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Abstract. Using the concept of power-contractive selfmaps of metric spaces,
we investigate quasicompact composition operators on certain classes of Lips-
chitz algebras. As an application of our results, we obtain certain properties of
power-contractive selfmaps of plane sets.

1. Introduction and preliminaries

Let A be a commutative unital Banach algebra and let ΦA denote the character
space of A, consisting of all nonzero homomorphisms h from A into the field of
complex numbers C. For a ∈ A, we denote by â the Gelfand transform of a given
by â(h) = h(a) for all h ∈ ΦA. It is known that if A is semisimple and T : A → A
is a unital endomorphism, then T ∗|ΦA

maps ΦA into ΦA and

T̂ a = â ◦ φ for all a ∈ A,

where φ = T ∗|ΦA
: ΦA → ΦA. Motivated by this, in general, for a semisimple

Banach algebra A, an endomorphism T : A → A is said to be induced by a

selfmap φ : ΦA → ΦA if T̂ a = â ◦ φ for all a ∈ A. When A is a natural Banach
function algebra on a compact Hausdorff space X, the character space of A can
be identified with the underlying set X through the homeomorphism x ↔ δx for
all x ∈ X, where δx is the evaluation map on A defined by δx(f) = f(x) for all
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f ∈ A. In this case, by letting φ = T ∗|X : X → X we have

Tf = f ◦ φ for all f ∈ A.

This leads to the general definition of composition operators. For a Banach space
A of functions on a compact Hausdorff space X, an operator T : A → A is said
to be induced by the selfmap φ : X → X if Tf = f ◦ φ for all f ∈ A. In this case,
we also say that T : A → A is a composition operator induced by the selfmap
φ : X → X. The notation Cφ is widely used to denote the composition operator
induced by the selfmap φ. Note that if A is a Banach function algebra on the
compact Hausdorff space X, then the composition operator Cφ : A → A is indeed
an endomorphism (multiplicative).

Over the years, considerable interest has grown in the study of composition
operators on different classes of Banach spaces (algebras). Boundedness and
compactness of composition operators on certain Banach function spaces (alge-
bras) have been studied in [2], [8], and [10]. For more results concerning com-
position operators and different generalizations of composition operators, see
[7], [9], [11], [12].

In the present article we study quasicompactness of composition operators,
defined as follows. For an infinite-dimensional Banach space E, we denote by B(E)
and K(E) the Banach algebra of all bounded operators and compact operators
on E, respectively. The essential spectrum σe(T ) of T ∈ B(E) is the spectrum

of T + K(E) in the Calkin algebra B(E)
K(E)

. The essential spectral radius re(T ) of

T ∈ B(E) is the spectral radius of T+K(E) in B(E)
K(E)

, which is given by the formula

re(T ) = lim
n→∞

(
dist

(
T n,K(E)

))1/n
.

The operator T ∈ B(E) is called quasicompact if re(T ) < 1. Equivalently,
T ∈ B(E) is quasicompact if and only if

‖TN − S‖ < 1 for some S ∈ K(E) and N ∈ N,

where ‖ ·‖ denotes the operator norm in B(E). If TN is compact for some N ∈ N,
then T is called power-compact. Clearly, every power-compact operator is qua-
sicompact. The quasicompactness of composition operators on certain Banach
algebras has been studied in [1] and [3].

In the present article, composition operators are considered on certain algebras
of Lipschitz functions, as per the following definition. Let (X, d) be a compact
metric space with at least two points. The Lipschitz constant of a complex-valued
function f on X is defined by

p(f) = sup
x,y∈X
x 6=y

|f(x)− f(y)|
d(x, y)

.

The Lipschitz algebra Lip(X, d) consists of those complex-valued functions f on
(X, d) for which p(f) < ∞. When the underlying metric space X is a plane set,
we write Lip(X) for Lip(X, | · |). Note that the Lipschitz algebra Lip(X, d) is
contained in C(X), the algebra of all complex-valued continuous functions on
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(X, d). The algebra Lip(X, d) is a natural Banach function algebra on (X, d) if
equipped with the norm

‖f‖Lip = ‖f‖X + p(f),

where ‖f‖X is the sup-norm given by

‖f‖X = sup
x∈X

∣∣f(x)∣∣.
These Lipschitz algebras were first studied by D. R. Sherbert in 1963. Quasi-
compact composition operators on certain algebras of Lipschitz functions have
been studied in [1].

In Section 2, we investigate quasicompactness of composition operators on cer-
tain algebras of Lipschitz functions. Our results in this section generalize some
results of [1]. In Section 3, by applying some results of Section 2, we investigate
selfmaps of certain plane sets.

2. Main results

We begin this section by recalling that a selfmap φ of a metric space (X, d) is
said to be contractive if there exists a constant 0 ≤ c < 1 such that

d(φx, φy) ≤ cd(x, y),

for all x, y ∈ X. These contractive selfmaps play an important role in the study
of selfmaps of metric spaces. Next, we state a generalization of this concept which
will be used variously throughout the rest of this paper. Before stating the next
definition, we recall that for a selfmap φ : X → X and a natural number n, φn

denotes the nth iterate of φ.

Definition 2.1. A selfmap φ of the metric space (X, d) is said to be power-
contractive if φN is contractive for some N ∈ N, that is, if there exists a constant
0 ≤ cN < 1 such that

d(φNx, φNy) ≤ cNd(x, y)

for all x, y ∈ X.

Clearly, every contractive selfmap is power-contractive. By constructing a
power-contractive selfmap which is not contractive, in the next example we show
that the converse is not true in general.

Example 2.2. Let D be the closed unit disc of the complex plane and define the
selfmap φ : D → D by

φz =
1− z2

2
for all z ∈ D.

Then, for each z, w ∈ D with z 6= w, we have

|φz − φw|
|z − w|

=
|z + w|

2
.
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Hence, by choosing the sequences (zn) and (wn) in D with zn 6= wn, zn → 1 and
wn → 1, we have

|φzn − φwn|
|zn − wn|

→ 1 as n → ∞,

meaning that φ is not contractive. Similarly, one can see that

φ2z =
4− (1− z2)2

8
for all z ∈ D

is not contractive. Finally, note that

φ3z =
64− (4− (1− z2)2)2

128
for all z ∈ D,

and that, for each z, w ∈ D with z 6= w, we have

|φ3z − φ3w|
|z − w|

≤ 3

4
.

Consequently, φ is a power-contractive selfmap which is not contractive.

Using the concept of power-contractiveness, in the next theorem we characterize
quasicompact composition operators on certain algebras of Lipschitz functions.
Before stating the next theorem, we note that if Cφ is a composition operator
induced by the selfmap φ, then Cn

φ is the composition operator induced by the
selfmap φn—that is, Cn

φ = Cφn .

Theorem 2.3. Let X be a compact connected plane set and let A be any natural
closed subalgebra of Lip(X) containing the constant functions. Let φ ∈ A be a
selfmap of X and let Cφ : A → A be a composition operator induced by φ. Then,
Cφ is quasicompact if and only if φ is power-contractive.

Proof. Let Cφ : A → A be quasicompact. Then, by [3, Theorem 1.2], φ has a
unique fixed point x0 ∈ X. Consider the operator (of rank 1) S0 : A → A given
by S0f = f(x0)1 for all f ∈ A. By [3, Theorem 1.2], ‖Cφn − S0‖ → 0 as n → ∞.
So, there exists N ∈ N such that

c = ‖CφN − S0‖‖φ‖Lip < 1. (2.1)

Let x, y ∈ X and let x 6= y. Then, by applying (2.1), we have

|φN+1x− φN+1y|
|x− y|

≤ p(CφNφ− S0φ)

≤ ‖CφNφ− S0φ‖Lip
≤ ‖CφN − S0‖‖φ‖Lip
= c < 1,

meaning that φ is power-contractive.
Conversely, let φ : X → X be power-contractive. Then, there exist N1 ∈ N and

0 ≤ c1 < 1 such that

|φN1x− φN1y| ≤ c1|x− y| (2.2)
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for all x, y ∈ X. On the other hand, since φ is bounded, there exists r > 0 such
that

|φx| ≤ r for all x ∈ X. (2.3)

One can conclude from (2.2) that

p(φnN1) = sup
x,y∈X
x 6=y

|φnN1x− φnN1y|
|x− y|

≤ cn1 → 0 as n → ∞. (2.4)

Also, by applying (2.3) and (2.4), we have

diam
(
φnN1+1(X)

)
= sup

x,y∈X
|φnN1+1x− φnN1+1y|

= sup
x,y∈X

|φnN1φx− φnN1φy|

≤ cn1 sup
x,y∈X

|φx− φy|

≤ 2rcn1 → 0, as n → ∞.

(2.5)

Since φm+1(X) ⊆ φm(X) for each m ∈ N, (2.5) implies that diam(φm(X)) → 0
as m → ∞. Hence, there exists x0 ∈ X such that

‖φm − x0‖X = sup
x,y∈X

|φmx− x0| → 0 as m → ∞. (2.6)

Consequently, by applying (2.4) and (2.6), one can find N ∈ N large enough, such
that

‖φN − x0‖X + p(φN) < 1. (2.7)

Now, consider the compact (of rank 1) operator S0 : A → A given by S0f =
f(x0)1 for all f ∈ A. Next, we show that ‖CφN − S0‖ < 1, which implies that
dist(CφN ,K(A)) < 1, meaning that φ is quasicompact. Let f ∈ A; then for each
x ∈ X, we have ∣∣(CφNf)(x)− (S0f)(x)

∣∣ = ∣∣f(φNx)− f(x0)
∣∣

≤ p(f)|φNx− x0|
≤ ‖f‖Lip‖φN − x0‖X ,

which implies that

‖CφNf − S0f‖X ≤ ‖f‖Lip‖φN − x0‖X . (2.8)

On the other hand, for each x, y ∈ X with x 6= y, we have

|((CφNf)(x)− (S0f)(x))− ((CφNf)(y)− (S0f)(y))|
|x− y|

=
|f(φNx)− f(φNy)|

|x− y|

≤ p(f)
|φNx− φNy|

|x− y|
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≤ p(f)p(φN)

≤ ‖f‖Lipp(φN),

and hence

p(CφNf − S0f) ≤ ‖f‖Lipp(φN). (2.9)

Now, by applying (2.8) and (2.9), we get

‖CφNf − S0f‖Lip ≤ ‖f‖Lip
(
‖φN − x0‖X + p(φN)

)
,

for all f ∈ A. This along with (2.7) implies that

‖CφN − S0‖ ≤ ‖φN − x0‖X + p(φN) < 1

which completes the proof. �

Note that if the algebra A in Theorem 2.3 contains the identity function Z
on X, then φ = CφZ ∈ A. Hence, we get the following corollary.

Corollary 2.4. Let X be a compact connected plane set and let A be any natural
closed subalgebra of Lip(X) containing the identity function and constant func-
tions. Let Cφ : A → A be a composition operator induced by the selfmap
φ : X → X. Then, Cφ is quasicompact if and only if φ is power-contractive.

Remark 2.5. It is worth mentioning that the class of algebras A satisfying condi-
tions of Corollary 2.4 includes the following subalgebras of Lip(X):

(1) The Lipschitz algebra Lip(X).
(2) The analytic Lipschitz algebra LipA(X) = Lip(X)∩A(X) (see [2, p. 304])

where A(X) denotes the uniform algebra of all continuous complex-valued
functions on X which are analytic on int(X).

(3) The rational Lipschitz algebra LipR(X) (see [5, p. 14]); or the polynomial
Lipschitz algebra LipP (X) (see [5, p. 14]) whenX is a polynomially convex
plane set.

Remark 2.6. In Theorem 2.3 and Corollary 2.4, connectedness of X is used in the
“only if” part while the “if part” holds without connectivity assumption on X.

Finally, we note that by applying a similar approach as in the proof of Theo-
rem 2.3, one can get the next result for a general metric space (X, d) instead of
a plane set X. But, note that by releasing this condition on X we get the next
theorem only for the algebra Lip(X, d), not for its subalgebras A. (See also [4,
Corollary 2.4], where the result of the next theorem is obtained using a different
approach based on the essential spectral radius estimates.) It is worth mentioning
that Section 3 is based on applying the result of Theorem 2.3, which is valid not
only for the algebra Lip(X) but also for certain subalgebras A of Lip(X).

Theorem 2.7. Suppose that (X, d) is a compact connected metric space and that
Cφ : Lip(X, d) → Lip(X, d) is a composition operator induced by the selfmap
φ : X → X. Then Cφ is quasicompact if and only if φ is power-contractive.

Remark 2.8. In Theorem 2.7, connectedness of (X, d) is used in the “only if” part
while the “if part” holds without connectivity assumption on (X, d).
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3. Applications

Contractive maps play an important role in the study of selfmaps of metric
spaces (see, e.g., [6] and references therein). In this section, as an application of
some results in Section 2, we obtain certain properties of contractive or power-
contractive selfmaps of plane sets.

We start with selfmaps of the classic plane set D and note that if a Lipschitz
selfmap φ : D → D is contractive, then the image of φ, φ(D), satisfies the following
inequality:

diam
(
φ(D)

)
< diam(D). (3.1)

This simple observation leads to the following general question about contractive
selfmaps of metric spaces:

“What is the relation between contractiveness or power-contractiveness of
φ : X → X and its (iterative) image’s properties?”

Here, by “iterative image” of the selfmap φ : X → X, we mean φn(X) for some
n ∈ N. Having this question in mind, in the rest of this section we study the
following related question:

“What sufficient conditions on the iterative image of φ : X → X imply
contractiveness or power-contractiveness of φ?”

Recalling inequality (3.1) as a necessary condition for the contractiveness of the
selfmap φ : D → D, the next theorem shows that

φ(D) ⊆ D,

is a sufficient condition for the power-contractiveness of the Lipschitz selfmap
φ : D → D in A(D).

Theorem 3.1. Suppose that the Lipschitz selfmap φ : D → D belongs to A(D).
If φN(D) ⊆ D for some N ∈ N, then φ is power-contractive.

Instead of proving the above result for selfmaps of D, we next prove a more
general case for selfmaps of compact connected plane sets X.

Theorem 3.2. Suppose that X is a compact connected plane set and the Lipschitz
selfmap φ : X → X belongs to A(X). If φN(X) ⊆ int(X) for some N ∈ N, then
φ is power-contractive.

Proof. The selfmap φ : X → X belongs to LipA(X). Hence, φ induces the com-
position operator Cφ : LipA(X) → LipA(X). Now, if φN(X) ⊆ int(X) for some
N ∈ N, then by [2, Theorem 2.1], CφN is compact. Consequently, Cφ is power-
compact and hence quasicompact. Note that LipA(X) contains the coordinate
function Z. So, by Corollary 2.4 and Remark 2.5, φ is power-contractive. �

Besides suitable constant functions, also the following non-constant example
shows that the converse of Theorem 3.2 (or Theorem 3.1) is not true in general.

Example 3.3. Let 0 < r < 1, and define

φz = rz + (1− r) for all z ∈ D.
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Then, φ is a selfmap of the closed unit disc D. Indeed, φ maps the closed unit disc
to the closed disc with radius r centered at 1 − r. Clearly, φ is contractive and
hence power-contractive. But, φn1 = 1 for each n ∈ N, and hence φn(D) * D.

One of the main assumptions in Theorem 3.2 (or Theorem 3.1) is that the
selfmap φ : X → X belongs to A(X). By constructing the following example, we
show that this assumption is necessary and cannot be removed in general.

Example 3.4. Let 0 < r < 1, and consider the selfmap φ : D → D defined as
follows

φz =


Re(z) if − r ≤ Re(z) ≤ r,

−r if − 1 ≤ Re(z) ≤ −r,

r if r ≤ Re(z) ≤ 1.

First, note that the selfmap φ : D → D does not belong to A(D), since it does not
satisfy Cauchy–Riemann equations at any neighbourhood of zero. On the other
hand, one can see that, for each z, w ∈ D, we have

|φz − φw| ≤ |z − w|,

meaning that φ is a Lipschitz selfmap.
Note that for all −r ≤ x, y ≤ r, we have∣∣φ(x, 0)− φ(y, 0)

∣∣ = |x− y| =
∣∣(x, 0)− (y, 0)

∣∣,
meaning that φ is not contractive. Also, for each n ∈ N we have φn = φ. Conse-
quently, φ is not power-contractive.

Remark 3.5. By Theorem 3.2 (or Theorem 3.1)

φN(X) ⊆ int(X) for some N ∈ N (3.2)

is a sufficient condition for the power-contractiveness of any Lipschitz selfmap
φ : X → X that belongs to A(X). Hence, the simpler condition

φ(X) ⊆ int(X) (3.3)

is also a sufficient condition for the power-contractiveness of such selfmap. Re-
garding these two conditions, it is worth mentioning the following points.

(i) Condition (3.3) implies condition (3.2), but in general these two conditions
are not equivalent. For example, the selfmap φ : D → D in Example 2.2
satisfies condition (3.2) for N = 3 but it does not satisfy condition (3.3),
because φi = 1.

(ii) In Theorem 3.2 (or Theorem 3.1), if we replace condition (3.2) with con-
dition (3.3), we can still conclude that the selfmap φ : X → X is power-
contractive, and not necessarily contractive. To see this, consider the self-
map φ2 : D → D, where φ is the selfmap given in Example 2.2. Then, one
can see that φ2(D) ⊆ D but as mentioned in Example 2.2, φ2 : D → D
is not contractive. Note that φ2 is power-contractive, since (φ2)3 = (φ3)2

and φ3 is contractive.
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