/Z → R is a step function taking
at most three distinct values on intervals of positive measure, and defined
below by (13) or (15). If α is an irrational point in R/Z then the value of
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fβ(α) is also determined by the convergents and intermediate convergents
to α. The precise result is as follows.

Theorem 1. Let α be an irrational point in R/Z, and for n = 1,2, . . .
let En be the collection of convergents and intermediate convergents defined
by (2). If β ∈ Q/Z then fβ(α) �= 0 if and only if β belongs to En for some
n = 1,2, . . . . Moreover, if β belongs to En then

(4) fβ(α) = (−1)n−1qn−1(α).

Further identities involving partial sums of the functions fβ are given in
Section 3.

By combining Theorem 1 with a convergence theorem for martingale dif-
ferences due to Gundy [6, Theorem 2.1(a)], we obtain the following metric
theorem.

Theorem 2. Let F : R/Z → R ∪ { ±∞} be a Borel measurable function that
is finite almost everywhere. Then there exist real numbers {c(β) : β ∈ Q/Z}
such that

(5) lim
N →∞

N∑
n=1

(−1)n−1qn−1(α)
∑

β∈En(α)

c(β) = F (α)

for almost all irrational points α in R/Z.

The numbers {c(β) : β ∈ Q/Z} that occur in the statement of Theorem 2
are not uniquely determined by the measurable function F . In particular,
there exist c(β) that are not all zero but for which the limit (5) is zero for
almost all α. We give an example of this in Section 4. An interesting feature of
Theorem 2 is that no assumption is made concerning the integrability of F . If
we assume that the function F is in L1(R/Z) then the conclusion (5) is much
easier to prove. In fact, if F is in L1(R/Z) then there is a unique choice of the
numbers {c(β) : β ∈ Q/Z} such that (5) converges almost everywhere and in
L1-norm to the function F . If F is in L2(R/Z), then there is a unique choice
of the numbers {c(β) : β ∈ Q/Z} such that (5) converges almost everywhere
and ∑

β∈Q/Z

c(β)2 < ∞.

This follows from the fact (see Theorem 4) that the collection of functions
{fβ : β ∈ Q/Z} forms a complete orthonormal basis for L2(R/Z).

In Section 5, we assume that numbers {c(β) : β ∈ Q/Z} are given and
we consider the behavior of the corresponding partial sums, such as occur
on the left of (5). If the partial sums are bounded in L1-norm then it is
an immediate consequence of the martingale convergence theorem that the
partial sums converge almost everywhere. We report this as Theorem 9. If
we assume that the map β �→ c(β)h(β) is bounded on Q/Z, then we can draw



216 A. K. HAYNES AND J. D. VAALER

further conclusions about the set of irrational points α where the partial sums
converge.

Theorem 3. Let {c(β) : β ∈ Q/Z} be a collection of real numbers such that
β �→ c(β)h(β) is bounded on Q/Z. For each irrational point α in R/Z and
positive integer Q let M = M(α,Q) and N = N(α,Q) be the unique positive
integers such that

1 ≤ M ≤ aN and MqN −1 + qN −2 ≤ Q < (M + 1)qN −1 + qN −2.

Write C for the subset of irrational points α in R/Z such that

(6) lim
Q→∞

N∑
n=1

(−1)n−1qn−1(α)
∑

β∈En(α)
h(β)≤Q

c(β)

exists and is finite. Write D for the subset of irrational points α in R/Z such
that both

(7) lim inf
Q→∞

N∑
n=1

(−1)n−1qn−1(α)
∑

β∈En(α)
h(β)≤Q

c(β) = −∞

and

(8) limsup
Q→∞

N∑
n=1

(−1)n−1qn−1(α)
∑

β∈En(α)
h(β)≤Q

c(β) = +∞.

Write E for the subset of irrational points α in R/Z such that
∞∑

n=1

qn−1(α)2
∑

β∈En(α)

c(β)2 < ∞.

Then we have

(9) (i) | C ∪ D | = 1, (ii) | C \ E | = 0, and (iii) | E \ C | = 0.

We note that the restriction h(β) ≤ Q in (6), (7), and (8), effects only the
term for which n = N . Obviously, N → ∞ as Q → ∞, but in a manner that
depends on α.

We would like to thank H. L. Montgomery for first calling our attention to
the functions fβ .

2. A complete system of orthonormal functions

We will work with functions g : R/Z → C of bounded variation that satisfy
the condition

(10) g(x) =
1
2
g(x+) +

1
2
g(x−)
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at each point x. When (10) is satisfied we say that the function g is normalized.
The collection of all normalized real (or complex) valued functions of bounded
variation on R/Z is a real (or complex) vector space. An important example
is the sawtooth function ψ : R/Z → R defined by

ψ(x) =

{
x − [x] − 1

2 if x is not in Z,

0 if x is in Z,

where [x] is the integer part of x.
For each positive integer Q, we define FQ to be the finite set

FQ = {β ∈ Q/Z : h(β) ≤ Q}.

It follows that R/Z \ FQ is the union of exactly

| FQ| =
∑
q≤Q

ϕ(q)

component intervals, where ϕ is the Euler ϕ-function. Clearly, each compo-
nent interval determines a unique left-hand endpoint β1 in FQ and a unique
right-hand endpoint β2 in FQ. In this case, it will be convenient to write
I(β1, β2) for the corresponding (open) component interval and I(β1, β2) for
its closure in R/Z. We say that the elements of the ordered set {β1, β2}
are consecutive points in FQ if there exists a component interval of the form
I(β1, β2) in R/Z \ FQ. More generally, if β1 and β2 are points in Q/Z we write
I(β1, β2) for the corresponding component interval whenever the elements of
the ordered set {β1, β2} are consecutive points in FQ for some positive inte-
ger Q. We note that the normalized characteristic function of the component
interval I(β1, β2) is given by

|I(β1, β2)| + ψ(β1 − x) + ψ(x − β2),

where
|I(β1, β2)| = h(β1)−1h(β2)−1

is the Haar measure of I(β1, β2).
Now suppose that β is a nonzero point in Q/Z such that h(β) = Q. Then

there exists a unique point β′ in FQ such that {β′, β} are consecutive points in
FQ, and there exists a unique point β′ ′ in FQ such that {β,β′ ′ } are consecutive
points in FQ. Thus, we have two well-defined maps β �→ β′ and β �→ β′ ′ from
Q/Z \ {0} into Q/Z. It is easy to verify that these maps are both surjective.
And, they satisfy the basic identities

h(β) = h(β′) + h(β′ ′), gcd{h(β′), h(β)} = 1,(11)

gcd{h(β), h(β′ ′)} = 1,

and also

(12) h(β − β′) = h(β)h(β′) and h(β′ ′ − β) = h(β)h(β′ ′).
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We will often use the fact that if β is a nonzero point in Q/Z then I(β′, β′ ′)
is a component interval of R/Z \ Fq for all q such that max{h(β′), h(β′ ′)} ≤
q < h(β). Of course, the remarks and notation we have developed here reflect
well-known properties of Farey fractions (see [7] or [10]), but modified slightly
to account for our working in the group Q/Z. The following result also follows
easily from basic properties of Farey fractions.

Lemma 1. Suppose that β and γ are distinct nonzero points in Q/Z. If
h(β) ≤ h(γ), then exactly one of the following holds:

I(γ′, γ′ ′) ⊆ I(β′, β) or I(γ′, γ′ ′) ⊆ I(β,β′ ′) or I(β′, β′ ′) ∩ I(γ′, γ′ ′) = ∅.

If g1(x) and g2(x) are functions in L2(R/Z), we write

〈g1, g2〉 =
∫

R/Z

g1(x)g2(x)dx and ‖g1‖2 =
{∫

R/Z

|g1(x)|2 dx

}1/2

for their inner product and norm, respectively.
For each point β in Q/Z we define a normalized function fβ : R/Z → R of

bounded variation as follows. If β = 0, we set fβ(x) = 1, and if β �= 0, we set

(13) fβ(x) = h(β)ψ(x − β) − h(β′)ψ(x − β′) − h(β′ ′)ψ(x − β′ ′).

As the integral of ψ over R/Z is 0, it follows immediately that

(14)
∫

R/Z

fβ(x)dx =

{
1 if β = 0,

0 if β �= 0.

If h(β) = q ≥ 2, h(β′) = q′, and h(β′ ′) = q′ ′, then a useful alternative definition
of fβ is given by

fβ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

q′ if x ∈ I(β′, β),
−q′ ′ if x ∈ I(β,β′ ′),
1
2q′ if x = β′,

− 1
2q′ ′ if x = β′ ′,

1
2 (q′ − q′ ′) if x = β,

0 if x /∈ I(β′, β′ ′).

(15)

It is obvious from (15) that for β �= 0 the function fβ is supported on the
closed set I(β′, β′ ′). Also, using (15), we find that

(16) ‖fβ ‖2
2 =

∫
R/Z

fβ(x)2 dx =
(q′)2

q′q
+

(q′ ′)2

qq′ ′ = 1.

Thus, each function fβ has norm 1 and 〈f0, fβ 〉 = 0 for β �= 0.
Now suppose that β and γ are distinct nonzero points of Q/Z. Without

loss of generality, we may assume that h(β) ≤ h(γ). In view of Lemma 1,
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there are three cases to consider. If I(γ′, γ′ ′) ⊆ I(β′, β), then

〈fβ , fγ 〉 =
∫

(γ′,γ′ ′)
fβ(x)fγ(x)dx = fβ(γ)

∫
(γ′,γ′ ′)

fγ(x)dx = 0.

The other cases lead to the same conclusion in a similar manner. This shows
that the collection of functions {fβ : β ∈ Q/Z} forms an orthonormal subset
of L2(R/Z).

It remains now to show that the functions {fβ : β ∈ Q/Z} form a complete
orthonormal basis for L2(R/Z). Toward this end, let Q be a positive integer
and define KQ : R/Z × R/Z → R by

(17) KQ(x, y) =
∑

β∈FQ

fβ(x)fβ(y).

Note that for each x the function y �→ KQ(x, y) is normalized and that for
each y the function x �→ KQ(x, y) is normalized. For each Q ≥ 2, we define a
function JQ : R/Z × R/Z → R by

JQ(x, y) =
∑

h(β)=Q

fβ(x)fβ(y).

For Q ≥ 2, it is clear that

(18) KQ(x, y) = KQ−1(x, y) + JQ(x, y).

We also define a map

σ : (R/Z \ Q/Z) × (R/Z \ Q/Z) → {1,2, . . . } ∪ { ∞}
as follows: if x = y, then σ(x, y) = ∞, and if x and y are distinct irrational
points in R/Z we define σ(x, y) to be the smallest positive integer Q such that
x and y are not in the same component interval of R/Z \ FQ.

Lemma 2. Let x and y be points in R/Z \ FQ. If x and y belong to the
same component interval I(γ1, γ2) of R/Z \ FQ, then we have

KQ(x, y) = h(γ1)h(γ2).

If x and y belong to distinct component intervals of R/Z \ FQ, then

KQ(x, y) = 0.

Proof. If x and y are irrational, and σ(x, y) ≤ Q − 1, then it is easily seen
that JQ(x, y) = 0. If σ(x, y) = Q, then there exists a unique element β in
FQ \ FQ−1 such that (after renaming x and y if necessary)

x ∈ I(β′, β) and y ∈ I(β,β′ ′).

It follows that h(β) = Q and that JQ(x, y) = −h(β′)h(β′ ′). If Q + 1 ≤ σ(x, y)
then there exists a pair of consecutive points {γ1, γ2} in FQ such that both x
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and y belong to the component I(γ1, γ2). In this case, we find that

JQ(x, y) =

⎧⎪⎨
⎪⎩

h(γ2)2 if h(γ1) = Q,

h(γ1)2 if h(γ2) = Q,

0 otherwise.

Next, we use this information about JQ(x, y) to determine KQ(x, y).
We argue by induction on Q. The case Q = 1 is trivial, so we assume that

Q ≥ 2 and that the assertion of the lemma holds for KQ−1(x, y). Now when
x and y are irrational there are three cases to consider.

If σ(x, y) ≤ Q − 1, then JQ(x, y) = 0 and KQ−1(x, y) = 0 by the inductive
hypothesis. Hence, KQ(x, y) = 0 by (18).

If σ(x, y) = Q, then there exists a unique point β in FQ \ FQ−1 such that
(after renaming x and y if necessary)

x ∈ I(β′, β) and y ∈ I(β,β′ ′).

We conclude that
JQ(x, y) = −h(β′)h(β′ ′),

and by the inductive hypothesis

KQ−1(x, y) = h(β′)h(β′ ′).

Again, we find that KQ(x, y) = 0 by (18).
Finally, if Q + 1 ≤ σ(x, y) then there exists a pair of consecutive points

{γ1, γ2} in FQ such that both x and y belong to the component I(γ1, γ2). If
h(γ1) ≤ Q − 1 and h(γ2) ≤ Q − 1, then JQ(x, y) = 0 and

KQ−1(x, y) = h(γ1)h(γ2)

by the inductive hypothesis. If h(γ1) = Q then JQ(x, y) = h(γ2)2. It follows
that γ2 = γ′ ′

1 and, therefore, {γ′
1, γ

′ ′
1 } are consecutive points in FQ−1. Thus,

we find that
KQ−1(x, y) = h(γ′

1)h(γ′ ′
1 )

by the inductive hypothesis, and we conclude that

KQ(x, y) = h(γ′
1)h(γ′ ′

1 ) + h(γ′ ′
1 )2 = h(γ1)h(γ′ ′

1 ) = h(γ1)h(γ2).

If h(γ2) = Q, the argument is essentially the same. This proves the lemma
when x and y are irrational. However, comparing (15) and (17), it is easy
to see that the functions x �→ KQ(x, y) and y �→ KQ(x, y) are constant on the
interior of all component intervals of FQ, so the result of the lemma extends
immediately to all points x and y in R/Z \ FQ. �

Lemma 3. Let g : R/Z → R be an integrable function. Then for almost all
points x in R/Z we have

lim
Q→∞

∫
R/Z

g(y)KQ(x, y)dy = g(x).
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Proof. By the Lebesgue density theorem, we have

(19) lim
z→x

(z − x)−1

∫ z

x

|g(y) − g(x)| dy = 0

for almost all x in R. Assume that x is an irrational real number such that
(19) holds. For each Q, let {βQ, γQ} be consecutive points in FQ such that x
belongs to I(βQ, γQ). Let βQ and γQ be coset representatives such that βQ <
x < γQ and γQ − βQ ≤ Q−1. Then by Lemma 2, we have∣∣∣∣

∫ 1

0

g(y)KQ(x, y)dy − g(x)
∣∣∣∣ =

∣∣∣∣(γQ − βQ)−1

∫ γQ

βQ

(
g(y) − g(x)

)
dy

∣∣∣∣
≤ (γQ − βQ)−1

∫ x

βQ

|g(y) − g(x)| dy

+ (γQ − βQ)−1

∫ γQ

x

|g(y) − g(x)| dy

≤ (x − βQ)−1

∫ x

βQ

|g(y) − g(x)| dy

+ (γQ − x)−1

∫ γQ

x

|g(y) − g(x)| dy.

Because

lim
Q→∞

βQ = x and lim
Q→∞

γQ = x,

the result follows from (19). �

Theorem 4. The collection of functions {fβ : β ∈ Q/Z} forms a complete,
orthonormal basis for L2(R/Z).

Proof. Suppose that g(x) is in L2(R/Z) and g(x) is orthogonal to each
function fβ(x). That is, we suppose that

〈g, fβ 〉 =
∫

R/Z

g(y)fβ(y)dy = 0

for each β in Q/Z. Then we have

(20)
∫

R/Z

g(y)KQ(x, y)dy =
∑

β∈FQ

〈g, fβ 〉fβ(x) = 0

for all points x in R/Z. Letting Q → ∞ in (20) and applying Lemma 3, it
follows that g(x) is 0 in L2(R/Z). This shows that the collection {fβ } is
complete in L2(R/Z). �
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3. The continued fraction interpretation

We return to consideration of the principal convergents and intermediate
convergents from the continued fraction expansion of an irrational real num-
ber α. It will be convenient to assume that 0 < α < 1 and to write FQ for the
set of Farey fractions in [0,1] of order Q. As is well known, the convergents
and intermediate convergents to α satisfy the following inequalities. If n is an
odd positive integer, we have

(21)
pn−1

qn−1
< α <

anpn−1 + pn−2

anqn−1 + qn−2
< · · · <

2pn−1 + pn−2

2qn−1 + qn−2
<

pn−1 + pn−2

qn−1 + qn−2

and if n is an even positive integer, then

(22)
pn−1 + pn−2

qn−1 + qn−2
<

2pn−1 + pn−2

2qn−1 + qn−2
< · · · <

anpn−1 + pn−2

anqn−1 + qn−2
< α <

pn−1

qn−1
.

Next, we observe that for each positive integer Q there exists a unique pair
of positive integers M and N such that

(23) 1 ≤ M ≤ aN and MqN −1 + qN −2 ≤ Q < (M + 1)qN −1 + qN −2.

If N is odd, we have

(24)
pN −1

qN −1
< α <

MpN −1 + pN −2

MqN −1 + qN −2

and if N is even, then

(25)
MpN −1 + pN −2

MqN −1 + qN −2
< α <

pN −1

qN −1
.

Equations (24) and (25) determine the unique open Farey interval in [0,1] \ FQ

that contains α.

Lemma 4. Let α be an irrational point in R/Z and let

β =
mpn−1 + pn−2

mqn−1 + qn−2
, where 1 ≤ m ≤ an,

be a nonzero point in En(α) for some positive integer n. If n is odd, then

(26) β′ =
pn−1

qn−1
, β′ ′ =

(m − 1)pn−1 + pn−2

(m − 1)qn−1 + qn−2
, and α ∈ I(β′, β).

If n is even, then

(27) β′ =
(m − 1)pn−1 + pn−2

(m − 1)qn−1 + qn−2
, β′ ′ =

pn−1

qn−1
, and α ∈ I(β,β′ ′).

Proof. If n is an odd positive integer, then it follows from properties of
Farey fractions that the three fractions

(28)
pn−1

qn−1
<

mpn−1 + pn−2

mqn−1 + qn−2
<

(m − 1)pn−1 + pn−2

(m − 1)qn−1 + qn−2
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are consecutive points of FQ for Q = mqn−1 + qn−2. (Note that (m,n) �= (1,1)
because β �= 0.) This verifies the identities for β′ and β′ ′ in (26). Then it
follows from (21) that α belongs to I(β′, β). Similarly, if n is an even positive
integer, then the three fractions

(29)
(m − 1)pn−1 + pn−2

(m − 1)qn−1 + qn−2
<

mpn−1 + pn−2

mqn−1 + qn−2
<

pn−1

qn−1

are consecutive points of FQ for Q = mqn−1 + qn−2. The assertions in (27)
follow as in the previous case. �

The functions {fβ } were initially defined by (13) and (15). We now show
that the value of fβ(α) depends in a simple way on the convergents and
intermediate convergents to α.

Proof of Theorem 1. If β = 0, then β belongs to E1(α) and (4) is obvious.
Assume that β �= 0 belongs to En and that

β =
mpn−1 + pn−2

mqn−1 + qn−2
, where 1 ≤ m ≤ an.

If n is odd, then it follows from (26) that α belongs to the component interval
I(β′, β). From the definition of fβ , we conclude that

fβ(α) = qn−1 = (−1)n−1qn−1.

Similarly, if n is even then (27) implies that α belongs to the component
interval I(β,β′ ′). In this case, we find that

fβ(α) = −qn−1 = (−1)n−1qn−1.

Now assume that fβ(α) �= 0. If β = 0 then β belongs to E1. Otherwise, we
have either

(30) α ∈ I(β′, β) or α ∈ I(β,β′ ′).

Write h(β) = Q and as in (23) let M and N be the unique positive integers
such that

1 ≤ M ≤ aN and MqN −1 + qN −2 ≤ Q < (M + 1)qN −1 + qN −2.

If N is odd, then (24) and (30) imply that

(31) β =
MpN −1 + pN −2

MqN −1 + qN −2
,

and this shows that β belongs to EN . Similarly, if N is even, then (25) and
(30) imply that (31) holds, and again we conclude that β belongs to EN . �

Certain partial sums involving the functions fβ also have a natural Dio-
phantine interpretation. For each positive integer Q, we define two functions

LQ : R/Z \ FQ → {1,2, . . . ,Q} and RQ : R/Z \ FQ → {1,2, . . . ,Q}.
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If α is a point in R/Z \ FQ, then there exists a unique pair {γ1, γ2} of consec-
utive points in FQ such that α belongs to I(γ1, γ2). We define LQ(α) = h(γ1)
and RQ(α) = h(γ2). From (17) and Lemma 2, we obtain the identity

(32) 1 +
∑

2≤h(β)≤Q

fβ(α)2 = LQ(α)RQ(α)

for α in R/Z \ FQ. We now establish some further identities of this sort.

Lemma 5. If α ∈ R/Z \ FQ, then

(33) 2 +
∑

2≤h(β)≤Q

|fβ(α)| = RQ(α) + LQ(α),

and

(34)
∑

2≤h(β)≤Q

fβ(α) = RQ(α) − LQ(α).

Proof. As in the proof of Lemma 2, it suffices to establish (33) and (34)
for α irrational. For n = 1,2, . . . , let En be the collection of convergents and
intermediate convergents defined by (2). Let M and N be the unique positive
integers such that (23) holds. If N is odd then from (24), we find that

{γ1, γ2} =
{

pN −1

qN −1
,
MpN −1 + pN −2

MqN −1 + qN −2

}

are consecutive points in FQ such that α belongs to I(γ1, γ2). This implies
that

(35) LQ(α) = qN −1 and RQ(α) = MqN −1 + qN −2.

If N is even, then (25) implies that

{γ1, γ2} =
{

MpN −1 + pN −2

MqN −1 + qN −2
,
pN −1

qN −1

}

are consecutive points in FQ such that α belongs to I(γ1, γ2). In this case,
we conclude that

(36) LQ(α) = MqN −1 + qN −2 and RQ(α) = qN −1.

For each m ∈ {1,2, . . . , aN }, write

βm =
mpN −1 + pN −2

mqN −1 + qN −2
.
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Using (4), (35), and (36), we find that

∑
h(β)≤Q

|fβ(α)| =
N −1∑
n=1

∑
β∈En

|fβ(α)| +
M∑

m=1

|fβm(α)|(37)

=
N −1∑
n=1

∑
β∈En

qn−1 +
M∑

m=1

qN −1

=
N −1∑
n=1

anqn−1 + MqN −1

=
N −1∑
n=1

(qn − qn−2) + MqN −1

= qN −1 + MqN −1 + qN −2 − 1
= RQ(α) + LQ(α) − 1.

As f0(α) = 1, it is clear that (37) is equivalent to (33).
In a similar manner, using (35) and (36), we get

∑
h(β)≤Q

fβ(α) =
N −1∑
n=1

∑
β∈En

fβ(α) +
M∑

m=1

fβm(α)

=
N −1∑
n=1

∑
β∈En

(−1)n−1qn−1 +
M∑

m=1

(−1)N −1qN −1

=
N −1∑
n=1

(−1)n−1anqn−1 + (−1)N −1MqN −1

=
N −1∑
n=1

(−1)n−1(qn − qn−2) + (−1)N −1MqN −1

= (−1)N −1{MqN −1 + qN −2 − qN −1} + 1
= RQ(α) − LQ(α) + 1,

which proves (34). �

Corollary 1. If α belongs to R/Z \ FQ, then

1 +
∑

2≤h(β)≤Q

f+
β (α) = RQ(α) and 1 +

∑
2≤h(β)≤Q

f −
β (α) = LQ(α).

Proof. Identity (33) can be written as

(38)
{

1 +
∑

2≤h(β)≤Q

f+
β (α)

}
+

{
1 +

∑
2≤h(β)≤Q

f −
β (α)

}
= RQ(α) + LQ(α),
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and identity (34) can be written as

(39)
{

1 +
∑

2≤h(β)≤Q

f+
β (α)

}
−

{
1 +

∑
2≤h(β)≤Q

f −
β (α)

}
= RQ(α) − LQ(α).

The statement of the corollary now plainly follows from (38) and (39). �

The argument used to prove Theorem 1 can be applied to other functions
indexed by points β in Q/Z and supported on I(β′, β′ ′). As an example,
we define a further collection of real valued functions {χβ : β ∈ Q/Z} with
domain R/Z as follows. For β = 0, we set χ0(x) = 1 for all x in R/Z. Then
for β �= 0, we set

χβ(x) =

⎧⎪⎨
⎪⎩

1 if x ∈ I(β′, β′ ′),
1
2 if x = β′ or x = β′ ′,

0 if x /∈ I(β′, β′ ′).

For each nonzero point β in Q/Z the function χβ(x) is the normalized charac-
teristic function of the component interval I(β′, β′ ′). If β1 and β2 are distinct
points in Q/Z with h(β1) = h(β2) ≥ 2, then the open component intervals
I(β′

1, β
′ ′
1 ) and I(β′

2, β
′ ′
2 ) are disjoint. Thus, for each positive integer q, the

normalized characteristic function of the subset⋃
h(β)=q

I(β′, β′ ′)

is the function Xq : R/Z → R defined by

(40) Xq(x) =
∑

h(β)=q

χβ(x).

Theorem 5. Let α be an irrational point in R/Z, and for n = 1,2, . . . let
En be the collection of convergents and intermediate convergents defined by
(2). If β is in Q/Z then χβ(α) = 1 if and only if β belongs to En for some
n = 1,2, . . . . Moreover, the sum

∑
h(β)≤Q

χβ(α) =
Q∑

q=1

Xq(α)

is exactly the number of convergents and intermediate convergents to α with
height less than or equal to Q.

Proof. The first assertion of the corollary follows as in the proof of Theo-
rem 1. For the second assertion let M and N be the unique positive integers
such that

1 ≤ M ≤ aN and MqN −1 + qN −2 ≤ Q < (M + 1)qN −1 + qN −2,
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and for each m ∈ {1,2, . . . , aN } write

βm =
mpN −1 + pN −2

mqN −1 + qN −2
.

Then we have

∑
h(β)≤Q

χβ(α) =
N −1∑
n=1

∑
β∈En

χβ(α) +
M∑

m=1

χβm(α)

=
N −1∑
n=1

∑
β∈En

1 + M

=
N −1∑
n=1

an + M.

Plainly, this is the number of convergents and intermediate convergents to α
with height less than or equal to Q. �

Let Q be a subset of positive integers. For each irrational point α in R/Z

write

D(α) = {mqn−1 + qn−2 : 1 ≤ m ≤ an and 1 ≤ n}

for the set of denominators from the collection of convergents and intermediate
convergents to α. Arguing as in the proof of Theorem 5, we find that

(41)
∑
q∈Q

Xq(α) = | D(α) ∩ Q |.

If the set Q is such that the integral

(42)
∫

R/Z

{∑
q∈Q

Xq(x)
}

dx

is finite then the integrand is finite for almost all x and, therefore, (41) is
finite for almost all irrational points α in R/Z. We conjecture that if the
integral (42) is infinite then (41) is infinite for almost all irrational points α.
The situation is clarified by the following simple estimate.

Lemma 6. For each integer q ≥ 2, we have

(43)
∫

R/Z

Xq(x)dx =
2ϕ(q)

q2

{
log q +

∑
p|q

logp

p − 1
+ c0

}
+ O

(
log log q

q2

)
,

where c0 is Euler’s constant, and the sum on the right of (43) is over prime
numbers p that divide q.
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Proof. Suppose that β = a/q, where 1 ≤ a < q and (a, q) = 1. Write a for
the unique integer such that 1 ≤ a < q and aa ≡ 1 (mod q). We find that
h(β′) = a and h(β′ ′) = q − a, and, therefore,∫

R/Z

Xq(x)dx =
∑

β∈Q/Z

h(β)=q

1
h(β′)h(β′ ′)

=
q∑

a=1
(a,q)=1

1
a(q − a)

(44)

=
q∑

a=1
(a,q)=1

(
1
aq

+
1

(q − a)q

)

=
q∑

a=1
(a,q)=1

2
aq

.

Then using Möbius inversion and well-known estimates, we have
q∑

a=1
(a,q)=1

1
a

=
q∑

a=1

1
a

∑
d|q
d|a

μ(d) =
∑
d|q

μ(d)
q∑

a=1
d|a

1
a

=
∑
d|q

μ(d)
d

q/d∑
b=1

1
b

(45)

=
∑
d|q

μ(d)
d

{
log q − logd + c0 +

d

2q
+ O

(
d2

q2

)}

=
ϕ(q) log q

q
−

∑
d|q

μ(d) logd

d
+

c0ϕ(q)
q

+ O

(
log log q

q

)
.

The statement of the lemma follows now by combining (44), (45), and the
basic identity

�(46) −
∑
d|q

μ(d) logd

d
=

ϕ(q)
q

∑
p|q

log p

p − 1
.

It follows from the estimate (43) that the integral (42) is infinite if and
only if the series

(47)
∑
q∈Q

ϕ(q) log q

q2

diverges. Thus, we state our conjecture in the following form.

Conjecture 1. Let Q be a subset of positive integers. Then the set D(α) ∩
Q is infinite for almost all irrational points α in R/Z if and only if the series
(47) diverges.

We note that the analogous statement for the principal convergents to
almost all α is a well-known theorem of Erdös [3]. Related questions of Dio-
phantine approximation are considered in [8, Chapter 2] and [13].
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4. Sequences of martingale differences

Let n �→ βn be a bijective map from the set N of positive integers onto the
group Q/Z. Then we say that β1, β2, . . . is an enumeration of the elements of
Q/Z. For each positive integer n, we define Bn to be the finite σ-algebra of
subsets of R/Z generated by the components of the open set

(48) R/Z \ {β1, β2, . . . , βn}

together with the collection of singleton sets {β1}, {β2}, . . . , {βn}. Thus, a
function g : R/Z → C is Bn-measurable if and only if it is constant on each
component of the open set (48). Clearly, we have B1 ⊆ B2 ⊆ · · · .

In this section, we determine a simple arithmetic condition that classifies
all orderings β1, β2, . . . such that fβn is Bn-measurable for each n = 1,2, . . .
and the sequence of functions and σ-algebras

(49) {(fβn , Bn) : n = 1,2, . . . }

forms a sequence of martingale differences. The martingale differences which
arise from this construction are a special case of a general class of such func-
tions considered by Gundy [6]. These observations allow us to exploit results
from the theory of martingales to obtain metric theorems about the continued
fraction expansion of almost all real numbers.

Again, let β1, β2, . . . be an enumeration of the elements of Q/Z. We say that
this enumeration is admissible if it satisfies the following three conditions:

(i) β1 = 0,
(ii) if m ≥ 2 and βk = β′

m, then k < m,
(iii) if m ≥ 2 and βl = β′ ′

m, then l < m.

It follows easily that an admissible enumeration of Q/Z must begin with either
0, 1

2 , 1
3 , . . . , or with 0, 1

2 , 2
3 , . . . .

Suppose that β1, β2, . . . is an enumeration of Q/Z such that n �→ h(βn) is
nondecreasing. Then β1 = 0, and using (11), we find that if βn is nonzero
then h(β′

n) < h(βn) and h(β′ ′
n) < h(βn). It follows that such an enumeration

is admissible. As an example, if we enumerate Q/Z as

(50) 0
1 , 1

2 , 1
3 , 2

3 , 1
4 , 3

4 , 1
5 , 2

5 , 3
5 , 4

5 , 1
6 , 5

6 , 1
7 , 2

7 , 3
7 , 4

7 , 5
7 , 6

7 , . . . ,

then n �→ h(βn) is nondecreasing and the enumeration is admissible. Thus
admissible enumerations of Q/Z certainly exist.

The admissible enumeration (50) is constructed by arranging the points of
Q/Z in order of increasing height, and then ordering points of equal height
by ordering their coset representatives in (0,1). This construction also leads
to an admissible ordering for other naturally occurring functions on Q/Z. We
describe such an admissible enumeration associated to the Stern–Brocot tree
(see [5]). If β is a rational number but not an integer, then β has exactly two
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finite continued fraction expansions. One expansion has the form

(51) β = [a0;a1, a2, . . . , aN −1, aN ], where aN ≥ 2,

and then the other expansion is

β = [a0;a1, a2, . . . , aN −1, aN − 1,1].

We define

s(β) = a1 + a2 + · · · + aN ,

so that s(β) is the sum of the partial quotients (other than a0) in both expan-
sions of β. If n is an integer, we define s(n) = 1. It is clear that s is constant
on cosets of Q/Z and thus it is well defined as a map s : Q/Z → N. Clearly,
s(β) = 1 if and only if β = 0 in Q/Z.

Suppose that β is a rational number but not an integer, and β has the
finite continued fraction expansion (51). If N is odd, then arguing as in the
proof of Lemma 4, we get

s(β′) + aN = s(β) and s(β′ ′) + 1 = s(β).

If N is even, we find that

s(β′) + 1 = s(β) and s(β′ ′) + aN = s(β).

In particular, these identities show that if β is a nonzero point in Q/Z, then
s(β′) < s(β) and s(β′ ′) < s(β). It follows that if β1, β2, . . . is an enumera-
tion of Q/Z such that n �→ s(βn) is nondecreasing, then the enumeration is
admissible. For example, the enumeration

(52) 0
1 , 1

2 , 1
3 , 2

3 , 1
4 , 2

5 , 3
5 , 3

4 , 1
5 , 2

7 , 3
8 , 3

7 , 4
7 , 5

8 , 5
7 , 4

5 , . . . ,

that corresponds to the ordering induced by the Stern–Brocot tree, is such
that n �→ s(βn) is nondecreasing. Hence, (52) is an admissible enumeration
of Q/Z, but distinct from (50). In particular, the map n �→ h(βn) fails to be
nondecreasing for the enumeration (52).

Theorem 6. Let β1, β2, . . . be an enumeration of Q/Z. Then β1, β2, . . .
is admissible if and only if for each positive integer n the function fβn is
Bn-measurable.

Proof. First assume that β1, β2, . . . is admissible. As β1 = 0 it follows that
fβ1 = f0 is constant. Hence, it is trivial that fβ1 is B1-measurable. Now
suppose that n ≥ 2. By hypothesis, both β′

n and β′ ′
n are elements of the set

{β1, β2, . . . , βn}. Therefore, Bn contains the sub-σ-algebra An generated by
the components of the open set

R/Z \ {βn, β′
n, β′ ′

n }
and the singleton sets {βn}, {β′

n}, {β′ ′
n }. From the definition (15), it follows

that fβn is An-measurable, and hence also Bn-measurable.
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Now assume that the function fβn is Bn-measurable for each positive in-
teger n. In particular, the function fβ1 must be constant on each component
of the open set R/Z \ {β1}. That is, fβ1 must be constant on R/Z \ {β1}.
Hence, fβ1 is constant almost everywhere and therefore β1 = 0. Now as-
sume that n ≥ 2. Then fβn is constant on each of the open sets I(β′

n, βn) and
I(βn, β′ ′

n). Therefore, the σ-algebra An defined above is the smallest σ-algebra
for which fβn is measurable. It follows that An ⊆ Bn and, therefore, β′

n and
β′ ′

n must be elements of the set {β1, β2, . . . , βn}. That is, if βk = β′
n then

k < n, and if βl = β′ ′
n then l < n. This shows that the enumeration β1, β2, . . .

is admissible. �

Lemma 7. Let β1, β2, . . . be an admissible enumeration of Q/Z. If βl and
βm are distinct nonzero points in Q/Z such that βm is contained in I(β′

l, β
′ ′
l ),

then l < m.

Proof. Let h(βl) = Q ≥ 2 and define

M(βl) = {n ∈ N : βn ∈ I(β′
l , β

′ ′
l )}.

Then M(βl) is not empty and we may clearly assume that m is the smallest
positive integer in M(βl). Now I(β′

l, β
′ ′
l ) is a component interval in R/Z \ FQ−1

and, therefore, h(βl) = Q ≤ h(βm). As

βm ∈ I(β′
l, β

′ ′
l ) ∩ I(β′

m, β′ ′
m),

it follows from Lemma 1 that either

I(β′
m, β′ ′

m) ⊆ I(β′
l, βl) or I(β′

m, β′ ′
m) ⊆ I(βl, β

′ ′
l ).

Assume that the first alternative

(53) I(β′
m, β′ ′

m) ⊆ I(β′
l, βl)

holds. Write β′
m = βj and β′ ′

m = βk. As the enumeration β1, β2, . . . is admis-
sible we have j < m and k < m. Therefore, neither β′

m nor β′ ′
m can belong to

I(β′
l, βl). From (53), we conclude that

(54) β′
m = β′

l and β′ ′
m = βl.

Since β1, β2, . . . is admissible, the second identity in (54) implies that l < m.
If the second alternative

I(β′
m, β′ ′

m) ⊆ I(βl, β
′ ′
l )

holds then the inequality l < m follows in a similar manner. This proves the
lemma. �

Next, we recall that (49) is a sequence of martingale differences if each
function fβn is Bn-measurable, and if for n = 1,2, . . . the conditional expec-
tation of fβn+1 with respect to Bn is 0 almost everywhere. In the present
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setting, the conditional expectation of fβn+1 with respect to Bn is 0 almost
everywhere if and only if

(55)
∫

J

fβn+1(x)dx = 0

for each component J of the open set R/Z \ {β1, β2, . . . , βn}.

Theorem 7. Let β1, β2, . . . be an admissible enumeration of Q/Z. Then
the sequence of functions and σ-algebras

(56) {(fβn , Bn) : n = 1,2, . . . }
is a sequence of martingale differences.

Proof. Let n be a positive integer. Then βn+1 �= 0 and by hypothesis the
points β′

n+1 and β′ ′
n+1 are contained in the set {β1, β2, . . . , βn}. Obviously,

β1 = 0 is not contained in the open set I(β′
n+1, β

′ ′
n+1). If 2 ≤ m ≤ n, then

by Lemma 7 the point βm is not contained in I(β′
n+1, β

′ ′
n+1). It follows that

I(β′
n+1, β

′ ′
n+1) is a component of the open set

(57) R/Z \ {β1, β2, . . . , βn}.

Using the definition (15), we find that∫
I(β′

n+1,β′ ′
n+1)

fβn+1(x)dx = 0.

As fβn+1 is supported on I(β′
n+1, β

′ ′
n+1), it follows that (55) also holds when-

ever J �= I(β′
n+1, β

′ ′
n+1) is any other component of (57). This proves the the-

orem. �

Gundy [6] investigated a general class of martingale differences called H-
systems. If β1, β2, . . . is an admissible enumeration of Q/Z, then it follows
from Theorem 4 and [6, Proposition 1.1] that (56) is an example of an H-
system. The following theorem is [6, Theorem 2.1(a)] applied to the sequence
(56).

Theorem 8. Let F : R/Z → R ∪ { ±∞} be a Borel measurable function that
is finite almost everywhere and let β1, β2, . . . be an admissible enumeration of
Q/Z. Then there exist real numbers {c(βn) : n = 1,2, . . . } such that

lim
N →∞

N∑
n=1

c(βn)fβn(x) = F (x)

for almost all x in R/Z.

In order to express results of this sort in terms of the continued fraction
expansion of α, it is convenient to select the admissible ordering of Q/Z so that
it has some arithmetical significance. Here, we use the admissible ordering
(50).
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Proof of Theorem 2. Let β1, β2, . . . be the admissible enumeration (50). By
Theorem 8, there exist real numbers {c(β) : β ∈ Q/Z} such that

(58) lim
Q→∞

∑
h(β)≤Q

c(β)fβ(x) = F (x)

for almost all x in R/Z. Assume that α is an irrational point in R/Z such that
(58) holds. For each positive integer Q, let M = M(Q,α) and N = N(Q,α)
be the unique positive integers defined by (23). Using Theorem 1, we can
write ∑

h(β)≤Q

c(β)fβ(α) =
N −1∑
n=1

(−1)n−1qn−1(α)
∑

β∈En(α)

c(β)(59)

+ (−1)N −1qN −1(α)
M∑

m=1

c

(
mpN −1(α) + pN −2(α)
mqN −1(α) + qN −2(α)

)
.

We restrict the parameter Q in (59) to the subsequence of denominators of
the convergents to α. Along this subsequence, the positive integers M and
N are related by the identity M = aN . Thus, (59) reduces to the simpler
assertion (5). �

Next, we construct an example to show that the numbers {c(β) : β ∈ Q/Z}
that occur in the statement of Theorem 2 are not uniquely determined by F .
We require the following lemmas, the first of which identifies the inverse of
the maps β �→ β′ and β �→ β′ ′.

Lemma 8. Let r′/s′ < r/s < r′ ′/s′ ′ be three consecutive points in the set Fs

of Farey fractions of order s. Then we have

(60) {β ∈ Q/Z : β′ = r/s} =
{

mr + r′ ′

ms + s′ ′ : m = 1,2, . . .

}
and

(61) {γ ∈ Q/Z : γ′ ′ = r/s} =
{

nr + r′

ns + s′ : n = 1,2, . . .

}
.

Proof. The identity (60) follows immediately from the inequalities

r

s
< · · · <

mr + r′ ′

ms + s′ ′ <
(m − 1)r + r′ ′

(m − 1)s + s′ ′ < · · · <
r + r′ ′

s + s′ ′ <
r′ ′

s′ ′ ,

and basic properties of Farey fractions. Then (61) is proved in the same
manner. �

Lemma 9. Let r′/s′ < r/s < r′ ′/s′ ′ be three consecutive points in the set Fs

and write δ = r/s for the image of r/s in Q/Z. Define

βm =
mr + r′ ′

ms + s′ ′ for m = 0,1,2, . . . ,
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and

γn =
nr + r′

ns + s′ for n = 0,1,2, . . . .

Then δ′ = r′/s′ and δ′ ′ = r′ ′/s′ ′ in Q/Z, and for positive integers M and N
we have

(62)
M∑

m=1

fβm(x) =

⎧⎪⎨
⎪⎩

Mh(δ) if x ∈ I(δ, βM ),
−h(δ′ ′) if x ∈ I(βM , δ′ ′),
0 if x /∈ I(δ, δ′ ′)

and

(63)
N∑

n=1

fγn(x) =

⎧⎪⎨
⎪⎩

−Nh(δ) if x ∈ I(γN , δ),
h(δ′) if x ∈ I(δ′, γN ),
0 if x /∈ I(δ′, δ).

Proof. That δ′ = r′/s′ and δ′ ′ = r′ ′/s′ ′ in Q/Z follows the definition of the
maps β �→ β′ and β �→ β′ ′, and the hypothesis that r′/s′ < r/s < r′ ′/s′ ′ are
consecutive points in Fs. From the definition (13), we get

M∑
m=1

fβm(x) =
M∑

m=1

h(βm)ψ(x − βm)(64)

−
M∑

m=1

h(β′
m)ψ(x − β′

m) −
M∑

m=1

h(β′ ′
m)ψ(x − β′ ′

m).

It follows using Lemma 8 that β′
m = δ, β′ ′

m = βm−1 for each m = 1,2, . . . ,M ,
and β0 = δ′ ′. These observations allow us to simplify (64). We find that

M∑
m=1

fβm(x) = h(βM )ψ(x − βM ) − Mh(δ)ψ(x − δ) − h(δ′ ′)ψ(x − δ′ ′),

and this easily implies (62). The identity (63) is established in a similar
manner. �

Assume now that δ is a nonzero point in Q/Z. Lemmas 8 and 9 imply that

(65) lim
Q→∞

{
fδ(x) −

∑
h(β)≤Q

δ=β′

fβ(x) −
∑

h(γ)≤Q
δ=γ′ ′

fγ(x)
}

= 0

at almost all points x in R/Z. This shows that the numbers {c(β) : β ∈ Q/Z}
in the statement of Theorem 2 are not uniquely determined by the function F .
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5. Further applications of the martingale property

In this section, we formalize the argument used to prove Theorem 2 and
derive further results about the continued fraction expansion of almost all
irrational points α in R/Z.

Let β1, β2, . . . be an admissible enumeration of Q/Z and let {c(βn) : n =
1,2, . . . } be a collection of real numbers. For N = 1,2, . . . , we define

SN : R/Z → R

by

(66) SN (x) =
N∑

n=1

c(βn)fβn(x).

Theorem 6 implies that each function SN is BN -measurable, and from Theo-
rem 7 we conclude that the sequence of functions and σ-algebras

(67) {(SN , BN ) : N = 1,2, . . . }
forms a martingale. Of course, this fact allows us to draw conclusions about
the behavior of the partial sums SN (x) for almost all x as N → ∞. As before,
we wish to express our results in terms of the continued fraction expansion
of α. Therefore, we use the admissible ordering (50) and consider the subse-
quence of partial sums

(68) TQ(x) =
∑

h(β)≤Q

c(β)fβ(x).

Clearly, we have

TQ(x) = SN (x), where N = NQ =
∑
q≤Q

ϕ(q).

It will be convenient to write MQ = BNQ
for the corresponding σ-algebra and

M0 = {∅,R/Z} for the trivial σ-algebra. Thus, a function g : R/Z → C is
MQ-measurable if it is measurable with respect to the σ-algebra generated
by the component intervals of R/Z \ FQ together with the singleton sets {β}
for β in FQ. Alternatively, g is MQ-measurable if it is constant on each
component interval of R/Z \ FQ. It follows that the sequence of functions and
σ-algebras

(69) {(TQ, MQ) : Q = 1,2, . . . }
forms a martingale. It is instructive to note that if g : R/Z → R is an integrable
function, then the function (using a standard notation)

g(x| MQ) =
∫

R/Z

KQ(x, y)g(y)dy

is the conditional expectation of g given the σ-algebra MQ. This is easily
verified using Lemma 2.
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The following result is an application of Theorem 1 and the martingale
convergence theorem.

Theorem 9. Let {c(β) : β ∈ Q/Z} be a collection of real numbers and for
each positive integer Q, let TQ(x) be defined by (68). If the sequence of L1-
norms

(70)
∫

R/Z

∣∣TQ(x)
∣∣dx, Q = 1,2, . . . ,

is bounded, then

(71) lim
N →∞

N∑
n=1

(−1)n−1qn−1(α)
∑

β∈En(α)

c(β) = F (α)

exists for almost all irrational points α in R/Z and ‖F ‖1 < ∞.

Proof. By the martingale convergence theorem (see [2, Section 4.2] or [4,
Section 3.2]), the hypothesis (70) implies that the limit

(72) lim
Q→∞

TQ(x) = F (x)

exists for almost all x in R/Z and satisfies ‖F ‖1 < ∞. Suppose that α is an
irrational point in R/Z for which (72) holds. For each positive integer Q let
M = M(Q,α) and N = N(Q,α) be the unique positive integers defined by
(23). Using Theorem 1, we can write

TQ(α) =
N −1∑
n=1

(−1)n−1qn−1(α)
∑

β∈En(α)

c(β)(73)

+ (−1)N −1qN −1(α)
M∑

m=1

c

(
mpN −1(α) + pN −2(α)
mqN −1(α) + qN −2(α)

)
.

If Q = qN (α) is a denominator of a convergent to α, then (73) simplifies to

(74) TqN (α)(α) =
N∑

n=1

(−1)n−1qn−1(α)
∑

β∈En(α)

c(β).

Now (71) follows from (72) and (74). �

If F : R/Z → R is an integrable function and TQ is given by

(75) TQ(x) =
∫

R/Z

KQ(x, y)F (y)dy =
∑

h(β)≤Q

c(β)fβ(x),

where

c(β) =
∫

R/Z

fβ(y)F (y)dy,
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then the conclusion (71) follows from the much simpler Lemma 3. It is well
known (see [2, Theorem 5.6, Section 4.5]) that TQ has the form (75) for some
integrable function F if and only if TQ converges to F in L1-norm as Q → ∞.
By appealing to the martingale convergence theorem, we are able to establish
(71) under the weaker hypothesis (70).

Let δ be a nonzero point in Q/Z. Using (62) and (63), we find that∫
R/Z

∣∣∣∣fδ(x) −
∑

h(β)≤Q
δ=β′

fβ(x) −
∑

h(γ)≤Q
δ=γ′ ′

fγ(x)
∣∣∣∣dx = 2h(δ)−1,

and ∫
R/Z

∣∣∣∣ ∑
h(β)≤Q

δ=β′

fβ(x) +
∑

h(γ)≤Q
δ=γ′ ′

fγ(x)
∣∣∣∣dx ≤ 4h(δ)−1,

for all positive integers Q. Thus,

TQ(x) =
∑

h(β)≤Q
δ=β′

fβ(x) +
∑

h(γ)≤Q
δ=γ′ ′

fγ(x)

is an example that does not have the form (75), but for which the sequence
(70) of L1-norms is bounded. Of course, in this example, we can establish the
almost everywhere convergence (65) directly without appealing to Theorem 9.

For the remainder of this section we consider the behavior of the partial
sums TQ(x) under the hypothesis that β �→ c(β)h(β) is bounded on Q/Z. It
will be convenient to write

TQ(x) =
Q∑

q=1

Uq(x), where Uq(x) =
∑

h(β)=q

c(β)fβ(x).

If β1 and β2 are distinct points in Q/Z with h(β1) = h(β2), then I(β′
1, β

′ ′
1 )

and I(β′
2, β

′ ′
2 ) intersect in a finite set and, therefore, in a set of measure zero.

From this observation and the definition (15), we find that

1
2
q max{|c(β)| : h(β) = q} ≤ sup

x∈R/Z

∣∣Uq(x)
∣∣(76)

= ‖Uq ‖ ∞ ≤ q max{|c(β)| : h(β) = q}.

This shows that β �→ c(β)h(β) is bounded on Q/Z if and only if the sequence
‖Uq ‖ ∞ is bounded for q = 1,2, . . . .
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Lemma 10. For q = 1,2, . . . ,Q, let Aq ⊆ R/Z be an Mq−1-measurable sub-
set, where M0 = { ∅,R/Z} is the trivial σ-algebra. Write χAq for the charac-
teristic function of Aq. Then we have

(77)
∫

R/Z

{
Q∑

q=1

χAq (x)Uq(x)

}2

dx =
∫

R/Z

{
Q∑

q=1

χAq (x)Uq(x)2
}

dx.

Proof. We square out the integrand on the left of (77) and integrate term
by term. Then it is clear that the lemma will follow if we can verify that

(78)
∫

Aq ∩Ar

Uq(x)Ur(x)dx = 0

whenever 1 ≤ q < r ≤ Q. Let J be a component of R/Z \ Fr−1. Then we have∫
J

Ur(x)dx = 0.

The function Uq is Mr−1-measurable and therefore constant on J . This
implies that

(79)
∫

J

Uq(x)Ur(x)dx = 0.

By hypothesis the set Aq ∩ Ar is Mr−1-measurable. Therefore, it can be
written as a finite disjoint union of component intervals of R/Z \ Fr−1 together
with a set of measure zero. Thus, (78) follows immediately from (79), and the
lemma is proved. �

Theorem 10. Let {c(β) : β ∈ Q/Z} be a collection of real numbers such
that β �→ c(β)h(β) is bounded on Q/Z. Write C for the subset of points α in
R/Z such that

(80) lim
Q→∞

Q∑
q=1

Uq(α)

exists and is finite. Write D for the subset of points α in R/Z such that both

(81) lim inf
Q→∞

Q∑
q=1

Uq(α) = −∞ and limsup
Q→∞

Q∑
q=1

Uq(α) = +∞.

Write E for the subset of points α in R/Z such that

(82)
∞∑

q=1

Uq(α)2 < ∞.

Then we have

(83) (i) | C ∪ D | = 1, (ii) | C \ E | = 0, and (iii) | E \ C | = 0.
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Proof. The sequence (69) forms a martingale, and by hypothesis the incre-
ments

sup
x∈R/Z

|Tq(x) − Tq−1(x)| = ‖Uq ‖ ∞

are bounded for q = 1,2, . . . . Therefore, (i) follows from [2, Theorem 3.1,
Section 4.3].

For positive integers L and Q, let

A(L,Q) = {x ∈ R/Z : |Tq(x)| < L for q = 1,2, . . . ,Q − 1},

so that

A(L,1) = R/Z ⊇ A(L,2) ⊇ A(L,3) ⊇ · · · .

It follows that A(L,Q) is MQ−1-measurable and

A(L, ∞) =
∞⋂

Q=1

A(L,Q) = {x ∈ R/Z : |TQ(x)| < L for all Q ≥ 1}.

Clearly, we have

(84) C ⊆
∞⋃

L=1

A(L, ∞).

Next, we define the stopping time ηL : R/Z → N ∪ ∞ by

ηL(x) = min{Q : |TQ(x)| ≥ L},

where ηL(x) = ∞ if x belongs to A(L, ∞). Then we define

T
(ηL(x))
Q (x) =

min{ηL(x),Q}∑
q=1

Uq(x) =
Q∑

q=1

χA(L,q)(x)Uq(x),

so that for each positive integer L the sequence{(
T

(ηL)
Q , MQ

)
: Q = 1,2, . . .

}
forms a martingale, (see [1, 17.6, Corollary 2]). And by Lemma 10, we have

(85)
∫

R/Z

{
T

(ηL(x))
Q (x)

}2 dx =
∫

R/Z

{
Q∑

q=1

χA(L,q)(x)Uq(x)2
}

dx.

The inequality (76) and the assumption that β �→ c(β)h(β) is bounded on
Q/Z imply that

(86) sup{ ‖Uq ‖ ∞ : q = 1,2, . . . } = M < ∞.

Thus, we have

(87)
∣∣T (ηL(x))

Q (x)
∣∣ ≤ L + M
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uniformly for all x in R/Z and all Q = 1,2, . . . . From the martingale conver-
gence theorem, we conclude that

lim
Q→∞

T
(ηL(x))
Q (x) = VL(x)

exists for almost all points x in R/Z. From (87) and the dominated conver-
gence theorem, we obtain

lim
Q→∞

∫
R/Z

{
T

(ηL(x))
Q (x)

}2 dx =
∫

R/Z

VL(x)2 dx < ∞.

Then from (85), we find that

(88) lim
Q→∞

∫
R/Z

{
T

(ηL(x))
Q (x)

}2 dx =
∫

R/Z

{ ∞∑
q=1

χA(L,q)(x)Uq(x)2
}

dx < ∞.

Now (88) implies that
∞∑

q=1

χA(L,q)(x)Uq(x)2 < ∞

for almost all x in R/Z. Hence, we have

(89)
∞∑

q=1

Uq(x)2 < ∞

for almost all x in A(L, ∞). Then (84) implies that (89) holds for almost all
points x in C. This proves (ii).

The proof of (iii) is very similar. For positive integers L and Q, let

B(L,Q) =

{
x ∈ R/Z :

Q−1∑
q=1

Uq(x)2 < L

}
,

so that

B(L,1) = R/Z ⊇ B(L,2) ⊇ B(L,3) ⊇ · · · .

It follows that B(L,Q) is MQ−1-measurable and

B(L, ∞) =
∞⋂

Q=1

B(L,Q) =

{
x ∈ R/Z :

Q−1∑
q=1

Uq(x)2 < L for all Q ≥ 1

}
.

And we have

(90) E ⊆
∞⋃

L=1

B(L, ∞).
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In this case, we define a stopping time τL : R/Z → N ∪ ∞ by

τL(x) = min

{
Q :

Q∑
q=1

Uq(x)2 ≥ L

}
,

where τL(x) = ∞ if x belongs to B(L, ∞). Then we write

T
(τL(x))
Q (x) =

min{τL(x),Q}∑
q=1

Uq(x) =
Q∑

q=1

χB(L,q)(x)Uq(x),

so that for each positive integer L the sequence{(
T

(τL)
Q , MQ

)
: Q = 1,2, . . .

}
forms a martingale, (see [1, 17.6, Corollary 2]). By Lemma 10 we have

(91)
∫

R/Z

{
T

(τL(x))
Q (x)

}2 dx =
∫

R/Z

{
Q∑

q=1

χB(L,q)(x)Uq(x)2
}

dx.

The bound (86) implies that

Q∑
q=1

χB(L,q)(x)Uq(x)2 ≤ L + M2

uniformly for all x in R/Z and Q = 1,2, . . . . It follows from (91) and the
martingale convergence theorem that

lim
Q→∞

T
(τL(x))
Q (x) = WL(x)

exists and is finite for almost all points x in R/Z. Hence, the limit

(92) lim
Q→∞

TQ(x)

exists and is finite for almost all points x in B(L, ∞). Now (90) implies that
the limit (92) exists and is finite for almost all points x in E . This proves
(iii). �

The conclusions (ii) and (iii) in the statement of Theorem 10 are essen-
tially the same as those obtained by Gundy [6, Theorem 3.1] under somewhat
different hypotheses. In particular, Gundy works with an H-system and a
regular sequence of σ-algebras. The sequence of σ-algebras MQ, Q = 1,2, . . . ,
is not regular in Gundy’s sense, but we are able to establish the same type of
result by using instead the hypothesis that β �→ c(β)h(β) is bounded on Q/Z.

Finally, the series that occur in Theorem 10 can be rewritten using the
continued fraction interpretation of the functions fβ . In this way, we arrive
at the statement of Theorem 3.
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