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The Role of a Second Control Group
in an Observational Study

Paul R. Rosenbaum

Abstract. An observational study is an attempt to estimate the effects of a
treatment when subjects are not randomly assigned to treatment or control.
The possibility of using more than one control group has often been briefly
mentioned in general discussions of observational studies, and many obser-
vational studies have used two control groups. Here, the limited and
dispersed literature on this subject is reviewed, and the topic is developed
in several directions by using a formal notation for observational studies.
The value of a second control group depends on the supplementary infor-
mation that is available about unobserved biases that are suspected to exist.
A second control group provides a test of the assumption that conventional
adjustments for observed covariates suffice in estimating treatment effects.
Under the best of circumstances, this test is consistent and unbiased, and
its power exceeds the probability of falsely detecting a treatment effect.
Indeed, under the best of circumstances, two control groups can yield
consistent and unbiased estimates of bounds on the treatment effect when
conventional adjustments fail. In contrast, however, in the worst of circum-
stances, a second control group can be of little value.

Key words and phrases: Observational studies, control groups, adjustable
treatment assignment, ignorable treatment assignment, case-control stud-

ies, unobserved covariates.

1. INTRODUCTION—SOME EXAMPLES

1.1 Observational Studies

Cochran (1965, page 234) defined an observational
study as an empirical investigation in which:

“the objective is to elucidate cause and effect
relationships . .. [in which it] is not feasible to
use controlled experimentation, in the sense of
being able to impose the procedures or treatments
whose effects it is desired to discover or to assign
subjects at random to different procedures.”

In such studies, because of the absence of random
assignment, treated and control subjects may be quite
different prior to treatment. Differences in outcomes
after treatment may, therefore, reflect either effects
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caused by the treatment, or the initial lack of compa-
rability, or both to some extent. When a relevant
pretreatment variable or covariate, X, is accurately
measured, adjustments by matching, subclassification
or model-based procedures can often reduce the bias
due to pretreatment differences (e.g., Cochran and
Rubin, 1973; Rubin, 1977). Still, there is usually rea-
son for concern that treated and control subjects may
differ in ways that have not been measured, in which
case adjustments for X need not eliminate the bias.
When adjustments for X suffice to remove all of the
bias, treatment assignment is said to be X-adjustable,
a term defined formally in Section 2.

The current paper considers the role that multiple
control groups can play in investigating unobserved
pretreatment differences. The paper is organized as
follows. To place the role of multiple control groups
in proper context, Sections 1.2 and 1.3 briefly review
the two basic approaches to assessing the impact of
unobserved pretreatment differences, namely sensitiv-
ity analyses and tests of X-adjustable treatment as-
signment. These two approaches are complementary,
and the use of multiple control groups is an instance
of the second approach. Section 1.4 contains brief
discussions of several examples of the use of multiple
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control groups, whereas Sections 4.2 and 4.4 contain
detailed discussion of one example. In Section 2, some
general concepts and notation for observational
studies are reviewed. The role of a second control
group in cohort (or prospective) studies is discussed
in Section 3. Case-control studies are somewhat dif-
ferent because thé “control” groups in such studies
are not untreated groups, but rather noncase groups.
Section 4 discusses the role of multiple “control”
groups in a case-control study.

1.2 Addressing Biases Due to Unobserved
Pretreatment Differences: Sensitivity Analysis

There are two basic ways of addressing biases due
to unobserved pretreatment differences. One involves
a sensitivity analysis: the sensitivity of conclusions to
a range of plausible assumptions about an unobserved
covariate, U, is investigated. For example, Cornfield,
Haenszel, Hammond, Lilienfeld, Shimkin and Wyn-
der (1959) found that, if failure to adjust for an unob-
served covariate is to account for the entire apparent
effect of heavy cigarette smoking on the risk of lung
cancer, then that covariate must have an extremely
strong—indeed, implausibly strong—association with
both cigarette smoking and lung cancer risk. This is
true because of the very strong relationship between
heavy cigarette smoking and lung cancer. Other dis-
cussions of methods for sensitivity analysis in obser-
vational studies are given by Bross (1966, 1967), Rubin
(1978, Section 4.2), Rosenbaum and Rubin (1983b)
and Rosenbaum (1984c, Section 4; 1986, 1987).

It is always useful to know and to report whether
an inference is sensitive to plausible biases, and such
sensitivity is always reason for caution in interpreta-
tion. Still, sensitivity to modest bias, by itself, does
not imply that bias is present, but only that such a
bias, if present, would substantially alter the study’s
conclusion. Some treatments have important but
small effects; conclusions from studies of such effects
will inevitably be judged sensitive. For example, heavy
smoking is believed to increase the risk of death from
cardiovascular diseases by the relatively small factor
. of about 1.5; an effect of this size would be judged
quite sensitive to bias by the method of Cornfield,
Haenszel, Hammond, Lilienfeld, Shimkin and Wyn-
der (1959). Still, if this is a real effect, as it is now
generally thought to be, then more people die of smok-
ing-induced cardiovascular disease than of smoking-
induced lung cancer, simply because the base risk of
death from cardiovascular disease is so much greater
(Bayne-Jones, Burdette, Cochran, Farber, Fieser,
Furth, Hickam, LeMaistre, Schuman and Seevers,
1964, page 317). The point here is that a treatment
may have an effect that is small in the sense relevant
to a sensitivity analysis but large in other important

respects. We cannot, therefore, adopt a methodologi-
cal rule of rejecting as unsubstantiated every conclu-
sion that is sensitive to modest biases; however, much
such sensitivity may properly concern us. There is,
then, a need for another complementary approach to
addressing biases due to unobserved pretreatment
differences.

1.3 Addressing Biases Due to Unobserved
Pretreatment Differences: Tests of
X-Adjustable Treatment Assignment

The second basic approach to addressing possible
biases due to unobserved covariates involves, first,
assuming tentatively that adjustments for X suffice to
remove bias and, second, testing this tentative as-
sumption at each point of contact with observable
data. This process invariably requires the use of some
supplementary information; often, this is qualitative
information about the process by which the treatment
is thought to produce its effects. If data contradict
testable consequences of the conjunction of this sup-
plementary information and the tentative assumption
that adjustments for X suffice to remove bias, then
there may be some uncertainty as to which part of
the conjunction is contradicted. Still, since we began
with the concern that adjustments for X might not
suffice, such a finding would considerably heighten
that concern.

In contrast, to find no contradiction with observable
data is to corroborate the hypothesis that adjustments
for X suffice to remove bias. Here, the term corrobo-
rate is used in the precise and slightly technical sense
defined by Popper (1959): to corroborate a theory or
hypothesis is to expose it to possible refutation but
fail to refute it. Corroboration is a matter of degree: a
theory is more thoroughly corroborated if it has sur-
vived severe, extensive attempts of refutation. In ob-
servational studies, little formal work has been done
to measure and clarify the severity of tests of the
hypothesis that adjustments for X suffice, and, there-
fore, the degree of corroboration provided by passing
such tests has often been unclear. At several
points, the current paper attempts to provide such
clarification.

The Doll and Hill (1966) study of the effect of
smoking on coronary thrombosis contains a good ex-
ample. Within subclasses defined by covariates X, Doll
and Hill classified smokers by the amount smoked,
and cross-classified former smokers by the amount
last smoked and the time since quitting. If adjustments
for X suffice to eliminate bias, then within subclasses
defined by X, we expect an actual effect of smoking
to cause the highest risks for continuing heavy smok-
ers, lower risks for both continuing light smokers and
former heavy smokers, still lower risks for former light
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smokers and the lowest risks for nonsmokers. If the
data are inconsistent with these predictions, then
there is evidence that adjustments for X alone do not
suffice to remove bias.

Good, informal discussions of this approach to ad-
dressing possible biases due to unobserved covariates
are given by Yerushalmy and Palmer (1959), Campbell
and Stanley (1963), Cochran (1965, Section 5; 1972,
pages 88 and 89), Hill (1965) and Lilienfeld and
Lilienfeld (1980, Section 12.B). A somewhat more
formal discussion, treating the approach as a part of
statistical theory, is given by Rosenbaum (1984a).

The purpose of the current paper is to consider the
role that a second control group plays in checking the
hypothesis that adjustments for X suffice to remove
bias. As will be seen, under the best circumstances a
second control group can bring us fairly close to a
consistent and unbiased test of the hypothesis that
adjustments for X suffice, and, moreover, can provide
bounds on the size of the biases of conventional esti-
mates of treatment effects. In contrast, in the worst
of circumstances a second control may be of little
value, and may even foster misinterpretation (see
Section 3.7). The issue turns on the supplementary
information that can be brought to bear, and on
whether control groups can be selected to address
specific biases.

1.4 Multiple Control Groups: Some Examples

The possibility of using more than one control group
in an observational study has been given a brief men-
tion in several general discussions of observational
studies; e.g., Mantel and Haenszel (1959, pages 726
and 727), Yerushalmy and Palmer (1959, page 34),
Cochran (1963, pages 485 and 486; 1965, page 248;
1967, page 324), Campbell (1969) and Cole (1979,
pages 22 and 24). Several examples follow. In each
instance, the second control group addresses specific
limitations of the first, but has limitations of its own.

ExXAMPLE 1 (Spouses and Siblings). Gutensohn, Li,
Johnson and Cole (1975) studied the possible effect of
tonsillectomy on the risk of Hodgkin’s disease in a
case-control study. One control group eonsisted of the
spouses of the Hodgkin’s patients and a second con-
sisted of the patient’s siblings. Clearly, spouses tend
to share the patient’s adult home environment, while
siblings tend to share the patient’s childhood environ-
ment; neither group typically shares the patient’s work
environment. The estimated risk ratio with spouses
as controls was substantially higher than with siblings
as controls (3.1 versus 1.4). Moreover, the risk ratio
differed significantly from 1 for the 78 spouse pairs,
but not for the 119 sibling matched sets, containing
315 sibling controls. This example is discussed briefly
by Cole (1979).

EXAMPLE 2 (Unaccepted and Unoffered Treat-
ments). A subject may become a control either because
the treatment was not offered or because although
offered, it was declined. For example, the College
Board’s Advanced Placement (AP) Program provides
high school students with the opportunity to earn
college credit for work done in high school. Not all
high schools offer the AP program, and in those that
do, only a small, typically elite minority of students
elect to participate. Recently, the Educational Testing
Service (ETS) sought to evaluate the impact of the
AP program on college achievement, and the possibil-
ity of using two control groups was considered. One
control group would have been formed by matching
AP students with other students from the same school
who declined participation. The second control group
would have matched AP students in one school with
students in another school where the AP program was
not available. In both cases, the matching would have
been based on measures of academic performance
prior to the senior year, the year in which AP programs
are offered. The concerns here were twofold. First,
qualified students who declined participation in the
AP program might be less motivated for academic
work, in which case the impact of the greater moti-
vation of AP students might be mistaken for an effect
of the program itself. Second, schools that declined to
offer the AP program may be smaller, or may have
more limited resources or may be in economically
poorer neighborhoods, and the impact of these differ-
ences might also be mistaken for a program effect.
(Ultimately, only the first control group was used
in this study, primarily because of cost limitations,
but partly because of the considerations discussed in
Section 3.7). This example is connected with the
work of Warren Willingham at ETS.

ExAMPLE 3 (Rejected for Treatment versus Ineffec-
tively Treated Controls). The Committee on Toxicol-
ogy of the National Research Council is completing a
study of historical and follow-up data on the long term
effects of a nonrandomized experimental exposure of
soldiers to a wide range of chemical agents. Relatively
few soldiers were exposed to each agent, and exposures
to multiple agents were occasional and haphazard, not
at all resembling a factorial experiment. The study
compares soldiers receiving one chemical agent with
two other groups, an untreated group and a second
group consisting of all individuals exposed to all other
chemical agents. Usually, there would be a clear pref-
erence for the untreated group as the control group,
but in this instance the untreated group consisted of
soldiers specifically rejected for treatment, in part on
the basis of a medical examination, the results of
which were not retained. The study’s authors sus-
pected that most of the chemical agents had little or
no long term effects, so that most individuals in the
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“other agent” group were suspected to have received
ineffective treatments. The concerns were twofold: the
untreated controls might be in poorer health because
they were rejected on the basis of a medical examina-
tion, whereas the “other agent” control group might
include some individuals exposed to active agents.

There are many 6ther examples of the use of mul-
tiple control groups, including Solomon (1949), Col-
laborative Group for the Study of Stroke in Young
Women (1973), Hiller, Giacometti and Yuen (1977),
Halsey, Modlin, Jabbour, Dubey, Eddins and Ludwig
(1980) and MacMahon (1984). These examples in-
clude: hospital and neighborhood controls; hospital
and playmate controls in a study of young children;
controls based on several disease groups in a case-
control study; and controls subject to different pre-
treatment measurement procedures.

2. OBSERVATIONAL STUDIES: A SHORT
REVIEW OF CERTAIN CONCEPTS AND
NOTATION

2.1 Treatments and the Effects Caused By
Treatments

For later use, the current section briefly reviews
some concepts and notation for observational studies
that have been developed in detail by Rubin (1974,
1977, 1978), Hamilton (1979), Holland and Rubin
(1980, 1983), Rosenbaum and Rubin (1983a, 1983b,
1985), Rosenbaum (1984a, 1984b, 1984c, 1987) and
Holland (1986b). The notation adapts and extends
that used in the traditional literature on experimental
design, for example, in the books by Fisher (1935),
Kempthorne (1952) and Cox (1958). The review that
follows is a quick summary; for a more precise discus-
sion of the associated sampling distributions as used
here, see Rosenbaum and Rubin (1985, Section 1 and
Figure 1).

A treatment is an intervention that can, in prin-
ciple, be given to or withheld from any experimental
subject. Exposure to a hazardous substance is a treat-
ment in this sense, whereas age and gender are not
treatments.

Consider a response that a subject may exhibit, such
as ‘a cognitive test score or the development of a
particular disease. A treatment’s effect on a specific
subject is a comparison of the two responses that the
subject would exhibit if the treatment were applied or
withheld. More formally, each subject has two possible
versions of the response: one response, Ry, that would
be exhibited if the treatment were applied, and a
second response, Rc, that would be exhibited if the
treatment were withheld, i.e., if the control were ap-
plied. The treatment has no effect if the response of
each subject is unchanged by the application of the
treatment, that is, if Ry = Rc for each subject. This is

the formal definition of “no effect” used in Fisher’s
(1935) randomization test in randomized experiments
(cf. Rubin, 1980). More generally, the effect of the
treatment on a subject is a comparison of the two
responses that subject could exhibit, e.g., R+ — R¢ (e.g.,
Welch, 1937; Kempthorne, 1952, Section 8; Rubin,
1974, 1977, 1978; Hamilton, 1979; Holland, 1986b).

2.2 Randomized Experiments

In the simplest randomized experiment, subjects are
sampled from a population and are assigned by the
flip of a fair coin to one of two groups, a treated group
and a single control group. For each subject, let Z
indicate the group to which the subject is assigned,
with Z = 0 for treated subjects and Z = 1 for control
subjects. In this case, Ry is observed for subjects with
Z =0, and R is observed for subjects with Z = 1.

Randomized assignment implies that the treatment
Z assigned to a subject is unrelated to any attribute of
that subject, and, in particular, is unrelated to (or
statistically independent of) the subject’s pair of re-
sponses, (Rr, Rc), or in Dawid’s (1979) notation for
independence:

(2.1) (R7, Ro) 1| Z.

(Recall Dawid’s notation: A || B if A and B are
independent,and A || B | Cif A and B are conditionally
independent given C).

It follows from (2.1) that the expected response
of control subjects, namely E(Rc|Z = 1), equals
the expected response of the treated subjects had
they instead been exposed to the control, namely
E(Rc|Z = 0). In randomized experiments, there-
fore, the average effect of the treatment on the
treated subjects, namely E(Rr — Rc| Z = 0), satisfies

E(RT—R0|Z=0)

(2.2) =ERr|Z=0)— E(Rc|Z =0)
=ERr|Z=0)—ERc|Z=1),

" so that E(Rr — Rc|Z = 0) may be estimated by the

difference in mean responses in the treated and con-
trol groups.

In general, (2.2) need not hold in observational
studies because (2.1) does not generally hold; in other
words, treated (Z = 0) and control (Z = 1) groups may
differ in ways that are relevant to the response
(Rr, Rc). To control for these pretreatment differ-
ences, adjustments are often made for a vector X of
observed covariates or pretreatment variables. Several
methods of adjustment are common, including match-
ing on X, subclassification or stratification on X, and
model based adjustments for X (cf. Cochran and
Rubin, 1973). Because such adjustments are confined
to observed covariates although the groups may also
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differ in ways that have not been observed, there is no
guarantee that adjustments for X will yield appropri-
ate estimates of treatment effects. Such adjustments
will suffice, however, when treatment assignment is
X-adjustable.

2.3 X-Adjustable Treatment Assignment: An
Assumption Implicit in the Use of Conventional
Methods of Adjustment

Treatment assignment is X-adjustable when two
conditions hold: first, the treatment group indicator,
Z, is unrelated to the response pair, (Rr, Rc), within
each subpopulation defined by a value of X, and,
second, at each value of X, a fraction of the population
falls in each treatment group. Formally, treatment
assignment is X-adjustable if, in Dawid’s (1979) no-
tation for conditional independence,

(2.3a) (Rr,Re) 1 Z | X
and
(2.3b) O<pr(Z=z|X=x)<1 foreachzandzx.

At times, it is useful to be explicit about the response
variables involved in X-adjustable assignment, in
which case, (2.3) will be called (Rr, Rc | X)-adjustable
assignment. For example, if (2.3a) were replaced by
Rc || Z| X, then the condition would be (R¢|X)-
adjustable assignment, but the converse is untrue
without additional conditions. (In Rosenbaum and
Rubin (1983a), condition (2.3) is called “strongly ig-
norable treatment assignment for (Rr, Rc) given X”;
however, the term “(Rr, Rc|X)-adjustable assign-
ment” is more compact and suggestive, because ad-
justments for X suffice when (2.3) holds.) In particu-
lar, treatment assignment is (Rr, Rc| X)-adjustable,
and hence also (R¢ | X)-adjustable, (i) in conventional
randomized experiments in which treatment groups
are formed by flipping a fair coin, (ii) in randomized
experiments in which treatment groups are formed by
flipping biased coins, where the bias is a (possibly
unknown) function of X alone (Rubin, 1977) and (iii)
» in observational studies in which treatment groups
are formed on the basis of X and some other irrelevant
covariates (Rosenbaum, 1984a, Section 2.3).

It is easy to show that when (2.3) holds, a wide
variety of adjustments for X provide appropriate es-
timates of treatment effects (e.g., Rubin, 1977; Rosen-
baum and Rubin, 1983a; Rosenbaum, 1984b). In the
simplest case, we might randomly sample a treated
(Z = 0) subject from the population, note that sub-
ject’s value x of X, and then randomly sample a
control (Z = 1) subject-from among control subjects
having the same value x of X. When (2.3) holds,
the (conditional) expected difference in responses

in this pair given the common value x of X is:

E{Rr|Z=0,X=x}-E{Rc|Z=1, X = x}
(24) =E(Rr|Z=0,X=x}
— E{Rc|Z =0, X =1x} by (2.3a).

Continuing when (2.3) holds, the (marginal) expected
difference in responses in pairs obtained in this
way is (2.4) averaged with respect to the distribution
of X in the treated group, pr(X|Z = 0); so the
expected difference in matched pairs reduces to
E(Rr — Rc|Z = 0), namely the average effect of
the treatment on the treated population. (The inabil-
ity to find exact matches for some subjects introduces
various biases; see Rosenbaum and Rubin (1985) for
specifics.)

Because conventional methods of adjustment rely
on the assumption that treatment assignment is X-
adjustable, we must check this assumption in every
way possible. As it turns out, a second control group
provides a check on the hypothesis of (R | X)-adjust-
able assignment, and thereby only a partial check on
(R7, Rc| X)-adjustable assignment. This distinction
is relevant to discussions of the properties of tests of
X-adjustable assignment, for example, the properties
of consistency and unbiasedness (Section 3.4). It is,
therefore, useful for later reference to be clear about
what follows from just (Rc | X)-adjustable assignment.
First, (2.4) holds under (Rc|X)-adjustable assign-
ment, so exact matching yields an unbiased estimate
of E(Rr — Rc|Z = 0). By an analogous argument,
E(Rr — Rc|Z = 0) may be estimated by subclassifi-
cation or model-based adjustments under the same
condition. Second, (R¢ | X)-adjustable assignment and
the null hypothesis of no effect, Hy: R = R, together
imply (R7, Rc|X)-adjustable assignment, so that
(Rc | X)-adjustable assignment suffices for tests of this
null hypothesis (e.g., Rosenbaum, 1984b). Moreover,
if the treatment has an additive effect, Ry = Rc + 7
for fixed 7 (cf. Kempthorne, 1952, Section 8), or
indeed if it has any deterministic effect—i.e., if
Rr = f(R¢, X) for some function f(., -)—then
(Rc| X)-adjustable assignment implies (R7, Rc|X)-
adjustable assignment. Nonetheless, in general,
(Rc | X)-adjustable assignment is insufficient by itself
if we wish to estimate the average treatment effect in
the population as a whole, namely E(Rr — Rc), for
this requires an adjustment of the responses of both
treated and control subjects, rather than adjustments
of only the control responses.

2.4 (X, U)-Adjustable Treatment Assignment: A
Simple Alternative to X-Adjustable Assignment

A central concern in observational studies is that
even after adjustments have been made for the ob-
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served covariates, X, treated and control groups may
still differ with respect to an unobserved covariate,
say U, that is relevant to both treatment assignment
and response. To say that U is the unobserved co-
variate for which adjustments are required is, in effect,
to say that treatment assignment is (Rc¢|X, U)-
adjustable, i.e., that

(2.5a) Rcll Z| (X, U)
and

O<prZ=z|X=x,U=u) <1
(2.5b) pr( 2l * ¥

for each (2, x, u).

Specifically, this says that adjustments for
(X, U) would have been sufficient to estimate
E(RT - Rch = 0) or to test Hoi RT = Rc, but
these adjustments were not feasible because U was
not observed. In this paper, the alternatives to the
hypothesis of (Rc¢|X)-adjustable assignment will
be stated in terms of (Rc¢| X, U)-adjustable assign-
ment. The closely related condition, (Rr, Rc| X, U)-
adjustable assignment, has been used in connection
with sensitivity analyses (Rosenbaum and Rubin,
1983b; Rosenbaum, 1984c, 1986, 1987) and tests
of X-adjustable assignment (Rosenbaum, 1984a,
Section 3.4).

3. THE ROLE OF A SECOND CONTROL GROUP
IN COHORT STUDIES

3.1 Notation: A Second Control Group Is a Second
Group of Subjects Who Display Their
Responses to the Control

In the case of two control groups, the group to which
a subject belongs is indicated by Z, where Z = 0 for
treated subjects, Z = 1 for subjects in the first control
group and Z = 2 for subjects in the second control
group. Only the case of two control groups will be
considered, although additional control groups beyond
two would not involve new principles. As before, every
subject has two potential responses: the response, Rr,
that would be observed were the treatment applied to
this subject, and the response, Rc, that would be
observed from this subject if the treatment were with-
held. All subjects in the treated (Z = 0) group exhibit
their responses (R7) to treatment, and all subjects in
the control (Z = 1 or Z = 2) groups exhibit their
responses (Rc) to control. Adjustable treatment as-
signment is defined as before; for example, conditions
(2.3) and (2.5) continue to define, respectively,
(Rr, Rc|X)-adjustable and (R¢|X, U)-adjustable
treatment assignment. This notation describes cohort
studies with multiple control groups; a slightly differ-
ent approach is required to describe case-control stud-
ies (see Section 4).

It is important to observe that, when treatment
assignment is X-adjustable, appropriate estimates of
treatment effects may be obtained from either control
group, providing adjustments are made for X.
This follows from arguments parallel to those in
Section 2.3.

3.2 Using a Second Control Group to Test the
Hypothesis That Treatment Assignment Is
X-Adjustable

A second control group provides the basis for a test
of X-adjustable treatment assignment of the type de-
scribed in Rosenbaum (1984a). Specifically, (Rc | X)-
adjustable assignment implies that Rc has the same
conditional distribution given X in the two control
groups (Z = 1 and Z = 2), or formally that

(31) pr(Re=r|Z=1,X)=pr(Rc=r|Z=2,X)

for each r, so any test of (3.1) is a test of X-adjustable
treatment assignment. For example, if the response
Rc were dichotomous and X were categorical with K
possible values, one test of (3.1) would be to apply the
Mantel-Haenszel (1959)-Birch (1964) statistic to the
2 X 2 X K contingency table recording Rc by
(Z =1 versus Z = 2) by X.

Suppose, now, that treatment assignment is (Rc | X,
U)-adjustable for some unobserved covariate U. It is
easy to show (e.g., Rosenbaum, 1984a, Section 3.4)
that rejection of the hypothesis (3.1) is also rejection
of the hypothesis that U has the same distribution in
the two control groups, i.e., rejection of

prilU<sul|Z=1,X)=pr(U=u|Z=2,X)
for all u.

In other words, rejection of (3.1) implies that, even
after adjustment for X, the two control groups are not
comparable with respect to U, an unobserved covariate
that is related to the response. Furthermore, if (3.2)
does not hold, then at least one of the two control
groups differs from the treated (Z = 0) group with
respect to the distribution of U—i.e., either

pr(U=ulZ=0,X)

#Zpr(U=ul|Z=1,X) or
pr(U=u|Z=0,X)

#pr(U=sul|Z=2,X)

—so0 at least one of the control groups is not compa-
rable to the treated group even after adjustment
for X.

In short, if, after adjustment for X, the two control
groups differ with respect to the response Rc, then
treatment assignment is not X-adjustable, and at least
one of the control groups is not comparable to the
treated group.

(3.2)

(3.3)
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3.3 “Control by Systematic Variation”

So far, a second control group plays a negative role:
we look for evidence of departures from X-adjustable
treatment assignment, and are comforted if we do not
find any. To a certain extent, this is the way all
scientific theories are checked: a scientific theory is
never proved true, for it is not a mathematical prop-
osition; rather, it is exposed to empirical refutation,
and confidence in the theory grows as it resists refu-
tation (Popper, 1959). We wish to select control groups
so as to provide the severest possible test of X-adjust-
able treatment assignment. The question, then, is how
this is to be done.

In a thoughtful discussion of artifacts and controls
in behavioral research, Campbell (1969) quotes Bit-
terman’s (1965) discussion of the principle of “control
by systematic variation.” Bitterman studied the na-
ture of differences in behavior between species. For
example, he wished to conclude that fish are less likely
than rats to display some learned behavior not because
the fish are less motivated (in this case less hungry),
but rather because fish learn more slowly. He writes:

“I do not, of course, know how to arrange a set of
conditions for the fish which will make sensory
and motor demands exactly equal to those which
are made upon the rat in some experimental
situation. Nor do I know how to equate drive level
or reward value in the two animals. Fortunately,
however, meaningful comparisons still are possi-
ble, because for control by equation we may sub-
stitute what I call control by systematic variation.
Consider, for example, the hypothesis that the
difference between the [learning] curves . . . is due
to a difference, not in learning, but in degree of
hunger. The hypothesis implies that there is a
level of hunger at which the fish will show pro-
gressive improvement, and put this way, the hy-
pothesis becomes easy to test. We have only to
vary level of hunger widely in different groups of
fish, which we know well how to do. If, despite
the widest possible variation in hunger, progres-
sive improvement fails to appear in the fish, we
may reject the hunger hypothesis. Hypotheses
about other variables also may be tested by sys-
tematic variation.”

There are, then, two principles from the design of
experiments for use in observational studies. First,
control by equation: compare treated and control sub-
jects who were comparable prior to treatment, perhaps
by matching or subclassification on observed co-
variates (X). But, second, if this is impossible because
a possibly relevant covariate (U) was not observed,
then apply control by systematic variation: find two
control groups in which the distribution of U is quite
different, even if unobserved, and check that despite
the difference in U, the responses in the two control

groups are similar. Even though we cannot measure
U and, therefore, cannot ensure that the treated and
control groups are comparable with respect to U, we
may nonetheless be able to determine whether imbal-
ances in U could explain observed differences in the
responses of treated and control groups. (In a factorial
experiment, these two principles are combined: treat-
ments are systematically varied and balanced at the
same time. There are fewer options in the design of
observational studies, and the principles may have to
be applied sequentially.)

3.4 A Consistent and Unbiased Test

Recall that a statistical test is consistent against a
family of alternative hypotheses if the power of the
test against each alternative in the family tends to
one as the sample size increases. Recall also that a
statistical test is unbiased against a family of alter-
natives if the power of the test exceeds its level for
each alternative in the family. See Lehmann (1959)
for detailed discussion of the formal notions of con-
sistent and unbiased statistical tests.

The test in Section 3.2 of X-adjustable treatment
assignment is not generally consistent or unbiased;
that is, the test may fail to detect certain violations of
X-adjustable treatment assignment no matter how
large the sample size or how often the study is repli-
cated. A consistent test would be preferable, for with
such a test, failure to detect violations of the hypoth-
esis of X-adjustable treatment assignment in a series
of large observational studies on a single topic would
begin to suggest that, in those studies, this hypothesis
is not far from the truth. This section shows that the
principle of “control by systematic variation,” as dis-
cussed by Bitterman (1965) and Campbell (1969),
brings us closer to a consistent test, at least against
one broad and interesting class of alternatives.

In this section, treatment assignment is assumed to
be (R¢ | X, U)-adjustable for some specific unobserved
covariate, U. We wish to ask whether treatment as-
signment is also (Rc| X)-adjustable, that is, whether
the unobserved U may be ignored in estimating treat-
ment effects. We may certainly ignore U in estimating
E(Rr— Rc|Z = 0) or in testing Hy: Rt = Rc if

(3.4) RoIU|X
or equivalently if
pr(Rec>r| X, U) = pr(Rc > r| X) for each r.

If (3.4) holds, then (Rc| X, U)-adjustable treatment
assignment implies (Rc|X)-adjustable treatment
assignment, by elementary properties of conditional
independence or by Dawid’s (1979) Lemma 4.

It is often possible to select control groups in such
a way as to systematically vary the U distribution. In
Example 3, for instance, the untreated control group
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consisted of soldiers rejected for treatment on the
basis of a medical examination. It is not clear that
such an examination, given to young men healthy
enough to be accepted for military service, could pre-
dict chronic conditions such as cancers decades later.
It is clear that there are other untreated groups of
soldiers who had to pass special medical examinations
before being selected for some special service. Military
pilots might be an example. Although it is not known
that either of these two untreated control groups is
comparable to the treated group, it is known that the
two control groups differ from each other in the sense
that one was selected and the other rejected on the
basis of a medical examination.

When the control groups have been selected to
systematically vary the U distribution, a consistent
test of (3.4) is possible against the alternative hypoth-
esis that Rc is (strictly) stochastically increasing in U
given X i.e., against the alternative that:

pr(Re>r| X, U=u)<pr(Rc>r| X, U=u’)

(3.5a)
ifu<u’ forallr,

with strict inequality for some r, i.e., for some r,
pr(Rc>r| X, U=u)<pr(Rc>r| X, U=u’)

(3.5b)

ifu<u’.
Here, (3.5) states that higher values of R¢ are associ-
ated with higher values of U even after adjustment for
X. Condition (3.5) would hold, for example, if Rc had
a linear regression on (X, U) with independent and
identically distributed errors, and a strictly positive
coefficient for U. Similarly, (3.5) would hold if Rc were
dichotomous and followed a linear logit model in
(X, U), again with a strictly positive coefficient for U.
In other words, (3.5) is a very general (nonparametric)
description of positive dependence, known as positive
regression dependence (Lehmann, 1966).

Suppose that the control groups have been selected
according to the principle of “control by systematic
variation,” or specifically, suppose that the control
groups have been selected so that values of U are

_typically higher in control groups Z = 2 than in group
Z=1lat each X; i.e., so that

(3.6) pr(U>ul|Z=1 X=1x)
3.6
<pr(U>u|Z=2,X=1x) foreachuand x.

Condition (3.6) would hold if, for example, the distri-
bution of U given X in the two control groups had the
same shape with a higher mean in the Z = 2 group. It
is often possible to find control groups for which (3.6)
is very plausible for some specific U.

To Summarize. (a) Treatment assignment is as-
sumed (R¢| X, U)-adjustable, and (b) the control
groups have been selected to systematically vary U so

that (3.6) holds. We seek a consistent test of the null
hypothesis of (Rc¢| X)-adjustable assignment against
the alternative hypothesis that higher R values are
associated with higher U values even after adjustment
for X—i.e., against the alternative (3.5). But, (R¢| X)-
adjustable assignment implies

pr(Rec>r|Z=1,X)=pr(Rc>r|Z=2,X)
@7 for all r,
whereas by an elementary argument (a), (b) and (3.5)
imply
pr(Rc>r|Z=1,X)<pr(Rc>r|Z=2,X)

3.8
(3.8a) for all r;
and
pr(Rc>r|Z=1,X)<pr(Rc<r|Z=2,X)
(3.8b)

for some r.

In words, if U can be ignored, then the conditional
distribution of the response R¢ given X is the same in
the two control groups, whereas if R still increases
with U after adjustment for X, then higher values of
Rc are expected in control group Z = 2 that was
selected for its higher values of U. It follows that any
test of (3.7) that is consistent (respectively, unbiased)
against (3.8) is a consistent (unbiased) test of (R¢ | X)-
adjustable assignment against (3.5). For example, if
R¢ is dichotomous and X is categorical, then the
Mantel-Haenszel (1959)-Birch (1964) test is consist-
ent and unbiased, whereas, if Rc is continuous then
the stratified Mann-Whitney-Wilcoxon test is con-
sistent and unbiased.

Although it is often possible to select two control
groups in such a way as to systematically vary the
distribution of a particular U, it will rarely be certain
that the control groups differ solely on (X, U) and not
on other unobserved covariates as well. Formally, it
will rarely be certain that treatment assignment is
(Rc| X, U)-adjustable. In some instances it may be
possible to use larger numbers of control groups to
study several unobserved differences simultaneously.
More commonly, a second control group will address
the possibility of bias due to a single unobserved U
assuming, in effect, that other unobserved differences
are absent. See Section 3.7 for related discussion.

Consistency and unbiasedness are fairly weak prop-
erties. Still, we have found that “control by systematic
variation” is a sound approach, in that it yields the
stronger properties of statistical tests that are not
generally available without systematic variation of the
U distribution. We routinely evaluate experimental
and survey designs in part by considering their formal
statistical properties; this principle should apply in
the design of observational studies as well. A stronger
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version of this principle is discussed in the next
section.

3.5 Bracketing

As noted informally by Campbell (1969, page 365),
the ideal control groups would bracket the treated
group. To make "this concept precise, assume that
treatment assignment is (Rc¢| X, U)-adjustable for
some specific unobserved covariate U. Then the con-
trol groups bracket the treated group if

pr(U>u|Z=1,X)
3.9) <spr(U>u|Z=0,X)
<spr(U>u|Z=2,X) foreachu;

i.e., if the control groups have been selected so that,
after adjustment for X, the Z = 1 control group has
lower values of U than the treated group, and the
Z = 2 control group has higher values of U. In Example
2 of Section 1, with U as the unobserved measure of
motivation for academic work, condition (3.6) is very
plausible, whereas (3.9) it is not: the students who
actually took part in the AP program seem likely to
have had higher motivation than either of the other
groups, because both of the control groups contain
individuals' who would have declined participation
given the choice.

In this section, it is assumed that, if R is associated
with U after adjustment for X, then the association is
positive; i.e.,

pr(Re>r| X, U=u)<pr(Rc>r|X,U=u’)

(3.10)
fu<u’.
Note that (3.10) differs from (3.5) in not requiring
strict monotonicity; (3.10) permits either (3.4) or (3.5),
as well as various intermediate cases.

The assumptions of this section imply:

pr(Re>r|Z=1,X)<pr(Rc>r|Z=0,X)

(3.11)
=pr(Re>r|Z =2, X),;

i.e., after adjustment for X, the population distribution
of the (unobserved) control responses for the treated
'(Z = 0) group is bounded by the two distributions of
(observed) control responses for the two control
groups (Z =1and Z = 2).

Consider the simplest case: a treated subject is
randomly sampled, and then exactly matched on the
basis of X with two controls, one from each control
group. The inequality of (3.11) implies the following.

(i) The difference in responses of the matched
treated and Z = 1 control subjects overestimates the
average effect of the treatment on treated subjects—
i.e., it overestimates E(Rr — Rc | Z = 0)—whereas the
difference between the matched treated and Z = 2

control subjects underestimates the effect. In other
words, when the control groups bracket the treated
group, the two matched pair differences estimate
bounds on the treatment effect. This is true even
though adjustments have been made only for X, and
treatment assignment is not X-adjustable.

(ii) Consider a test of the null hypothesis of no
treatment effect—i.e., of the hypothesis that Ry = R¢
for all subjects—against the one-sided alternative of
typically higher responses under the treatment. Here,
the matched treated subjects are compared with the
matched controls from one or the other of the two
control groups. For concreteness, suppose the one- -
sided McNemar test is used if the response is binary
and the one-sided Wilcoxon signed rank test is used
if the response is continuous. These tests will not
generally have their nominal level because treatment
assignment is not assumed to be X-adjustable. Put
another way, the matched treated and control subjects
may differ systematically with respect to U and, as a
result, rejection of the null hypothesis may occur too
frequently when the null hypothesis is, in fact, true.
Assume the null hypothesis of no effect is true, and
let a; and as, be the actual levels of the one-sided test
when applied to the Z = 1 and Z = 2 controls, respec-
tively. Here, o; and a, are the true probabilities of
rejection for the two control groups using the
McNemar or Wilcoxon tests with some fixed nominal
level, say .05. In addition, let 8 be the power of the
one-sided McNemar and Wilcoxon test when applied
with the same level, .05, to compare the responses in
the two control groups as a test of X-adjustable treat-
ment assignment, as in Section 3.2. From (3.11) and
the one-to-one matching of treated and control sub-
jects, we have:

(3.12)

In other words, when the control groups bracket the
treated group, the one-sided test based on the second
control group is conservative, although the test based
on the first control group is liberal. Moreover, the

ﬂ2a12.052a2.

- chance, 8, of detecting the bias due to U by comparing

the two control groups exceeds the chance (a; or as)
of falsely rejecting the hypothesis of no treatment
effect. This last point is considerably stronger than
the consistency/unbiasedness result of Section 3.4.

3.6 The Power of Tests of X-Adjustable
Assignment in the Absence of Bracketing

In Section 3.5, the power 8 of the test of X-adjust-
able treatment assignment was contrasted with the
true levels, a; and ay, of the tests comparing the
treated group with each of the singly matched control
groups. There, due to the bracketing in (3.9) and the
positive relationship between R¢ and U in (3.10), it
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was concluded that 8 = a; and 8 = a,. If, instead of
(3.9), both control groups had lower distributions of
U than the treated group—i.e., if

pr(U>u|Z=0,X)zpr(U>u|Z=1,X)
=pr(U>u|Z=2,X)

—then we would have 8 < a, and no definite relation-
ship between 8 and «;. This is unsatisfactory, for
it implies that in the absence of an actual treat-
ment effect, we are more likely to falsely detect a
treatment effect than we are to correctly detect bias
due to an unobserved covariate U.

In many observational studies, it is feasible to de-

(3.13)

sign the study to include more controls than treated

subjects, and this could raise g relative to a; and a,.
It is, however, important to have some idea of the
sample sizes required for reasonable power. For this
purpose, consider the following idealized model:
(i) zero treatment effect, Ry = Rc; (ii) a linear model
for R,

Rc=a+8"X+~yU+E;

(iii) a homogeneous normal conditional distribution
for (U, E)7 in the three groups, z =10, 1, 2,

2
prU,E|Z=2X) = N{(’(;), [‘3’ f%]}

(iv) exact matching on X of K controls from each
of the Z =1 and Z = 2 control groups with each
treated subject; and (v) group comparisons based on
a paired t test, where the within pair differences
are based on mean responses of control subjects in
that pair. For a single matched pair or set, the within
pair difference between the treated (Z = 0) response
and average response of the K controls from group
Z = z has expectation y(up — u.) and variance
v} + ¢2)(1 + 1/K). In contrast, a single within
pair difference between the two control groups
has expectation y(u; — uy) and variance y*(o} +
%)(2/K). It follows easily that we will have 8 = ay,

azif
2
> 4 =
= \/K+1 forz=1,2.

In the case of bracketing (Section 3.5), we have
| w1 — p2 | > | po — n | for z=1, 2, so that the left-hand
side of (3.14) is at least 1; then, since K = 1, the
inequality in (3.14) holds so 8 = ay, as, in general
agreement with Section 3.6. In contrast, if (3.13) holds,
then | u; — p2| <|mo — 2|, and a K larger than 1 is
required for 8 = a;, ay. Table 1 gives values of the
bound in (3.14) for various values of K. For example,
if uy = (po + p2)/2, so the first control group falls half
way between the treated group and the second control
group, then we need at least K = 7 controls from each

M1 — M2

Mo — Mz

' (3.14)

TABLE 1
In the absence of bracketing, how many controls are required to test
X-adjustable treatment assignment?

_Smallest value

(Vi)

No. K of controls from each
control group matched to each

treated subject ; |1 — pal
o — p2l
for which 8 = oy, ay
1 1.00
2 .82
3 M
4 .63
5 .58
7 .50 = V2 exactly
10 43
17 .33 = V5 exactly
25 .28
50 .20

100 14

control group matched to each treated subject to en-
sure 8 = ay, ay. Clearly in Table 1, the bound falls
very slowly as K increases.

The power calculations in this section are certainly
idealized, and the requirement that 8 = a;, a; is a
limited one. Still, Table 1 serves to emphasize the

importance of selecting control groups to systemati-

cally vary the U distribution as widely as possible, for
otherwise we are unlikely to detect bias due to U even
with surprisingly large numbers of controls. Moreover,
in the absence of bracketing, it is certainly not unrea-
sonable to seek two control groups that are each an
order of magnitude larger than the treated group in
an effort to provide a serious test of X-adjustable
treatment assignment.

3.7 Partial Comparability

A common argument for using multiple control
groups begins with the observation that each of several
possible control groups resembles the treated group in
some way but not in several other ways. In the simplest
case, there are two possible control groups, Z = 1 and
Z = 2, the unobserved covariate U = (U, Us) is two
dimensional and (2.5) holds. Then there is partial
comparability if

priUi=u|Z=0,X)=pr(Ui=ul|Z=1,X)

3.15
(3.152) for all u,

and
pr(U;=u|Z=0,X)=pr(Us<u|Z=2,X)

(3.15b) for all u.

In words, control group Z = 1 resembles the treated
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group with respect to U;, but not necessarily U,, and
control group Z = 1 resembles the treated group with
respect to U, but not necessarily U,.

Control groups selected in an effort to achieve par-
tial comparability provide a test of X-adjustable treat-
ment assignment—any second control group does
this—but partial comparability by itself does not en-
sure that the test is a particularly good one. To see
this, consider Example 2, the AP program example,
where perhaps U, is a measure of economic resources
available to the student’s school, the U, is a measure
of individual motivation for academic work. Plausibly,
the AP students—the treated group—will frequently
come from schools with greater resources and will also
have high motivation for academic work. Possibly,
both U; and Us, are positively related to college per-
formance even after adjustment for recorded sopho-
more year test scores and course grades. If so, even if
partial comparability were achieved with the two con-
trol groups discussed in Section 3.1, and even if the
AP program had no effect, the AP students are likely
to outperform both control groups, because each con-
trol group has lower typical values of one coordinate
of U. Indeed, similar results for the two control groups
might give us a false impression that treatment as-
signment is X-adjustable. By itself, partial compara-
bility need not yield a more severe test of X-adjustable
treatment assignment.

Partial comparability does have one advantage,
however. When X-adjustable assignment is rejected,
the knowledge that (3.15) holds may aid interpreta-
tion. For instance, in discussing the results in Example
1 in Section 1.4, Cole (1979, page 22) bases various
conjectures on the knowledge that siblings had similar
childhood environments and also similar risks of
Hodgkin’s disease. It also seem probable that partial
comparability could be used to restrict the range of
hypotheses about (U;, U,) that would be investigated
in a sensitivity analysis (Section 1.2), although the
mechanics still need to be developed.

4. THE ROLE OF A SECOND “CONTROL”
GROUP IN CASE-CONTROL STUDIES

4.1 Case-Noncase Comparisons

A case-control study compares the treatment his-
tories of groups of subjects defined by their responses,
that is, a case group and one or more noncase or
“control” groups. For example, Doll and Hill (1952)
compared the smoking histories of lung cancer pa-
tients (the cases) and patients with other diseases in
the same hospital (the “control” or noncases). Note
that this is quite different from a cohort study in
which smokers and nonsmokers are compared with
respect to subsequent outcomes. There is, however, a

key result due to Cornfield (1951) with some helpful
amplification due to Mantel (1973). It states that
certain population odds ratios estimated from case-
control studies are equal to the corresponding popu-
lation odds ratios obtained from cohort studies of the
same population; this point is reviewed in Section 4.3.
Enlightening theoretical discussions of case-control
studies are given by Cornfield (1951), Mantel (1973),
Hamilton (1979) and Holland and Rubin (1980); the
last two references use the two-response (Ry, Rc)
notation. Reviews of practical issues in the design of
such studies are given by MacMahon and Pugh (1970)
and Lilienfeld and Lilienfeld (1980). Statistical meth-
ods for case-control studies are surveyed by Mantel
and Haenszel (1959) and Breslow and Day (1980).

Case-control studies require slight modifications of
the notation of Sections 2 and 3. In most case-control
studies, the two responses, (Rr, Rc), are each binary;
e.g., 1 for subjects who develop a particular disease
and 0 otherwise. Write R* for the observed binary
response from a subject: R* equals Rr for subjects who
actually received the treatment and R* equals R for
subjects who actually received the control. Also, write
Z for the binary variable indicating whether or not
the treatment has been applied, so that, as in Section
2.2, Z = 0 for treated subjects and Z = 1 for untreated
subjects. A case-control study compares the distribu-
tion of Z for cases (i.e., for subjects with R* = 1) to
the distribution of Z for “controls” or noncases (i.e.,
for subjects with R* = 0).

In case-control studies, the term “control” is used
in a loose, specialized and nonstandard way. In con-
trast with cohort studies, a “control” group in a case-
control study typically contains many subjects who
received the treatment. To avoid confusion, alterna-
tives to the phrase “control group” have been proposed
by many authors, including “comparison group” and
“referent group.” Perhaps the simplest and most
suggestive term for such a “control” group is a “non-
case group,” because the group is selected to consist
of subjects who are not cases. A case-“control” study
is really a case-noncase comparison.

In case-control studies, cases of a particular disease
are often obtained from a registry of the cases reported
in a particular region, or from all recent patients
having the disease in specific hospitals. Typically, the
intention is to view cases obtained in this way as
representative of all cases in some population, al-
though exactly what population this is can be unclear.
Finding noncases or controls who are representative
of noncases in the same population is, therefore, often
problematic. Strictly speaking, it is only in the “syn-
thetic” case-control studies described by Mantel
(1973) that the cases and noncases under study can
confidently be viewed as representatives of cases and
noncases in a well-defined common population.
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4.2 Noncase or “Control” Groups in Case-Control
Studies

Often, the noncases actually used are patients with
other diseases in the same hospital or registry, or else
relatives or neighbors of the cases. In some instances,
more than one such group of noncases is used. It is
clear that such noncases are not truly representative
of noncases in any interesting population; e.g., most
noncases of lung cancer are neither hospitalized for
another disease nor related to a lung cancer patient.
The circumstances under which noncases obtained in
this way can form a reasonable comparison group
requires clarification.

For this purpose, assume first that, at each value of
X, the cases are representative of cases in a specific
population, so that the cases provide a direct estimate
of pr(Z | R* = 1, X) in the population. In contrast,
assume that: (i) the noncases in the same population
are divided into mutually exclusive and exhaustive
strata, indicated by a variable S; (ii) the available
noncases are drawn from some but not all of the strata;
i.e., from some but not all values of S; and (iii) the
noncases drawn from a stratum are, at each X,
representative of noncases in that stratum, and so
they can be used to directly estimate pr(Z | R* = 0,
S = s, X) for some values of s.

For illustration, Table 2 contains selected data from
an interesting and thorough study by Hiller, Giaco-
metti and Yuen (1977) of the effects of sunlight on
the risk of cataract. The treatment consisted of expo-
sure to more than 3000 hours of sunshine each year
(Z = 0) as opposed to exposure to less than 2400 hours
(Z = 1). Here, “exposure” refers simply to living in a
region of the United States with these levels of total
annual exposure. Cataract cases (R* = 1) were ob-
tained from a registry, the “Model Reporting Area for
Blindness Statistics.” Noncases were drawn from
three strata of noncases in the population: noncases
in the same registry having diabetic retinopathy
(R* =0, S = 1), (severe) myopia (R* =0, S = 2) or
optic nerve disease (R* = 0, S = 3). For precise
definitions of these strata, and in particular for dis-
cussion of the classification of a few noncases with
multiple diseases, see Hiller, Giacometti and Yuen
(1977). The complete population also contains non-
cases from another stratum from which no noncases
are available, namely the stratum (say R* = 0, S = 0)

- of all noncases not in the registry, possibly because of
no eye disease.

The selection of control groups will be said to be
X-adjustable if

(4.1) Z I S|(R*=0, X),

that is if, among noncases at each X, the treatment or
exposure (Z) is unrelated to the source (S) of the

TABLE 2
Sunlight and cataract: a case group and three noncase groups by age
and sex .
Males . Females
Age Z) 2)
0 1 0 1

20-44 (R*=1) 8 33 6 23
(R*=0,8=1) 9 96 3 54
(R*=0,S=2) 11 56 6 29
(R*=0,8=3) 45 204 26 139
46-64 (R*=1) 19 139 30 114
(R*=0,S=1) 18 172 13 222
(R*=0,8S=2) 16 79 7 95
(R*=0,S=3) 48 226 25 134
65-74 (R*=1) 33 76 26 99
(R*=0,8S=1) 3 90 13 185
(R*=0,S=2) 9 36 3 48
(R*=0,8S=3) 11 84 11 49
75+ (R*=1) 121 172 165 364
(R*=0,S=1) 2 41 14 123
(R*=0,S=2) 8 22 5 50
(R*=0,8S=3) 15 70 13 64

Notes: (i) Z = 0 if annual sunlight > 3000+ hours; Z = 1 if annual
sunlight = 2400 hours; (ii) (R* = 1) for cataract cases; (R* = 0,
S = 1) for noncases with diabetic retinopathy; (R* = 0, S = 2)
for noncases with myopia; (R* = 0, S = 3) for noncases with
optic nerve disease. This material is from Hiller, Giacometti and
Yuen (1977).

controls. In other words, condition (4.1) says that
the treatment/exposure distribution for noncases
in the population, namely pr(Z|R* = 0, X), may
be estimated from each of the several sources of
noncases, because (4.1) is equivalent to saying that
pr(Z|R* = 0, X) = pr(Z|R* = 0, S = s, X) for
each s.

In the example cited above, the selection of control
groups would not be X-adjustable if sunlight exposure
caused an increase in the risk of the other diseases,

‘namely diabetic retinopathy, myopia and optic nerve

disease. Hiller, Giacometti and Yuen (1977, page 57)
mention, in effect, that the three noncase groups were
selected in the hope of avoiding this possibility. (This
issue can be developed formally at the expense of
additional notation. In brief outline, S is the observed
version of a two version “other disease” indicator
(S, Sc¢); cf. Section 2. Then St is the other disease
status that would be observed from a subject under
the treatment (i.e., if Z = 0) and S¢ is the other disease
status that would be observed under the control (i.e.,
if Z = 1). Condition (4.1) would hold if among
noncases (i.e., among subjects with R* = 0), (a) treat-
ment assignment were (S, Sc|X)-adjustable and
(b) the treatment had no effect on (Sr, Sc), SO
that Sr= S¢).



304 P. R. ROSENBAUM

4.3 A Version of Cornfield’s Result: Odds Ratios in
Case-Control Studies

At a fixed X = x, define 7(x) to be the ratio of the
odds of disease under the treatment and under the
control, i.e.,

=PI‘(RT=1|X=x)/pr(RT=O|X=x)
pr(Rc=1|X=1x)/pr(Rc=0|X=x)"

Thus, 7(x) is a measure of the effect of the treatment
on the subpopulation of subjects with X = x. A key
result is due to Cornfield (1951) with elaboration and
reexpression by Mantel (1973), Hamilton (1979) and
Holland and Rubin (1980); it states that, in the ab-
sence of certain biases, 7(x) may be directly estimated
in a case-control study. Specifically, let ¢(x) be the
ratio of the odds of exposure to the treatment for cases
and for noncases from groups S = s,

pr(Z=0|R*=1,X=1x)

pr(Z=1|R*=1,X=x)
pr(Z=0|R*=0,S=s5,X=x) ~
pr(Z=1|R*=0,S=5,X=1x)

7(x)

&(x) =

In a case control study, ¢(x) can be estimated directly
from the corresponding empirical odds ratio at X = x.
Cornfield’s (1951) key result states, in effect, that
7(x) = €(x) for each s if treatment assignment is
(R1, Rc|X)-adjustable and the selection of control
groups is X-adjustable. In words, under the given
conditions we may estimate 7(x) directly, since it
equals ¢(x). For brevity, the conjunction of the two
assumptions, namely (2.3) and (4.1), will be called
X-adjustable observation.

The proof of Cornfield’s (1951) result is elementary:

pr(Z=0|R*=1,X=x)
pr(Z=1|R*=1,X=x)

(4.2&) Gs(x) = pl’(Z - 0 I R*»= 0’ X - x) [by (4'1)]
pr(Z=1|R*=0,X=x)
pr(R*=1|Z=0,X=x)

_ pr(R*=0|Z=0,X=x)

(4.2b) " pr(R*=1|Z=1,X=1x)
pr(R*=0|Z=1,X=x)

(by Bayes’ Theorem)
pr(Rr=1|Z=0,X=1x)
_ pr(Rr=0]Z=0,X=x)

(4.2¢) T pr(Re=1|Z=1,X=2)
pr(Rc=0|Z=1,X=x)

(by the definition of R*)

(4.2d) =7(x) [by(2.3)].

The attractive, explicit form of steps (4.2b) to (4.2d)
is due to Holland and Rubin (1980); see also Hamilton
(1979) and Holland (1986a).

An entirely analogous argument tells us what to
expect when one control (i.e., noncase) group is com-
pared to another. Specifically, under X-adjustable
observation, we have

pr(Z=1|R*=0,S=s,X=1x)
, pr(Z=0|R*=0,S=s5,X=1x)
43 = Z=1R =0,5=5,X=2)
pr(Z=0|R*=0,S=s',X=x)
=1foralls, s’ and all x.

Informally, if adjustments for X suffice to estimate
the treatment effect, 7(x), then the control groups will
not differ from one another after adjustment for X, in
the sense that w/(x) = 1.

In short, in a case-control study, a comparison of
the treatment histories of two or more control groups
provides a check of the (conjunction of) the two con-
ditions that permit estimation of the treatment effect.

4.4 An Example

Table 3 contains an example based on the data in
Table 2. Table 3 applies the Mantel-Haenszel (1959)
test and estimator to compare the cases to each control
group, and the control groups to one another. The
Mantel-Haenszel estimator provides estimates of the
odds ratios, ¢(x) and w/(x), assuming they are con-
stants, ¢, and wy;, not depending on x. The significance
levels refer to the null hypotheses that these odds
ratios equal one.

Table 3 provides strong evidence that ¢, > 1 for each
s, so that cataract cases have greater exposures to
sunlight than the other groups. However, the table
also provides strong evidence that observation is not
X-adjustable, so that the argument in (4.2) does not
hold, and therefore the estimated ¢, cannot safely be
taken as an estimate of 7(x). In particular, two of the
control groups (myopia and optic nerve disease) differ
less from the cases than they do from the third control
group (diabetic retinopathy), sharply contradicting
(4.3).

In examining the differences between the control
groups, both the statistical significance of the differ-
ences and their magnitudes are important. In the
current example, the unexplained but statistically
significant differences among the control groups are
comparable in size to several of the estimates of the
effect of sunlight on cataract.

There is one final point that deserves emphasis. To
reject the hypothesis of X-adjustable observation, as
has been done here, is not to conclude that the treat-
ment has no effect, nor to conclude that the study was
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TABLE 3
Comparisons of sunlight exposure among case and noncase groups, adjusting for age and sex: (Mantel-Haenszel estimates of partial odds ratios,
with significance levels)

Myopia controls diOptlc nerve Cataract Cases
(R*=0,8 =2) sease controls (R* = 1)
’ (R*=0,8S=3)
Diabetic retinopathy control 1.98** 2.58** 4.00**
(R*=0,8=1) ‘
Myopia controls 1.20 1.98**
(R*=0,S=2)
Optic nerve disease controls 1.62%*
(R*=0,8S=3)

Tests and measures of
departures from X-adjustable

observation

Tests and measures of treatment
effects assuming X-adjustable
observation

Two-sided significance levels: **, P-value < .001; *, .001 < P-value =< .05; blank, .05 < P-value.

poorly conducted, nor to conclude that the study’s
results are uninteresting or undeserving of publica-
tion. Rather, to reject X-adjustable observation is to
conclude that adjustment for X alone is insufficient
to remove bias, and therefore that conventional esti-
mates and significance levels cannot be taken at face
value. [See Cole (1979, page 22) for related comments.]
Indeed, a good observational study will be designed to
permit several tests of the hypothesis of X-adjustable
observation; it will therefore be more likely to lead to
rejection of this hypothesis than will a poorly designed
study that permits no checks at all. The results of
tests of X-adjustable observation are simply part of
the record of the study’s results, intended to aid sober
interpretation.
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sion here and elsewhere shows that a formal analysis
can lead to useful, practical tools that can help in the
design and analysis of nonrandomized studies. Such
work ought to be widely publicized and Statistical
Science is an attractive forum. Second, the particular
formal analysis used here by Rosenbaum elaborates
and extends the approach I call “Rubin’s model”
(Holland, 1986a, 1986b) and which I personally feel
needs to become wider known and used by mathemat-
ical statisticians. My experience over the last 10 years
has been that any problem involving causal inferences
(e.g., inferences about the effects of treatments) is



