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Bootstrap Confidence Intervals
Thomas J. DiCiccio and Bradley Efron

Abstract. This article surveys bootstrap methods for producing good
approximate confidence intervals. The goal is to improve by an order of
magnitude upon the accuracy of the standard intervals θ̂ ± z�α�σ̂ , in a
way that allows routine application even to very complicated problems.
Both theory and examples are used to show how this is done. The first
seven sections provide a heuristic overview of four bootstrap confidence
interval procedures: BCa, bootstrap-t, ABC and calibration. Sections 8
and 9 describe the theory behind these methods, and their close connec-
tion with the likelihood-based confidence interval theory developed by
Barndorff-Nielsen, Cox and Reid and others.
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tion, second-order accuracy

1. INTRODUCTION

Confidence intervals have become familiar
friends in the applied statistician’s collection of
data-analytic tools. They combine point estima-
tion and hypothesis testing into a single inferen-
tial statement of great intuitive appeal. Recent
advances in statistical methodology allow the con-
struction of highly accurate approximate confidence
intervals, even for very complicated probability
models and elaborate data structures. This article
discusses bootstrap methods for constructing such
intervals in a routine, automatic way.

Two distinct approaches have guided confidence
interval construction since the 1930’s. A small cata-
logue of exact intervals has been built up for special
situations, like the ratio of normal means or a sin-
gle binomial parameter. However, most confidence
intervals are approximate, with by far the favorite
approximation being the standard interval

�1:1� θ̂± z�α�σ̂:
Here θ̂ is a point estimate of the parameter of in-
terest θ, σ̂ is an estimate of θ̂’s standard deviation,
and z�α� is the 100αth percentile of a normal devi-
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ate, z�0:95� = 1:645 and so on. Often, and always in
this paper, θ̂ and σ̂ are obtained by maximum like-
lihood theory.

The standard intervals, as implemented by maxi-
mum likelihood theory, are a remarkably useful tool.
The method is completely automatic: the statisti-
cian inputs the data, the class of possible probabil-
ity models and the parameter of interest; a com-
puter algorithm outputs the intervals (1.1), with no
further intervention required. This is in notable con-
trast to the construction of an exact interval, which
requires clever thought on a problem-by-problem
basis when it is possible at all.

The trouble with standard intervals is that they
are based on an asymptotic approximation that can
be quite inaccurate in practice. The example below
illustrates what every applied statistician knows,
that (1.1) can considerably differ from exact inter-
vals in those cases where exact intervals exist. Over
the years statisticians have developed tricks for im-
proving (1.1), involving bias-corrections and param-
eter transformations. The bootstrap confidence
intervals that we will discuss here can be thought
of as automatic algorithms for carrying out these
improvements without human intervention. Of
course they apply as well to situations so compli-
cated that they lie beyond the power of traditional
analysis.

We begin with a simple example, where we can
compute the bootstrap methods with an exact inter-
val. Figure 1 shows the cd4 data: 20 HIV-positive
subjects received an experimental antiviral drug;
cd4 counts in hundreds were recorded for each sub-
ject at baseline and after one year of treatment, giv-
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Fig. 1. The cd4 data; cd4 counts in hundreds for 20 subjects,
at baseline and after one year of treatment with an experimental
anti-viral drug; numerical values appear in Table 1.

ing data, say, xi = �Bi;Ai� for i = 1;2; : : : ;20. The
data is listed in Table 1. The two measurements are
highly correlated, having sample correlation coeffi-
cient θ̂ = 0:723.

What if we wish to construct a confidence inter-
val for the true correlation θ? We can find an exact
interval for θ if we are willing to assume bivariate
normality for the �Bi;Ai� pairs,

�1:2�
(
Bi
Ai

)
∼i:i:d: N2�λ; 0� for i = 1;2; : : : ;20;

where λ and 0 are the unknown expectation vec-
tor and covariance matrix. The exact central 90%
interval is

�1:3� �θ̂EXACT�0:05�; θ̂EXACT�0:95�� = �0:47;0:86�:

This notation emphasizes that a two-sided interval
is intended to give correct coverage at both end-
points, two 0.05 noncoverage probabilities in this
case, not just an overall 0.10 noncoverage probabil-
ity.

The left panel of Table 2 shows the exact and
standard intervals for the correlation coefficient of
the cd4 data, assuming the normal model (1.2). Also
shown are approximate confidence intervals based
on three different (but closely related) bootstrap
methods: ABC, BCa and bootstrap-t. The ABC and
BCa methods match the exact interval to two dec-
imal places, and all of the bootstrap intervals are
more accurate than the standard. The examples
and theory that follow are intended to show that
this is no accident. The bootstrap methods make

Table 1
The cd4 data, as plotted in Figure 1

Subject Baseline One year Subject Baseline One year

1 2.12 2.47 11 4.15 4.74
2 4.35 4.61 12 3.56 3.29
3 3.39 5.26 13 3.39 5.55
4 2.51 3.02 14 1.88 2.82
5 4.04 6.36 15 2.56 4.23
6 5.10 5.93 16 2.96 3.23
7 3.77 3.93 17 2.49 2.56
8 3.35 4.09 18 3.03 4.31
9 4.10 4.88 19 2.66 4.37

10 3.35 3.81 20 3.00 2.40

computer-based adjustments to the standard in-
terval endpoints that are guaranteed to improve
the coverage accuracy by an order of magnitude, at
least asymptotically.

The exact interval endpoints [0.47, 0.86] are de-
fined by the fact that they “cover” the observed value
θ̂ = 0:723 with the appropriate probabilities,

�1:4� Probθ=0:47�θ̂ > 0:723� = 0:05

and

�1:5� Probθ=0:86�θ̂ > 0:723� = 0:95:

Table 2 shows that the corresponding probabilities
for the standard endpoints [0.55, 0.90] are 0.12 and
0.99. The standard interval is far too liberal at its
lower endpoint and far too cautious at its upper end-
point. This kind of error is particularly pernicious if
the confidence interval is used to test a parameter
value of interest like θ = 0.

Table 2 describes the various confidence intervals
in terms of their length and right–left asymmetry
around the point estimate θ̂,

�1:6�
length = θ̂�0:95� − θ̂�0:05�;

shape = θ̂�0:95� − θ̂
θ̂− θ̂�0:05�:

The standard intervals always have shape equal to
1.00. It is in this way that they err most seriously.
For example, the exact normal-theory interval for
Corr has shape equal to 0.52, extending twice as far
to the left of θ̂ = 0:723 as to the right. The stan-
dard interval is much too optimistic about ruling
out values of θ below θ̂, and much too pessimistic
about ruling out values above θ̂. This kind of error
is automatically identified and corrected by all the
bootstrap confidence interval methods.

There is no compelling reason to assume bivariate
normality for the data in Figure 1. A nonparamet-
ric version of (1.2) assumes that the pairs �Bi;Ai�
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Table 2
Exact and approximate confidence intervals for the correlation coefficient, cd4 data; θ̂ = 0:723: the bootstrap methods ABC, BCa,
bootstrap-t and calibrated ABC are explained in Sections 2–7; the ABC and BCa intervals are close to exact in the normal theory
situation (left panel); the standard interval errs badly at both endpoints, as can be seen from the coverage probabilities in the bottom rows

Normal theory Nonparametric

Exact ABC BCa Bootstrap-t Standard ABC BCa Bootstrap-t Calibrated Standard

0.05 0.47 0.47 0.47 0.45 0.55 0.56 0.55 0.51 0.56 0.59
0.95 0.86 0.86 0.86 0.87 0.90 0.83 0.85 0.86 0.83 0.85

Length 0.39 0.39 0.39 0.42 0.35 0.27 0.30 0.35 0.27 0.26
Shape 0.52 0.52 0.54 0.52 1.00 0.67 0.70 0.63 0.67 1.00

Cov 05 0.05 0.05 0.05 0.04 0.12
Cov 95 0.95 0.95 0.95 0.97 0.99

are a random sample (“i.i.d.”) from some unknown
bivariate distribution F,

�1:7�
(
Bi
Ai

)
∼i:i:d: F; i = 1;2; : : : ; n;

n = 20, without assuming that F belongs to any
particular parametric family. Bootstrap-based confi-
dence intervals such as ABC are available for non-
parametric situations, as discussed in Section 6. In
theory they enjoy the same second-order accuracy as
in parametric problems. However, in some nonpara-
metric confidence interval problems that have been
examined carefully, the small-sample advantages of
the bootstrap methods have been less striking than
in parametric situations. Methods that give third-
order accuracy, like the bootstrap calibration of an
ABC interval, seem to be more worthwhile in the
nonparametric framework (see Section 6).

In most problems and for most parameters there
will not exist exact confidence intervals. This great
gray area has been the province of the standard in-
tervals for at least 70 years. Bootstrap confidence in-
tervals provide a better approximation to exactness
in most situations. Table 3 refers to the parameter
θ defined as the maximum eigenvalue of the covari-
ance matrix of �B;A� in the cd4 experiment,

�1:8� θ = maximum eigenvalue �cov�B;A��:
The maximum likelihood estimate (MLE) of θ, as-

suming either model (1.2) or (1.7), is θ̂ = 1:68. The
bootstrap intervals extend further to the right than
to the left of θ̂ in this case, more than 2.5 times as
far under the normal model. Even though we have
no exact endpoint to serve as a “gold standard” here,
the theory that follows strongly suggests the supe-
riority of the bootstrap intervals. Bootstrapping in-
volves much more computation than the standard
intervals, on the order of 1,000 times more, but the
algorithms are completely automatic, requiring no
more thought for the maximum eigenvalue than the
correlation coefficient, or for any other parameter.

One of the achievements of the theory discussed
in Section 8 is to provide a reasonable theoretical
gold standard for approximate confidence inter-
vals. Comparison with this gold standard shows
that the bootstrap intervals are not only asymptot-
ically more accurate than the standard intervals,
they are also more correct. “Accuracy” refers to the
coverage errors: a one-sided bootstrap interval of
intended coverage α actually covers θ with proba-
bility α +O�1/n�, where n is the sample size. This
is second-order accuracy, compared to the slower
first-order accuracy of the standard intervals, with
coverage probabilites α + O�1/√n�. However con-
fidence intervals are supposed to be inferentially
correct as well as accurate. Correctness is a harder
property to pin down, but it is easy to give exam-
ples of incorrectness: if x1; x2; : : : ; xn is a random
sample from a normal distribution N�θ;1�, then
(min�xi�, max�xi�) is an exactly accurate two-sided
confidence interval for θ of coverage probability
1− 1/2n−1, but it is incorrect. The theory of Section
8 shows that all of our better confidence intervals
are second-order correct as well as second-order
accurate. We can see this improvement over the
standard intervals on the left side of Table 2. The
theory says that this improvement exists also in
those cases like Table 3 where we cannot see it
directly.

2. THE BCa INTERVALS

The next six sections give a heuristic overview
of bootstrap confidence intervals. More examples
are presented, showing how bootstrap intervals
can be routinely constructed even in very compli-
cated and messy situations. Section 8 derives the
second-order properties of the bootstrap intervals in
terms of asymptotic expansions. Comparisons with
likelihood-based methods are made in Section 9.
The bootstrap can be thought of as a convenient
way of executing the likelihood calculations in para-
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Table 3
Approximate 90% central confidence intervals for the maximum eigenvalue parameter �1:7�, cd4 data; the bootstrap intervals extend

much further to the right of the MLE θ̂ = 1:68 than to the left

Normal theory Nonparametric

ABC BCa Standard ABC BCa Calibated Standard

0.05 1.11 1.10 0.80 1.15 1.14 1.16 1.01
0.95 3.25 3.18 2.55 2.56 2.55 3.08 2.35

Length 2.13 2.08 1.74 1.42 1.41 1.92 1.34
Shape 2.80 2.62 1.00 1.70 1.64 2.73 1.00

metric exponential family situations and even in
nonparametric problems.

The bootstrap was introduced as a nonparametric
device for estimating standard errors and biases.
Confidence intervals are inherently more delicate
inference tools. A considerable amount of effort has
gone into upgrading bootstrap methods to the level
of precision required for confidence intervals.

The BCa method is an automatic algorithm for
producing highly accurate confidence limits from a
bootstrap distribution. Its effectiveness was demon-
strated in Table 2. References include Efron (1987),
Hall (1988), DiCiccio (l984), DiCiccio and Romano
(1995) and Efron and Tibshirani (1993). A program
written in the language S is available [see the note
in the second paragraph following (4.14)].

The goal of bootstrap confidence interval theory
is to calculate dependable confidence limits for a pa-
rameter of interest θ from the bootstrap distribution
of θ̂. Figure 2 shows two such bootstrap distribu-
tions relating to the maximum eigenvalue param-
eter θ for the cd4 data, (1.8). The nonparametric
bootstrap distribution (on the right) will be dis-
cussed in Section 6.

The left panel is the histogram of 2,000 normal-
theory bootstrap replications of θ̂. Each replication
was obtained by drawing a bootstrap data set anal-
ogous to (1.2),

�2:1�
(
B∗i
A∗i

)
∼i:i:d: N2�λ̂; 0̂�; i = 1;2; : : : ;20;

and then computing θ̂∗, the maximum likelihood
estimate (MLE) of θ based on the boostrap data. In
other words θ̂∗ was the maximum eigenvalue of the
empirical covariance matrix of the 20 pairs �B∗i ;A∗i�.
The mean vector λ̂ and covariance matrix 0̂ in (2.1)
were the usual maximum likelihood estimates for
λ and 0, based on the original data in Figure 1.
Relation (2.1) is a parametric bootstrap sample,
obtained by sampling from a parametric MLE for
the unknown distribution F. Section 6 discusses
nonparametric bootstrap samples and confidence
intervals.

The 2,000 bootstrap replications θ̂∗ had standard
deviation 0.52. This is the bootstrap estimate of
standard error for θ̂, generally a more dependable
standard error estimate than the usual parametric
delta-method value (see Efron, 1981). The mean of
the 2,000 values was 1.61, compared to θ̂ = 1:68,
indicating a small downward bias in the Maxeig
statistic. In this case it is easy to see that the down-
ward bias comes from dividing by n instead of n−1
in obtaining the MLE 0̂ of the covariance matrix.

Two thousand bootstrap replications is 10 times
too many for estimating a standard error, but not too
many for the more delicate task of setting confidence
intervals. These bootstrap sample size calculations
appear in Efron (1987, Section 9).

The BCa procedure is a method of setting approx-
imate confidence intervals for θ from the percentiles
of the bootstrap histogram. Suppose θ is a param-
eter of interest; θ̂�x� is an estimate of θ based on
the observed data x; and θ̂∗ = θ̂�x∗� is a bootstrap
replication of θ̂ obtained by resampling x∗ from an
estimate of the distribution governing x. Let Ĝ�c�
be the cumulative distribution function (c.d.f.) of B
bootstrap replications θ̂∗�b�,

�2:2� Ĝ�c� = #�θ̂∗�b� < c�/B:

In our case B = 2,000. The upper endpoint
θ̂BCa�α� of a one-sided level-α BCa interval, θ ∈
�−∞; θ̂BCa�α�� is defined in terms of Ĝ and two
numerical parameters discussed below: the bias-
correction z0 and the acceleration a (BCa stands for
“bias-corrected and accelerated”). By definition the
BCa endpoint is

�2:3� θ̂BCa�α� = Ĝ
−18

(
z0 +

z0 + z�α�
1− a�z0 + z�α��

)
:

Here 8 is the standard normal c.d.f, with z�α� =
8−1�α� as before. The central 0.90 BCa interval
is given by �θ̂BCa�0:05�; θ̂BCa�0:95��. Formula (2.3)
looks strange, but it is well motivated by the trans-
formation and asymptotic arguments that follow.
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Fig. 2. Bootstrap distributions for the maximum eigenvalue of the covariance matrix, cd4 data: (left) 2,000 parametric bootstrap
replications assuming a bivariate normal distribution; (right) 2,000 nonparametric bootstrap replications, discussed in Section 6. The
solid lines indicate the limits of the BCa 0:90 central confidence intervals, compared to the standard intervals (dashed lines).

If a and z0 are zero, then θ̂BCa�α� = Ĝ−1�α�, the
100αth percentile of the bootstrap replications. In
this case the 0.90 BCa interval is the interval be-
tween the 5th and 95th percentiles of the bootstrap
replications. If in addition Ĝ is perfectly normal,
then θ̂BCa�α� = θ̂+ z�α�σ̂ , the standard interval end-
point. In general, (2.3) makes three distinct correc-
tions to the standard intervals, improving their
coverage accuracy from first to second order.

The c.d.f. Ĝ is markedly long-tailed to the
right, on the normal-theory side of Figure 2.
Also a and z0 are both estimated to be positive,
�â; ẑ0� = �0:105;0:226�, further shifting θ̂BCa�α� to
the right of θ̂STAN�α� = θ̂ + z�α�σ̂ . The 0.90 BCa
interval for θ is

�2:4� �Ĝ−1�0:157�; Ĝ−1�0:995�� = �1:10;3:18�;
compared to the standard interval (0.80, 2.55).

The following argument motivates the BCa def-
inition (2.3), as well as the parameters a and z0.
Suppose that there exists a monotone increasing
transformation φ = m�θ� such that φ̂ = m�θ̂� is
normally distributed for every choice of θ, but pos-
sibly with a bias and a nonconstant variance,

�2:5� φ̂ ∼N�φ− z0σφ; σ
2
φ�; σφ = 1+ aφ:

Then (2.3) gives exactly accurate and correct confi-
dence limits for θ having observed θ̂.

The argument in Section 3 of Efron (1987) shows
that in situation (2.5) there is another monotone
transformation, say ξ = M�θ� and ξ̂ = M�θ̂�, such

that ξ̂ = ξ +W for all values of ξ, with W always
having the same distribution. This is a translation
problem so we know how to set confidence limits
ξ̂�α� for ξ,

�2:6� ξ̂�α� = ξ −W�1−α�;
where W�1−α� is the 100�1 − α�th percentile of W.
The BCa interval (2.3) is exactly equivalent to the
translation interval (2.6), and in this sense it is cor-
rect as well as accurate.

The bias-correction constant z0 is easy to inter-
pret in (2.5) since

�2:7� Prob�φ̂ < φ� = 8�z0�:
Then Prob�θ̂ < θ� = 8�z0� because of monotonicity.
The BCa algorithm, in its simplest form, estimates
z0 by

�2:8� ẑ0 = 8−1
{

#�θ̂∗�b� < θ̂�
B

}
;

8−1 of the proportion of the bootstrap replications
less than θ̂. Of the 2,000 normal-theory bootstrap
replications θ̂∗ shown in the left panel of Fig-
ure 2, 1179 were less than θ̂ = 1:68. This gave
ẑ0 = 8−1�0:593� = 0:226, a positive bias correction
since θ̂∗ is biased downward relative to θ̂. An often
more accurate method of estimating z0 is described
in Section 4.

The acceleration a in (2.5) measures how quickly
the standard error is changing on the normalized
scale. The value â = 0:105 in (2.4), obtained from
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formula (4.9) of Section 4, is moderately large. Sup-
pose we think we have moved 1.645 standard errors
to the right of φ̂, to

φ̃ = φ̂+ 1:645σφ̂:

Actually though, with a = 0:105,

σ
φ̃
= �1+ 1:645a�σφ̂ = 1:173σφ̂;

according to (2.5). For calculating a confidence level,
φ̃ is really only 1:645/1:173 = 1:40 standard er-
rors to the right of φ̂, considerably less than 1:645.
Formula (2.3) automatically corrects for an acceler-
ating standard error. The next section gives a ge-
ometrical interpretation of a, and also of the BCa
formula (2.3).

The peculiar-looking formula (2.3) for the BCa
endpoints is designed to give exactly the right an-
swer in situation (2.5), and to give it automatically
in terms of the bootstrap distribution of θ̂∗. Notice,
for instance, that the normalizing transformation
φ̂ = m�θ̂� is not required in (2.3). By comparison,
the standard interval works perfectly only under the
more restrictive assumption that

�2:9� θ̂ ∼N�θ; σ2�;
with σ2 constant. In practice we do not expect ei-
ther (2.9) or (2.5) to hold exactly, but the broader
assumptions (2.5) are likely to be a better approxi-
mation to the truth. They produce intervals that are
an order of magnitude more accurate, as shown in
Section 8.

Formula (2.5) generalizes (2.9) in three ways, by
allowing bias, nonconstant standard error and a
normalizing transformation. These three extensions
are necessary and sufficient to give second-order
accuracy,

�2:10� Prob�θ < θ̂BCa�α�� = α+O�1/n�;

compared with Prob�θ < θ̂STAN�α�� = α+O�1/
√
n�,

where n is the sample size in an i.i.d. sampling situ-
ation. This result is stated more carefully in Section
8, which also shows the second-order correctness of
the BCa intervals. Hall (1988) was the first to es-
tablish (2.10).

The BCa intervals are transformation invariant.
If we change the parameter of interest from θ to
some monotone function of θ, φ = m�θ�, likewise
changing θ̂ to φ̂ = m�θ̂� and θ̂∗ to φ̂∗ = m�θ̂∗�, then
the α-level BCa endpoints change in the same way,

�2:11� φ̂BCa�α� =m�θ̂BCa�α��:
The standard intervals are not transformation in-

variant, and this accounts for some of their practi-
cal difficulties. It is well known, for instance, that

normal-theory standard intervals for the correlation
coefficient are much more accurate if constructed on
the scale φ = tanh−1�θ� and then transformed back
to give an interval for θ itself. Transformation in-
variance means that the BCa intervals cannot be
fooled by a bad choice of scale. To put it another way,
the statistician does not have to search for a trans-
formation like tanh−1 in applying the BCa method.

In summary, BCa produces confidence intervals
for θ from the bootstrap distribution of θ̂∗, requir-
ing on the order of 2,000 bootstrap replications
θ̂∗. These intervals are transformation invariant
and exactly correct under the normal transforma-
tion model (2.5); in general they are second-order
accurate and correct.

3. THE ACCELERATION a

The acceleration parameter a appearing in the
BCa formula (3.2) looks mysterious. Its definition
in (2.5) involves an idealized transformation to nor-
mality which will not be known in practice. Fortu-
nately a enjoys a simple relationship with Fisher’s
score function which makes it easy to estimate. This
section describes the relationship in the context of
one-parameter families. In doing so it also allows
us better motivation for the peculiar-looking BCa
formula (2.3).

Suppose then that we have a one-parameter fam-
ily of c.d.f.’s Gθ�θ̂� on the real line, with θ̂ being an
estimate of θ. In the relationships below we assume
that θ̂ behaves asymptotically like a maximum like-
lihood estimator, with respect to a notional sample
size n, as made explicit in (5.3) of Efron (1987). As
a particular example, we will consider the case

�3:1� θ̂ ∼ θGamman
n

; n = 10;

where Gamma indicates a standard gamma variate
with density tn−1 exp�−t�/0�n� for t > 0.

Having observed θ̂, we wonder with what confi-
dence we can reject a trial value θ0 of the parameter
θ̂. In the gamma example (3.1) we might have

�3:2� θ̂ = 1 and θ0 = 1:5:

The easy answer from the bootstrap point of view is
given in terms of the bootstrap c.d.f. Ĝ�c� = Gθ̂�c�.
We can define the bootstrap confidence value to be

�3:3� α̃ = Ĝ�θ0� = Gθ̂�θ0�:

However, this will usually not agree with the more
familiar hypothesis-testing confidence level for a
one-parameter problem, say

�3:4� α̂ = 1−Gθ0
�θ̂�;
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the probability under θ0 of getting a less extreme
observation than θ̂. (For convenience these defini-
tions assume θ̂ < θ0.) In the case of (3.1)–(3.2) we
have α̃ = 0:930 while α̂ = 0:863.

The BCa formula (2.3) amounts to a rule for con-
verting bootstrap confidence values α̃ into hypothe-
sis-testing confidence levels α̂. This becomes crucial
as soon as we try to use the bootstrap on problems
more complicated than one-parameter families. De-
fine

�3:5� z̃ = 8−1�α̃� and ẑ = 8−1�α̂�:

For a given value of θ0 and α̂ above, let α = α̂ and
θ̂BCa�α� = θ0 in (2.3). If (2.3) works perfectly, then
we have

�3:6� 8−1Ĝ�θ0� = z̃ = z0 +
z0 + ẑ

1− a�z0 + ẑ�
;

or

�3:7� ẑ = z̃− z0

1+ a�ẑ− z0�
− z0:

The fact that the BCa intervals are second-order
accurate implies that the conversion formula (3.7)
itself must be quite accurate.

To use (3.7), or (2.3), we first must estimate the
two parameters z0 and a. The bias-correction z0 is
estimated by

�3:8� ẑ0 = 8−1Ĝ�θ̂� = 8−1Gθ̂�θ̂�

as in (2.8). The acceleration a is estimated in terms
of the skewness of the score function

�3:9� ˙̀
θ�θ̂� =

∂

∂θ
log�gθ�θ̂��;

where gθ�θ̂� is the density ∂Gθ�θ̂�/∂θ̂. Section 10 of
Efron (1987) shows that one-sixth the skewness of
˙̀
θ�θ̂� evaluated at θ = θ̂,

�3:10� â = SKEWθ=θ̂� ˙̀θ�θ̂��/6;

is an excellent estimate of a.
Both z0 and a are of order O�1/√n�, with the

estimates ẑ0 and â erring byO�1/n�. For the gamma
problem (3.1) it is easy to calculate that

�3:11� ẑ0 = 0:106 and â = 0:105:

If θ̂ is the MLE in a one-parameter family (but not
in general), then ẑ0 and â are nearly the same, as
is the case here.

The usable form of (3.7) is

�3:12� ẑ = z̃− ẑ0

1+ â�z̃− z0�
− ẑ0:

We can list three important properties of the �z̃; ẑ�
curve (3.12) near z̃ = ẑ0:

�z̃; ẑ� = �ẑ0 − ẑ0� at z̃ = ẑ0y(3.13)

dẑ

dz̃
= 1 at z̃ = ẑ0;(3.14)

and
d2ẑ

dz̃2
= −2â at z̃ = ẑ0:(3.15)

The last of these relationships is of special interest
here. It says that the curvature of the �z̃; ẑ� curve at
ẑ0 is directly proportional to the acceleration â.

In any given one-parameter problem we can find
the actual �z̃; ẑ� curve, at least in theory. This is ob-
tained by keeping θ̂ fixed and varying the trial point
θ0 in (3.3)–(3.5). Figure 3 shows the �z̃; ẑ� curve for
the gamma problem, with θ̂ any fixed value, say
θ̂ = 1. In this case the BCa approximation formula
(3.12) matches the actual �z̃; ẑ� curve to three deci-
mal places over most of the range of the graph. At
θ̂ = 1; θ0 = 1:5 for example, ẑ equals 1.092 both
actually and from (3.15).

The fact that the BCa formula (2.3) is second-
order accurate implies that the conversion formula
(3.12) errs only by O�1/n�. This means that rela-
tionships (3.13)–(3.15) must have the same order of
accuracy, even in quite general problems. In partic-
ular, the curvature of the actual �z̃; ẑ� plot, if it were
possible to compute it, would nearly equal −2â, with
â given by the skewness definition (3.10).

None of this is special to one-parameter families
except for the skewness definition (3.10), which does
not allow for nuisance parameters. The next section

Fig. 3. Plot of ẑ versus z̃ in the gamma problem �3:1�; the BCa
approximation �3:12� or �2:3�, matches the actual curve to three
decimal places. The central curvature of the �z̃; ẑ� plot is propor-
tional to the acceleration â.
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shows how to extend the skewness definition of â to
multiparameter situations. This gives an estimate
that is easy to evaluate, especially in exponential
families, and that behaves well in practice. In fact
a is usually easier to estimate than z0, despite the
latter’s simpler definition.

4. THE ABC METHOD

We now leave one-parameter families and return
to the more complicated situations that bootstrap
methods are intended to deal with. In many such
situations it is possible to approximate the BCa
interval endpoints analytically, entirely dispens-
ing with Monte Carlo simulations. This reduces
the computational burden by an enormous fac-
tor, and also makes it easier to understand how
BCa improves upon the standard intervals. The
ABC method (“ABC” standing for approximate boot-
strap confidence intervals) is an analytic version
of BCa applying to smoothly defined parameters
in exponential families. It also applies to smoothly
defined nonparametric problems, as shown in Sec-
tion 6. DiCiccio and Efron (1992) introduced the
ABC method, which is also discussed in Efron and
Tibshirani (1993).

The BCa endpoints (2.3) depend on the bootstrap
c.d.f. Ĝ and estimates of the two parameters a and
z0. The ABC method requires one further estimate,
of the nonlinearity parameter cq, but it does not in-
volve Ĝ.

The standard interval (1.1) depends only on the
two quantities �θ̂; σ̂�. The ABC intervals depend
on the five quantities �θ̂; σ̂; â; ẑ0; ĉq�. Each of the
three extra numbers �â; ẑ0; ĉq� corrects a deficiency
of the standard method, making the ABC intervals
second-order accurate as well as second-order cor-
rect.

The ABC system applies within multiparame-
ter exponential families, which are briefly reviewed
below. This framework includes most familiar
parametric situations: normal, binomial, Poisson,
gamma, multinomial, ANOVA, logistic regression,
contingency tables, log-linear models, multivariate
normal problems, Markov chains and also nonpara-
metric situations as discussed in Section 6.

The density function for a p-parameter exponen-
tial family can be written as

�4:1� gµ�x� = exp�η′y− ψ�η��

where x is the observed data and y = Y�x� is a p-
dimensional vector of sufficient statistics; η is the
p-dimensional natural parameter vector; µ is
the expectation parameter µ = Eµ�y�; and ψ�η�,

the cumulant generating function, is a normalizing
factor that makes gµ�x� integrate to 1.

The vectors µ and η are in one-to-one correspon-
dence so that either can be used to index functions
of interest. In (4.1), for example, we used µ to index
the densities g, but η to index ψ. The ABC algo-
rithm involves the mapping from η to µ, say

�4:2� µ = mu�η�;
which, fortunately, has a simple form in all of the
common exponential families. Section 3 of DiCic-
cio and Efron (1992) gives function (4.2) for several
families, as well as specifying the other inputs nec-
essary for using the ABC algorithm.

The MLE of µ in (3.1) is µ̂ = y, so that the MLE
of a real-valued parameter of interest θ = t�µ� is

�4:3� θ̂ = t�µ̂� = t�y�:
As an example consider the bivariate normal model
(1.2). Here x = ��B1;A1�, �B2;A2�; : : : ; �B20;A20��
and y =∑20

i=1�Bi, Ai, B
2
i , BiAi, A

2
i �′/20. The bivari-

ate normal is a five-parameter exponential family
with

�4:4� µ = �λ1; λ2; λ
2
1 + 011; λ1λ2 + 012; λ

2
2 + 022�′:

Thus the correlation coefficient is the function t�µ�
given by

�4:5� θ = µ4 − µ1µ2

��µ3 − µ2
1��µ5 − µ2

2��1/2
y

θ̂ = t�µ̂� is seen to be the usual sample correlation
coefficient.

We denote the p × p covariance matrix of y by
6�µ� = covµ�y�, and let 6̂ = 6�µ̂�, the MLE of 6.
The delta-method estimate of standard error for θ̂ =
t�µ̂� depends on 6̂. Let ṫ denote the gradient vector
of θ = t�µ� at µ = µ̂,

�4:6� ṫ =
(
: : : ;

∂t

∂µi
; : : :

)′

µ=µ̂
:

Then

�4:7� σ̂ = �ṫ′6̂ṫ�1/2

is the parametric delta-method estimate of standard
error, and it is also the usual Fisher information
standard error estimate.

The σ̂ values for the standard intervals in Tables
2 and 3 were found by numerical differentiation,
using

�4:8� ∂t

∂µi

∣∣∣∣
µ̂

:= t�µ̂+ εei� − t�µ̂− εei�
2ε

for a small value of ε, with ei the ith coordinate
vector. The covariance matrix 6̂ is simple to calcu-
late in most of the familiar examples, as shown in
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DiCiccio and Efron (1992, Section 3) giving σ̂ from
(4.7). This assumes that t�µ� is differentiable. In
fact we need t�µ� to be twice differentiable in order
to carry out the ABC computations.

The ABC algorithm begins by computing σ̂ from
(4.7)–(4.8). Then the parameters �a; z0; cq� are esti-
mated by computing p+2 numerical second deriva-
tives. The first of these is

�4:9� â = ∂2

∂ε2
�ṫ′mu�η̂+ εṫ��ε=0

/
6σ̂3;

when η̂ is the MLE of the natural parameter vec-
tor η. This turns out to be the same as the skew-
ness definition of â, (3.10), in the one-parameter
family obtained from Stein’s least favorable family
construction [see Efron, 1987, (6.7)]. Formula (4.9)
uses exponential family relationships to compute
the skewness from a second derivative.

The second ABC numerical derivative is

�4:10� ĉq =
∂2

∂ε2
t

(
µ̂+ ε6̂ṫ

σ̂

)∣∣∣∣
ε=0

/
2σ̂ y

ĉq measures how nonlinear the parameter of inter-
est θ is, as a function of µ.

The final p second derivatives are required for
the bias-correction parameter z0. The parametric
delta-method estimate of bias for θ̂ = t�µ̂� can be
expressed as

�4:11� b̂ = 1
2

p∑
i=1

∂2

∂ε2
t�µ̂+ εd1/2

i γi�
∣∣∣∣
ε=0
;

where di is the ith eigenvalue and γi is the ith
eigenvector of 6̂. Then

�4:12� ẑ0 = 8−1(2·8�â�·8�ĉq−b̂/σ̂�
) := â+ĉq−b̂/σ̂:

This involves terms other than b̂ becuase z0 relates
to median bias. For the kind of smooth exponential
family problems considered here, (4.12) is usually
more accurate than the direct estimate (2.8).

The simplest form of the ABC intervals, called
ABCquadratic or ABCq, gives the α-level end-
point directly as a function of the five numbers
�θ̂; σ̂; â; ẑ0; ĉq�:

�4:13�

α → w ≡ ẑ0 + z�α�

→ λ ≡ w

�1− âw�2 → ξ ≡ λ+ ĉqλ2

→ θ̂ABCq�α� = θ̂+ σ̂ξ:
The original ABC endpoint, denoted θ̂ABC�α�, re-
quires one more recomputation of the function t�·�:

�4:14�
α → w = ẑ0 + z�α� → λ = w

�1− âw�2

→ θ̂ABC�α� = t
(
µ̂+ λ6̂ṫ

σ̂

)
:

Notice that ĉq is still required here, to estimate ẑ0
in (4.12).

Formula (4.14) is the one used in Tables 2 and 3.
It has the advantage of being transformation invari-
ant, (2.11), and is sometimes more accurate than
(4.13). However, (4.13) is local, all of the recompu-
tations of t�µ� involved in (4.8)–(4.13) taking place
infinitesimally near µ̂ = y. In this sense ABCq is
like the standard method. Nonlocality occasionally
causes computational difficulties with boundary vi-
olations. In fact (4.13) is a simple quadratic approx-
imation to (4.14), so ABC and ABCq usually agree
reasonably well.

The main point of this article is that highly ac-
curate approximate confidence intervals can now be
calculated on a routine basis. The ABC intervals are
implemented by a short computer algorithm. [The
ABC intervals in Tables 2 and 3 were produced by
the parametric and nonparametric ABC algorithms
“abcpar” and “abcnon.” These and the BCa program
are available in the language S: send electronic mail
to statlib@lib.stat.cmu.edu with the one-line mes-
sage: send bootstrap.funs from S.] There are five in-
puts to the algorithm: µ̂, 6̂, η̂ and the functions t�·�
and mu�·�. The outputs include θ̂STAN�α�, θ̂ABC�α�
and θ̂ABCq�α�. Computational effort for the ABC in-
tervals is two or three times that required for the
standard intervals.

The ABC intervals can be useful even in very
simple situations. Suppose that the data consists
of a single observation x from a Poisson distribu-
tion with unknown expectation θ. In this case θ̂ =
t�x� = x and σ̂ =

√
θ̂. Carrying through definitions

(4.9)–(4.14) gives â = ẑ0 = 1/�6θ̂1/2�; ĉq = 0, and so

θ̂ABC�α� = θ̂+
w

�1− âw�2
√
θ̂; w = ẑ0 + z�α�:

For x = 7, the interval �θ̂ABC�0:05�; θ̂ABC�0:95��
equals �3:54;12:67�. This compares with the exact
interval (3.57, 12.58) for θ, splitting the atom of
probability at x = 7, and with the standard interval
�2:65;11:35�.

Here is a more realistic example of the ABC al-
gorithm, used in a logistic regression context.
Table 4 shows the data from an experiment con-
cerning mammalian cell growth. The goal of this
experiment was to quantify the effects of two fac-
tors on the success of a culture. Factor “r” measures
the ratio of two key constituents of the culture
plate, while factor “d” measures how many days
were allowed for culture maturation. A total of
1,843 independent cultures were prepared, investi-
gating 25 different �ri; dj� combinations. The table
lists sij and nij for each combination, the num-
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Table 4
Cell data: 1,843 cell cultures were prepared, varying two factors, r (the ratio of two key constituents) and d (the number of days of
culturing). Data shown are sij and nij; the number of successful cultures and the number of cultures attempted, at the ith level of r and

the jth level of d

d1 d2 d3 d4 d5 Total

r1 5/31 3/28 20/45 24/47 29/35 81/186
r2 15/77 36/78 43/71 56/71 66/74 216/371
r3 48/126 68/116 145/171 98/119 114/129 473/661
r4 29/92 35/52 57/85 38/50 72/77 231/356
r5 11/53 20/52 20/48 40/55 52/61 143/269

Total 108/379 162/326 285/420 256/342 333/376 1144/1843

ber of successful cultures, compared to the number
attempted.

We suppose that the number of successful cul-
tures is a binomial variate,

(4.15)
sij ∼i:i:d: binomial�nij; πij�;

i; j = 1;2;3;4;5;

with an additive logistic regression model for the
unknown probabilities πij,

�4:16�
log

(
πij

1− πij

)
= µ+ αi + βj;

5∑
1

αi =
5∑
1

βj = 0:

For the example here we take the parameter of in-
terest to be

�4:17� θ = π15

π51
;

the success probability for the lowest r and highest
d divided by the success probability for the highest
r and lowest d. This typifies the kind of problem
traditionally handled by the standard method.

A logistic regression program calculated maxi-
mum likelihood estimates µ̂; α̂i; β̂j, from which we
obtained

�4:18� θ̂ = 1+ exp�−�µ̂+ α̂5 + β̂1�
1+ exp�−�µ̂+ α̂1 + β̂5��

= 4:16:

The output of the logistic regression program pro-
vided µ̂, 6̂ and η̂ for the ABC algorithm. Section 3
of DiCiccio and Efron (1992) gives the exact speci-
fication for an ABC analysis of a logistic regression
problem. Applied here, the algorithm gave standard
and ABC 0.90 central intervals for θ,

�4:19�
�θ̂STAN�0:05�; θ̂STAN�0:95�� = �3:06;5:26�;
�θ̂ABC�0:05�; θ̂ABC�0:95�� = �3:20;5:43�:

The ABC limits are shifted moderately upwards
relative to the standard limits, enough to make the
shape (1.6) equal 1.32. The standard intervals are

not too bad in this case, although better perfor-
mance might have been expected with n = 1;843
data points. In fact it is very difficult to guess a pri-
ori what constitutes a large enough sample size for
adequate standard-interval performance.

The ABC formulas (4.13)–(4.14) were derived as
second-order approximations to the BCa endpoints
by DiCiccio and Efron (1992). They showed that
these formulas give second-order accuracy as in
(2.10), and also second-order correctness. Section
8 reviews some of these results. There are many
other expressions for ABC-like interval endpoints
that enjoy equivalent second-order properties in
theory, although they may be less dependable in
practice. A particularly simple formula is

�4:20� θ̂ABC�α�
:= θ̂STAN�α� + σ̂�ẑ0 + �2â+ ĉq�z�α�

2�:

This shows that the ABC endpoints are not just a
translation of θ̂STAN�α�.

In repeated sampling situations the estimated
constants �â; ẑ0; ĉq� are of stochastic order 1/

√
n in

the sample size, the same as σ̂ . They multiply σ̂
in (4.20), resulting in corrections of order σ̂/

√
n to

θ̂STAN�α�. If there were only 1/4 as much cell data,
n = 461, but with the same proportion of successes
in every cell of Table 4, then �â; ẑ0; ĉq� would be
twice as large. This would double the relative dif-
ference �θ̂ABC�α� − θ̂STAN�α��/σ̂ according to (4.20),
rendering θ̂STAN�α� quite inaccurate.

Both â and ẑ0 are transformation invariant, re-
taining the same numerical value under monotone
parameter transformations φ = m�θ�. The nonlin-
earity constant ĉq is not invariant, and it can be
reduced by transformations that make φ more lin-
ear as a function of µ. Changing parameters from
θ = π15/π51 to φ = log�θ� changes �â; ẑ0; ĉq� from
�−0:006;−0:025;0:105� to �−0:006;−0:025;0:025�
for the cell data. The standard intervals are nearly
correct on the φ scale. The ABC and BCa methods
automate this kind of data-analytic trick.

We can visualize the relationship between the
BCa and ABC intervals in terms of Figure 3. The
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BCa method uses Monte Carlo bootstrapping to
find z̃, as in (3.3) and (3.5), and then maps z̃ into
an appropriate hypothesis-testing value ẑ via for-
mula (3.7). The ABC method also uses formula
(3.7) [or, equivalently, (2.3)], but in order to avoid
Monte Carlo computations it makes one further
analytic approximation: z̃ itself, the point on the
horizontal axis in Figure 3, is estimated from an
Edgeworth expansion. The information needed for
the Edgeworth expansion is obtained from the
second derivatives (4.9)–(4.11).

5. BOOTSTRAP-t INTERVALS

The BCa formula strikes some people as
complicated, and also “unbootstraplike” since the
estimate â is not obtained directly from bootstrap
replications. The bootstrap-t method, another boot-
strap algorithm for setting confidence intervals, is
conceptually simpler than BCa. The method was
suggested in Efron (1979), but some poor numeri-
cal results reduced its appeal. Hall’s (1988) paper
showing the bootstrap-t’s good second-order proper-
ties has revived interest in its use. Babu and Singh
(1983) gave the first proof of second-order accuracy
for the bootstrap-t.

Suppose that a data set x gives an estimate θ̂�x�
for a parameter of interest θ, and also an estimate
σ̂�x� for the standard deviation of θ̂. By analogy
with Student’s t-statistic, we define

�5:1� T = θ̂− θ
σ̂

and let T�α� indicate the 100αth percentile of T. The
upper endpoint of an α-level one-sided confidence
inteval for θ is

�5:2� θ̂− σ̂T�1−α�:
This assumes we know the T-percentiles, as in the
usual Student’s-t case where T�α� is the percentile
of a t-distribution. However, the T-percentiles are
unknown in most situations.

The idea of the bootstrap-t is to estimate the per-
centiles of T by bootstrapping. First, the distribu-
tion governing x is estimated and the bootstrap data
sets x∗ are drawn from the estimated distribution,
as in (2.1). Each x∗ gives both a θ̂∗ and a σ̂∗, yielding

�5:3� T∗ = θ̂
∗ − θ̂
σ̂∗

;

a bootstrap replication of (5.1). A large number B
of independent replications gives estimated per-
centiles

�5:4�
T̂�α� = B · αth ordered value of

�T∗�b�; b = 1;2; : : : ;B�:

[So if B = 2,000 and α = 0:95; then T̂�α� is the
1,900th ordered T∗�b�.] The 100αth bootstrap-t con-
fidence endpoint θ̂T�α� is defined to be

�5:5� θ̂T�α� = θ̂− σ̂T̂�1−α�;
following (5.2).

Figure 4 relates to the correlation coefficient for
the cd4 data. The left panel shows 2,000 normal-
theory bootstrap replications of

�5:6� T = θ̂− θ
σ̂

; σ̂ = 1− θ̂2

√
20

:

Each replication required drawing ��B∗1; A∗1�; : : : ;
�B∗20;A

∗
20�� as in (2.1), computing θ̂∗ and σ̂∗, and

then calculating the bootstrap−t replication T∗ =
�θ̂∗− θ̂�/σ̂∗. The percentiles �T̂�0:05�; T̂�0:95�� equalled
�−1:38;2:62�, giving a 0.90 central bootstrap-t in-
terval of �0:45;0:87�. This compares nicely with the
exact interval (0.47, 0.86) in Table 2.

Hall (1988) showed that the bootstrap-t limits
are second-order accurate, as in (2.10). DiCiccio and
Efron (1992) showed that they are also second-order
correct (see Section 8).

Definition (2.17) uses the fact that �1− θ̂2�/√n is
a reasonable normal-theory estimate of standard er-
ror for θ̂. In most situations σ̂∗ must be numerically
computed for each bootstrap data set x∗, perhaps
using the delta method. This multiplies the boot-
strap computations by a factor of at least p + 1,
where p is the number of parameters in the prob-
ability model for x. The nonparametric bootstrap-t
distribution on the right side of Figure 4 used σ̂∗

equal to the nonparametric delta-method estimate.
The main disadvantage of both BCa and bootstrap-
t is the large computational burden. This does not
make much difference for the correlation coefficient,
but it can become crucial for more complicated sit-
uations. The ABC method is particularly useful in
complicated problems.

More serious, the bootstrap-t algorithm can be nu-
merically unstable, resulting in very long confidence
intervals. This is a particular danger in nonpara-
metric situations. As a rough rule of thumb, theBCa
intervals are more conservative than bootstrap-t,
tending to stay, if anything, too close to the stan-
dard intervals as opposed to deviating too much.

Bootstrap-t intervals are not transformation in-
variant. The method seems to work better if θ is
a translation parameter, such as a median or an
expectation. A successful application of the type ap-
pears in Efron (1981, Section 9). Tibshirani (1988)
proposed an algorithm for transforming θ to a more
translation-like parameter φ = m�θ�, before apply-
ing the bootstrap-t method. Then the resulting in-
terval is transformed back to the θ scale via θ =
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Fig. 4. Bootstrap-t distributions relating to θ the cd4 data correlation: (left) 2,000 normal-theory bootstrap relications of T using
σ̂∗ = �1− θ̂∗�2/

√
20; (right) 2,000 nonparametric bootstrap replications of T using σ̂∗ given by the nonparametric delta method; dashed

lines show 5th and 95th percentiles.

m−1�φ�. See DiCiccio and Romano (1995, Section
2.b) or Efron and Tibshirani (1993, Section 12.6).

The bootstrap-t and BCa methods look completely
different. However, surprisingly, the ABC method
connects them.

The ABC method was introduced as a non–Monte
Carlo approximation to BCa, but it can also be
thought of as an approximation to the bootstrap-t
method The relationships in (4.13) can be reversed
to give the attained significance level (ASL) α for
any observed data set. That is, we can find α such
that θ̂ABCq�α� equals an hypothesized value θ for
the parameter of interest:

�5:7�

θ → ξ = θ− θ̂
σ̂

→ λ = 2ξ
1+ �1+ 4ĉqξ�1/2

→ w = 2λ
�1+ 2âλ� + �1+ 4âλ�1/2

→ α = 8�w− ẑ0�:

If the ABCq method works perfectly, then the ASL
as defined by (5.7) will be uniformly distributed over
[0, 1], so

�5:8� Z = 8−1�α�

will be distributed as a N�0;1� variate.

Notice that T in (5.1) equals −ξ in (5.7). The
ABCq method amounts to assuming that

�5:9� hâ; ẑ0; ĉq
�T� ∼N�0;1�

for the transformation defined by (5.7)–(5.8). In
other words, ABCq uses an estimated transforma-
tion of T to get a pivotal quantity. The bootstrap-t
method assumes that T itself is pivotal, but then
finds the pivotal distribution by bootstrapping. The
calibration method discussed in Section 7 uses both
an estimated transformation and bootstrapping,
with the result being still more accurate intervals.

6. NONPARAMETRIC CONFIDENCE INTERVALS

The BCa, bootstrap-t, and ABC methods can be
applied to the construction of nonparametric confi-
dence intervals. Here we will discuss the one-sample
nonparametric situation where the observed data
x = �x1; x2; : : : ; xn� are a random sample from an
arbitrary probability distribution F,

�6:1� x1; x2; : : : ; xn ∼i:i:d: F:

The sample space X of the distribution can be any-
thing at all; X is the two-dimensional Euclidean
space R2 in (1.7) and on the right side of Table 1, and
is an extended version of R5 in the missing-value ex-
ample below. Multisample nonparametric problems
are mentioned briefly at the end of this section.

The empirical distribution F̂ puts probability 1/n
on each sample point xi in x. A real-valued param-
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eter of interest θ = t�F� has the nonparametric es-
timate

�6:2� θ̂ = t�F̂�;

also called the nonparametric maximum likelihood
estimate. A nonparametric bootstrap sample x∗ =
�x∗1; x∗2; : : : ; x∗n� is a random sample of size n drawn
from F̂,

�6:3� x∗1; x
∗
2; : : : ; x

∗
n ∼ F̂:

In other words, x∗ equals �xj1
; xj2

; : : : ; xjn� where
j1; j2; : : : ; jn is a random sample drawn with re-
placement from �1;2; : : : ; n�. Each bootstrap sam-
ple gives a nonparametric bootstrap replication of θ̂,

�6:4� θ̂∗ = t�F̂∗�;

where F̂∗ is the empirical distribution of x∗.
Nonparametric BCa confidence intervals for θ

are constructed the same way as the parametric
intervals of Section 2. A large number of indepen-
dent bootstrap replications θ̂∗�1�, θ̂∗�2�; : : : ; θ̂∗�B�
are drawn according to (4.3)–(4.4), B ≈ 2,000, giv-
ing a bootstrap cumulative distribution function
Ĝ�c� = #�θ̂∗�b� < c�/B. The BCa endpoints θ̂BCa�α�
are then calculated from formula (2.3), plugging in
nonparametric estimates of z0 and a.

Formula (2.8) gives ẑ0, which can also be obtained
from a nonparametric version of (4.12). The acceler-
ation a is estimated using the empirical influence
function of the statistic θ̂ = t�F̂�,

�6:5� Ui = lim
ε→0

t��1− ε�F̂+ εδi�
ε

; i = 1;2; : : : ; n:

Here δi is a point mass on xi, so �1 − ε�F̂ + εδi
is a version of F̂ putting extra weight on xi and
less weight on the other points. The usual nonpara-
metric delta-method estimate of standard error is
�6U2

i /n
2�1/2, this being the value used in our exam-

ples of the standard interval (1.1).
The estimate of a is

�6:6� â = 1
6

∑n
i=1U

3
i

�∑n
i=1U

2
i �3/2

:

This looks completely different than (4.9), but in fact
it is the same formula, applied here in a multino-
mial framework appropriate to the nonparametric
situation. The similarity of (6.6) to a skewness re-
flects the relationship of â to the skewness of the
score function, (3.10). The connection of nonpara-
metric confidence intervals with multinomial esti-
mation problems appears in Efron (1987, Sections 7
and 8).

There is a simpler way to calculate the Ui and â.
Instead of (6.5) we can use the jackknife influence
function

�6:7� Ui = �n− 1��θ̂· − θ̂�i��

in (6.6), where θ̂�i� is the estimate of θ based
on the reduced data set x�i� = �x1, x2; : : : ; xi−1,
xi+1; : : : ; xn�. This makes it a little easier to cal-
culate the BCa limits since the statistic θ̂�x� does
not have to be reprogrammed in the functional
form θ̂ = t�F̂�.

The nonparametric BCa method is unfazed by
complicated sample spaces. Table 5 shows an artifi-
cial missing-data example discussed in Efron (1994).
Twenty-two students have each taken five exams la-
belled A, B, C, D, E, but some of the A and E scores
(marked “?”) are missing. If there were no missing
data, we would consider the rows of the matrix to
be a random sample of size n = 22 from an un-
known five-dimensional distribution F. Our goal is
to estimate

�6:8� θ = maximum eigenvalue of 6;

where 6 is the covariance matrix of F.
An easy way, though not necessarily the best way,

to fill in Table 5 is to fit a standard two-way additive
model ν+αi+βj to the non-missing scores by least
squares, and then to replace the missing values

Table 5
Twenty-two students have each taken five exams, labelled A, B,
C, D, E. Some of the scores for A and E (indicated by “?”) are
missing. Original data set from Kent, Mardia and Bibby �1979�

Student A B C D E

1 ? 63 65 70 63
2 53 61 72 64 73
3 51 67 65 65 ?
4 ? 69 53 53 53
5 ? 69 61 55 45
6 ? 49 62 63 62
7 44 61 52 62 ?
8 49 41 61 49 ?
9 30 69 50 52 45

10 ? 59 51 45 51
11 ? 40 56 54 ?
12 42 60 54 49 ?
13 ? 63 53 54 ?
14 ? 55 59 53 ?
15 ? 49 45 48 ?
16 17 53 57 43 51
17 39 46 46 32 ?
18 48 38 41 44 33
19 46 40 47 29 ?
20 30 34 43 46 18
21 ? 30 32 35 21
22 ? 26 15 20 ?
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xij by

�6:9� x̂ij = ν̂ + α̂i + β̂j:

The filled-in 22× 5 data matrix has rows x̂i, i = 1,
2; : : : ;22, from which we can calculate an empirical
covariance matrix

�6:10� 6̂ = 1
22

22∑
i=1

�x̂i − µ̂i��x̂i − µ̂i�′; µ̂ = 1
22

22∑
1

x̂i;

giving the point estimate

�6:11� θ̂ = maximum eigenvalue of 6̂ = 633:2:

How accurate is θ̂?
It is easy to carry out a nonparametric BCa

analysis. The “points” xi in the data set x =
�x1; x2; : : : ; xn�; n = 22, are the rows of Table 5, for
instance x22 = �?;26;15;20; ?�. A bootstrap data
set x∗ = �x∗1, x∗2; : : : ; x

∗
n� is a 22 × 5 data matrix,

each row of which has been randomly selected from
the rows of Table 5. Having selected x∗, the boot-
strap replication θ̂∗ is computed by following the
same steps (4.9)–(4.11) that gave θ̂. Figure 5 is a
histogram of 2,200 bootstrap replications θ̂∗, the
histogram being noticeably long-tailed toward the
right. The 0.90 BCa confidence interval for θ is

�6:12� �θ̂BCa�0:05�; θ̂BCa�:095�� = �379,1,164�;

extending twice as far to the right of θ̂ as to the left.

Fig. 5. Histogram of 2,200 nonparametric bootstrap replications
of the maximum eigenvalue statistic for the student score data;
bootstrap standard error estimate σ̂ = 212:0. The histogram is
long-tailed to the right, and so is the BCa confidence interval
�6:12�.

It is easy to extend the ABC method of Section
4 to nonparametric problems, greatly reducing the
computational burden of the BCa intervals. The
formulas are basically the same as in (4.9)–(4.14),
but they simplify somewhat in the nonparametric–
multinomial framework. The statistic is expressed
in the functional form θ̂ = t�F̂� and then reevalu-
ated for values of F very near F̂, as in (6.5). The
ABC limits require only 2n+ 4 reevaluations of the
statistic. By comparison, the BCa method requires
some 2,000 evaluations θ̂∗ = t�F̂∗�, where F̂∗ is a
bootstrap empirical distribution.

The nonparametric ABC algorithm “abcnon” was
applied to the maximum eigenvalue statistic for the
student score data. After 46 reevaluations of the
statistic defined by (6.9)–(6.11), it gave 0.90 central
confidence interval

�6:13� �θ̂ABC�0:05�; θ̂ABC�0:95�� = �379,1,172�;
nearly the same as (6.12). The Statlib program abc-
non used here appears in the appendix to Efron
(1994); Efron (1994) also applied abcnon to the full
normal theory MLE of θ, (6.8), rather than to the ad
hoc estimator (6.9)–(6.11). The resulting ABC inter-
val �353;1307� was 20% longer than (6.13), perhaps
undermining belief in the data’s normality.

So far we have only discussed one-sample non-
parametric problems. The K-sample nonparametric
problem has data

(6.14)
xk1; xk2; : : : ; xknk ∼i:i:d: Fk

for k = 1;2; : : : ;K;

for arbitrary probability distributions Fk on possi-
bly different sample spaces Xk. The nonparamet-
ric MLE of a real-valued parameter of interest θ =
t�F1;F2; : : : ;FK� is

�6:15� θ̂ = t�F̂1; F̂2; : : : ; F̂K�;
where F̂k is the empirical distribution correspond-
ing to xk = �xk1; xk2; : : : ; xnkk�.

It turns out that K-sample nonparametric confi-
dence intervals can easily be obtained from either
abcnon or bcanon, its nonparametric BCa counter-
part. How to do so is explained in Remarks C and
H of Efron (1994).

7. CALIBRATION

Calibration is a bootstrap technique for improving
the coverage accuracy of any system of approximate
confidence intervals. Here we will apply it to the
nonparametric ABC intervals in Tables 2 and 3. The
general theory is reviewed in Efron and Tibshirani
(1993, Sections 18.3 and 25.6), following ideas of
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Loh (1987), Beran (1987), Hall (1986) and Hall and
Martin (1988).

Let θ̂ �α� be the upper endpoint of a one-sided
level-α approximate confidence interval for parame-
ter θ. If the approximation is actually working per-
fectly then the true probability of coverage

�7:1� β�α� ≡ Prob�θ < θ̂ �α��
will equal α. If not, we could use the calibration
curve β�α� to improve the approximate confidence
intervals. For example, if β�0:03� = 0:05 and
β�0:98� = 0:95, then we could use �θ̂�0:03�; θ̂�0:98��
instead of �θ̂�0:05�; θ̂�0:95�� as our approximate
central 0.90 interval.

Of course we do not know the calibration curve
β�α�. The interesting fact is that we can apply the
bootstrap to estimate β�α�, and then use the esti-
mate to improve our original approximate intervals.
The estimated calibration curve is

�7:2� β̂�α� = Prob∗�θ̂ < θ̂ �α�∗�:
Prob∗ indicates bootstrap sampling as in (2.1) or
(6.3) (so θ̂ is fixed), where θ̂ �α�∗ is the upper α end-
point of an interval based on the bootstrap data.

It looks like we have to do separate bootstrap cal-
culations in (7.2) for every value of α, but that is
unnecessary if θ̂ �α� is an increasing function of α,
as it usually is. For a given bootstrap sample, let
α̂∗ be the value of α that makes the upper endpoint
equal θ̂,

�7:3� α̂∗: θ̂�α̂∗� = θ̂:
Then the event �α̂∗ < α� is equivalent to the event
�θ̂ < θ̂ �α�∗�, so

�7:4� β̂�α� = Prob∗�α̂∗ < α�:
In order to calibrate a system of approximate con-

fidence intervals we generate B bootstrap samples,
and for each one we calculate α̂∗. The estimated cal-
ibration curve is

�7:5� β̂�α� = #�α̂∗�b� < α�/B:
In other words, we estimate the c.d.f. of α̂∗. If the
c.d.f. is nearly uniform, β̂�α� := α, then this indicates
accurate coverage for our system of intervals. If not,
we can use β̂�α� to improve the original endpoints
by calibration.

This idea was applied to the nonparametric ABC
intervals of Tables 2 and 3, the correlation coef-
ficient and maximum eigenvalue statistic for the
cd4 data. Figure 6 shows the result of B = 2,000
bootstrap replications for each situation. The cal-
ibration shows good results for the correlation
coefficient, with β̂�α� := α over the full range of
α. The story is less pleasant for the maximum

eigenvalue. At the upper end of the scale we have
β̂�α� < α, indicating that we need to take α > 0:95
to get actual 95% coverage. According to Table 6,
which shows the percentiles of the α̂∗ distributions,
we should take α = 0:994. This kind of extreme
correction is worrisome, but it produces an interest-
ing result in Table 3: it moves the upper endpoint
of the nonparametric interval much closer to the
normal-theory value 3.25.

Calibrating the ABC intervals improves their
accuracy from second to third order, with coverage
errors, as in (2.10), reduced to O�1/n3/2�. We are
talking about a lot of computation here, on the or-
der of 1,000 times as much as for the ABC intervals
themselves. The computational efficiency of ABC
compared to BCa becomes crucial in the calibration
context. Calibrating the BCa intervals would re-
quire on the order of 1,000,000 recomputations of
the original statistic θ̂.

8. SECOND-ORDER ACCURACY
AND CORRECTNESS

This section derives the second-order properties of
the various bootstrap intervals. In order to validate
the second-order accuracy and correctness of boot-
strap confidence intervals we need asymptotic ex-
pansions for the cumulative distribution functions
of θ̂ and T = �θ̂ − θ�/σ̂ . Later these expressions
will be used to connect bootstrap theory to several
other second-order confidence interval methods. In
many situations, including those considered in the
preceding sections, the asymptotic distribution of
U = �θ̂ − θ�/σ is standard normal, and the first
three cumulants of U are given by

E�U� = k1√
n
; var�U� = 1; skew�U� = k3√

n
;

where k1 and k3 are of order O�1�; the fourth-
and higher-order cumulants are of order O�n−1� or
smaller. It follows that the first three cumulants of

T = �θ̂− θ�
σ̂

= U
{

1− 1
2
�σ̂2 − σ2�

σ2

}
+Op�n−1�

are given by

E�T� = k1 − 1
2k2√
n

+O�n−1�;

var�T� = 1+O�n−1�;

skew�T� = −�3k2 − k3�√
n

+O�n−1�;

where

k2√
n
= E

{�σ̂2 − σ2��θ̂− θ�
σ3

}
:
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Fig. 6. Estimated calibration curves for the nonparametric ABC method, cd4 data: (left panel) correlation coefficient as in Table 2; (right
panel) maximum eigenvalue as in Table 3; each based on 2,000 bootstrap replications.

Table 6
Percentiles of the distributions of α̂∗ shown in Figure 6; the 0:05 and 0:95 values were used for the calibrated ABC endpoints in

Tables 2 and 3

Actual alpha 0.025 0.05 0.1 0.16 0.84 0.9 0.95 0.975

Nominal, corr 0.0196 0.0482 0.0984 0.164 0.843 0.898 0.953 0.980
Nominal, maxeig 0.0243 0.0515 0.1051 0.156 0.879 0.964 0.994 0.999

Observe that k2 is of order O�1�, since σ2 is of order
O�n−1� and σ̂2 generally differs from σ2 by order
Op�n−3/2�. The fourth- and higher-order cumulants
of T are of order O�n−1� or smaller. Thus, when θ̂
is continuous, the cumulative distribution functions
H�u� and K�t� of U and T typically have Cornish–
Fisher expansions

H�u� = pr
{
�θ̂− θ�/σ ≤ u

}

= 8
[
u− n−1/2

{
�k1 − 1

6k3
)
+ 1

6k3u
2
}]

+O�n−1�;
(8.1)

K�t� = pr
{
�θ̂− θ�/σ̂ ≤ t

}

= 8
[
t− n−1/2{�k1 − 1

6k3
)
− � 1

2k2 − 1
6k3�t2

}]
(8.2)

+O�n−1�:

Furthermore, the inverse cumulative distribution
functions H−1�α� and K−1�α� have expansions

H−1�α� = z�α� + n−1/2
[
�k1 − 1

6k3� + 1
6k3

{
z�α�

}2]

+O�n−1�;
(8.3)

K−1�α� = z�α� + n−1/2

·
[
�k1 − 1

6k3� − � 1
2k2 − 1

6k3�
{
z�α�

}2]

+O�n−1�:
(8.4)

To compare approximate confidence limits, Hall
(1988) defined an “exact” upper α confidence limit
for θ as θ̂exact�α� = θ̂− σ̂K−1�1−α�. This limit is ex-
act in the sense of coverage; note that pr

{
K−1�1 −

α� ≤ �θ̂ − θ�/σ̂
}
= α implies pr

{
θ ≤ θ̂exact�α�

}
=

1 − α. It requires the cumulative distribution func-
tion K, which is rarely known in practice; however,
although usually unavailable, θ̂exact�α� does provide
a useful benchmark for making comparisons. By us-
ing (8.4), the exact limit is seen to satisfy

θ̂exact�α� = θ̂+ σ̂z�α� − n−1/2σ̂

·
[
�k1 − 1

6k3� − � 1
2k2 − 1

6k3�
{
z�α�

}2]

+Op�n−3/2�:
(8.5)

An approximate α confidence limit θ̂�α� is said to
be second-order correct if it differs from θ̂exact�α� by
order Op�n−3/2�. It is easily seen from (8.2) that a
second-order correct limit θ̂�α� is also second-order
accurate, that is, pr

{
θ ≤ θ̂�α�

}
= α+O�n−1�.
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Let K̂�t� be the bootstrap cumulative distribution
function of T, so that K̂�t� is the cumulative distri-
bution function of T∗ = �θ̂∗ − θ̂�/σ̂∗. The first three
cumulants of T∗ typically differ from those of T by
order Op�n−1�, and K̂�t� has the expansion

K̂�t� = 8
[
t− n−1/2

{
�k̂1 − 1

6 k̂3
)

− � 1
2 k̂2 − 1

6 k̂3�t2
}]
+Op�n−1�;

where k̂j = kj +Op�n−1/2�. Hence, K̂�t� = K�t� +
Op�n−1� and K̂−1�α� =K−1�α�+Op�n−1�, and since
σ̂ is of order Op�n−1/2�, the bootstrap-t confidence
limit θ̂T�α� satisfies

θ̂T�α� = θ̂− σ̂K̂−1�1− α�
= θ̂− σ̂K−1�1− α� +Op�n−3/2�
= θ̂exact�α� +Op�n−3/2�:

(8.6)

Expression (8.6) shows that the bootstrap-t method
is second-order correct.

To demonstrate the second-order correctness of
the BCa method, let Ĥ�u� be the cumulative boot-
strap distribution function of U, so that Ĥ�u� is the
cumulative distribution function of U∗ = �θ̂∗− θ̂�/σ̂ .
It is assumed that the estimator σ̂2 is such that the
bootstrap distribution of θ̂ has variance that differs
from σ̂2 by order Op�n−2�, that is, var�θ̂∗� = σ̂2 +
Op�n−2�. The first three cumulants of U∗ typically
differ from those of U by order Op�n−1�, so Ĥ�u� =
H�u� +Op�n−1� and Ĥ−1�α� = H−1�α� +Op�n−1�.
The bootstrap cumulative distribution function Ĝ�c�
of θ̂ satisfies Ĝ�c� = Ĥ

{
�c − θ̂�/σ̂

}
, and Ĝ−1�α� =

θ̂+ σ̂Ĥ−1�α�. Thus, (8.3) gives

Ĝ−1�α� = θ̂+ σ̂z�α� + n−1/2σ̂

·
[
�k1 − 1

6k3� + 1
6k3

{
z�α�

}2]+Op�n−3/2�;
and, by definition (2.3),

θ̂BCa�α� = Ĝ
−1
[
8

{
z0 +

z0 + z�α�
1− a�z0 + z�α��

}]

= Ĝ−1{8
(
z�α�+2z0+a

{
z�α�

}2)}+Op�n−3/2�
= θ̂+ σ̂z�α� + n−1/2σ̂(8.7)

·
[
2
√
nz0 +

(
k1 −

1
6
k3

)

+
(√

na+ 1
6
k3

){
z�α�

}2
]
+Op�n−3/2�:

Comparison of (8.5) and (8.7) shows that θ̂BCa�α�
is second-order correct when a and z0 are defined by

a = � 1
2k2 − 1

3k3�/
√
n;(8.8)

z0 = −�k1 − 1
6k3�/

√
n:(8.9)

The quantities a and z0 are of order O�n−1/2�. The
quantity a satisfies

a = − 1
6

{
skew�U� + skew�T�

}
+O�n−1�;

and interpretation (2.7) for z0 is easily seen from
(8.1), for

8�z0� = 8
{
−�k1 − 1

6k3�/
√
n
}

=H�0� +O�n−1�
= pr

{
θ̂ ≤ θ

}
+O�n−1�:

In practice, θ̂BCa�α� is calculated using estimates â
and ẑ0 that differ from a and z0 by order Op�n−1�;
expression (8.7) shows that this change does not af-
fect the second-order correctness of θ̂BCa�α�. The es-
timate ẑ0 given in expression (2.8) has this property,
since

ẑ0 = 8−1
{
Ĝ�θ̂�

}
= 8−1

{
Ĥ�0�

}

= 8−1
{
H�0�

}
+Op�n−1�

= 8−1
[
8
{
−�k1 − 1

6k3�/
√
n
}]
+Op�n−1�

= z0 +Op�n−1�:
The second-order correctness of the bootstrap-t

and the BCa methods has been discussed by Efron
(1987), Bickel (1987, 1988) Hall (1988) and DiCiccio
and Romano (1995).

Definitions (8.8) and (8.9) for a and z0 can be used
to cast expansion (8.5) for θ̂exact�α� into the form of
(4.20). In particular,

θ̂exact�α� = θ̂+ σ̂z�α�

+ σ̂
[
z0 + �2a+ cq�

{
z�α�

}2]

+Op�n−3/2�;
(8.10)

where

cq = −� 1
2k2 − 1

2k3�/
√
n:(8.11)

The bias of θ̂ is

b = σk1/
√
n;(8.12)

and z0 can be expressed in terms of a, cq and b by

z0 = a+ cq − b/σ
= 8−1

(
28�a�8�cq − b/σ�

)

+O�n−1�:
(8.13)

If ĉq and b̂ are estimates that differ from cq and b
by order Op�n−1�, then estimate (4.12),

ẑ0 = 8−1(28�â�8�ĉq − b̂/σ̂�
)

(8.14)

differs from z0 by the same order.
Once estimates �θ̂; σ̂; â; ẑ0; ĉq� are obtained, the

quadratic version of the ABC confidence limit,
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θ̂ABCq
�α� = θ̂ + σ̂ξ, can be constructed according to

definition (4.13). This limit is second-order correct.
Since

w = ẑ0 + z�α� = z0 + z�α� +Op�n−1�;

λ = w
(
1− âw

)−2

= z�α� + z0 + 2a
{
z�α�

}2 +Op�n−1�;
ξ = λ+ ĉqλ2

= z�α� + z0 + �2a+ cq�
{
z�α�

}2 +Op�n−1�;

(8.15)

θ̂ABCq�α� agrees with (8.10) to error of order
Op�n−3/2�.

In many contexts, there exists a vector of pa-
rameters ζ = �ζ1; : : : ; ζp�′ and an estimator ζ̂ =
�ζ̂1; : : : ; ζ̂p�′ such that the parameter of interest is
θ = t�ζ�, and the variance of the estimator θ̂ = t�ζ̂�
is of the form σ2 = v�ζ� +O�n−2�, so the variance
is estimated by σ̂2 = v�ζ̂�. This situation arises in
parametric models and in the smooth function of
means model. For the smooth function model, in-
ference is based on independent and identically dis-
tributed vectors x1; : : : ; xn, each having mean µ; the
parameter of interest is θ = t�µ�, which is estimated
by θ̂ = t�x�. In fact the smooth function model is
closely related to exponential families, as shown in
Section 4 of DiCiccio and Efron (1992).

Assume that
√
n
(
ζ̂ − ζ

)
is normally distributed

asymptotically. Typically, the first three joint cumu-
lants of ζ̂1; : : : ; ζ̂p are

E�ζ̂i� = ζi + κi; cov�ζ̂i; ζ̂j� = κi; j;
cum�ζ̂i; ζ̂j; ζ̂k� = κi; j; k; i; j; k = 1; : : : ; p;

where κi and κi; j are of order O�n−1� and κi; j; k
is of order O�n−2�, and the fourth- and higher-
order joint cumulants are of order O�n−3� or
smaller. Straightforward calculations show that
σ2 = κi; jtitj + O�n−2�, where ti = ∂t�ζ�/∂ζi,
i = 1; : : : ; p. In this expression and subsequently,
the usual convention is used whereby summation
over repeated indices is understood, with the range
of summation being 1; : : : ; p. Now, suppose ζ is suf-
ficiently rich so that κi; j depends on the underlying
distribution only through ζ for indices i and j such
that ti and tj are nonvanishing. Then it is possible
to write

v�ζ� = κi; j�ζ�ti�ζ�tj�ζ� +O�n−2�

and

σ̂2 = v�ζ̂� = κi; j�ζ̂�ti�ζ̂�tj�ζ̂� +Op�n−2�:

In this case, the quantities k1, k2, k3 are given by

k1 =
√
n
(
κiti + 1

2κi; jtij
)
/
(
κi; jtitj

)1/2
;

k2 =
√
nκi; jvitj/

(
κi; jtitj

)3/2

= √n
(
κi; j/lκk; ltitjtk+2κi; jκk; ltitktjl

)
/

(
κi; jtitj

)3/2
;

k3 =
√
n
(
κi; j; ktitjtk + 3κi; jκk; ltitktjl

)
/

(
κi; jtitj

)3/2
;

(8.16)

to error of order O�n−1/2�, where tij = ∂2t�ζ�/∂ζi∂ζj,
vi = ∂v�ζ�/∂ζi, κi; j/k = ∂κi; j�ζ�/∂ζk, i, j, k =
1; : : : ; p. It follows from (8.8), (8.11) and (8.12) that

a =
( 1

2κi;j/lκk; l − 1
3κi; j; k

)
titjtk/

(
κi; jtitj

)3/2
;

b = κiti + 1
2κi; jtij;

cq = −
( 1

2κi; j/lκk; l − 1
2κi; j; k

)
titjtk/

(
κi; jtitj

)3/2

+ 1
2κi; jκk; ltitktjl/

(
κi; jtitj

)3/2

(8.17)

to error of orderO�n−1�. An expression for z0 having
error of order O�n−1� can be deduced from (8.17) by
using (8.13).

The ABC method applies to both exponential
families and the smooth function of means model.
For these cases, ζ̂ is an unbiased estimate of
ζ, and the cumulant generating function of ζ̂,
9�ξ� = logE

{
exp

(
ξiζ̂i

)}
, has an approximation

9̂�ξ� such that

∂9̂�ξ�
∂ξi

∣∣∣∣
ξ=0
= ζ̂i;

∂29̂�ξ�
∂ξi∂ξj

∣∣∣∣
ξ=0
= κi; j�ζ̂� +Op�n−2�;

∂39̂�ξ�
∂ξi∂ξj∂ξk

∣∣∣∣
ξ=0
= κi; j; k +Op�n−5/2�:

In particular, it is reasonable to take σ̂2 = 9̂ijt̂it̂j,
where t̂i = ti�ζ̂�, i = 1; : : : ; p. The ABC algorithm
uses numerical differentiation of t�ζ� and 9̂i�ξ� to
facilitate calculation of estimates σ̂ , â, ẑ0, ĉq.

In exponential families, the distribution of an ob-
served random vector y = �y1; : : : ; yp�′ is indexed
by an unknown parameter η = �η1; : : : ; ηp�′, and
the log-likelihood function for η based on y has the
form l�ηyy� = n

{
ηiyi − ψ�η�

}
, where y = E�y� +

Op�n−1/2� and both η and ψ�η� are of order O�1�.
In this case, y plays the role of ζ̂, and ζ corresponds
to the expectation parameter µ = E�y� = ∂ψ�η�/∂η.
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Upon defining η and ψ�η� by η = nη and ψ�η� =
nψ�η� = nψ�η/n�, the log-likelihood function for η
based on y is l�ηyy� = η′y − ψ�η�, which agrees
with (3.1). The cumulant generating function for y
is 9�ξ� = ψ�η+ ξ� −ψ�η�, and the approximate cu-
mulant generating function is

9̂�ξ� = ψ�η̂+ ξ� − ψ�η̂�;

where η̂ is the maximum likelihood estimator ob-
tained from the equations ψi�η̂� = yi, i = 1; : : : ; p.
The usual information estimate of variance is σ̂2 =
ψij�η̂�t̂it̂j = 9̂ijt̂it̂j.

In the smooth function model, the cumulant gen-
erating function is approximated by

9̂�ξ� = n log
{

1
n

n∑
j=1

exp
(
ξixij
n

)}
;

which is the true cumulant generating function for
the model that puts probability mass 1/n on each
of the observed random vectors xj = �x1j; : : : ; xpj�′,
j = 1; : : : ; n. The usual estimate of variance ob-
tained from the delta-method is

σ̂2 = 1
n2

{ n∑
k=1

(
xik − xi

)(
xjk − xj

)}
t̂it̂j

= 9̂ijt̂it̂j;

where xi =
∑
xij/n.

Key features of exponential families and the
smooth function model are that κi = 0 and
κi; j/lκk; l = κi; j; k, i; j; k = 1; : : : ; p, so the ex-
pressions for a, b and c given in (5.17) undergo
considerable simplification; in particular,

a = 1
6κi; j; ktitjtk/

(
κi;jtitj

)3/2
;

b = 1
2κi; jtij;

cq = 1
2κi; jκk; ltitktjl/

(
κi; jtitj

)3/2
;

to error of order O�n−1�.
The ABC method requires only that t�ζ� and

9̂i�ξ� be specified; the estimates σ̂ , â, ẑ0, and ĉq are
obtained by numerical differentiation. The details
are as follows. By definition,

t̂i =
d

dε
t
(
ζ̂ + εei

)∣∣∣∣
ε=0
; i = 1; : : : ; p;

9̂ij =
d

dε
9̂i

(
εej

)∣∣∣∣
ε=0
; i; j = 1; : : : ; p;

where ei is the p-dimensional unit vector whose ith
entry is 1. Let ṫ =

(
t̂1; : : : ; t̂p

)′, 6̂ = �9̂ij�, σ̂2 =

9̂ijt̂it̂j = ṫ′6̂ṫ. Then

â = 9̂ijkt̂it̂jt̂k
6σ̂3

= 1
6σ̂3

d2

dε2
t̂i9̂i

(
εṫ
)∣∣∣∣
ε=0
;

ĉq =
9̂ij9̂klt̂it̂jt̂kl

2σ̂3
= 1

2σ̂
d2

dε2
t

(
ζ̂ + ε6̂ṫ

σ̂

)∣∣∣∣
ε=0
:

Now 6̂ = 0D0′, where D is a diagonal matrix of
eigenvalues of 6̂ and 0 is an orthogonal matrix
whose columns are corresponding eigenvectors.
Denote the ith diagonal element of D by di and
the ith column of 0 by γi = �γ1i; : : : ; γpi

)′, so
that 9̂ij =

∑
k dkγikγjk. The quantity b can be

estimated by

b̂ = 9̂ijt̂ij
2
= 1

2

p∑
i=1

d2

dε2
t
(
ζ̂ + εd1/2

i γi
)∣∣∣∣
ε=0
:

If calculating the eigenvalues and eigenvectors is
too cumbersome, then b̂ can be obtained from

b̂ = 1
2

p∑
i=1

∂2

∂ε1∂ε2
t
(
ζ̂ + ε1ei + ε26̂ei

)∣∣∣∣
�ε1; ε2�=�0;0�

:

Once σ̂2, â, b̂, and ĉ are calculated, then ẑ0 can be
obtained using (8.14).

The ABC confidence limit θ̂ABC�α� is defined in
(8.14) as

θ̂ABC�α� = t
(
ζ̂ + λ6̂ṫ

σ̂

)
:

This confidence limit is second-order correct; by
(5.10) and (5.15),

θ̂ABC�α� = θ̂+ λ
t̂i9̂ijt̂j
σ̂

+ λ2 t̂ij9̂ik9̂jlt̂kt̂l
2σ̂2

+Op�n−3/2�
= θ̂+ σ̂λ+ σ̂ ĉqλ2 +Op�n−3/2�

= θ̂+ σ̂
[
z�α� + z0 + 2a

{
z�α�

}2]

+ σ̂cq
{
z�α�

}2 +Op�n−3/2�
= θ̂exact�α� +Op�n−3/2�:

The second-order correctness of the ABC method
for exponential families was shown by DiCiccio and
Efron (1992).

9. PARAMETRIC MODELS AND CONDITIONAL
CONFIDENCE INTERVALS

An impressive likelihood-based theory of higher-
order accurate confidence intervals has been de-
veloped during the past decade. This effort has
involved many authors, including Barndorff-Nielsen
(1986), Cox and Reid (1987), Pierce and Peters
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(1992) and McCullagh and Tibshirani (1990). This
section concerns the connection of bootstrap con-
fidence intervals with the likelihood-based theory.
We will see that in exponential families, includ-
ing nonparametric situations, the bootstrap can be
thought of as an easy, automatic way of construct-
ing the likelihood intervals. However, in parametric
families that are not exponential, the two theories
diverge. There the likelihood intervals are second-
order accurate in a conditional sense, while the
bootstrap intervals’ accuracy is only unconditional.
To get good conditional properties, the bootstrap re-
sampling would have to be done according to the
appropriate conditional distribution, which would
usually be difficult to implement.

Consider an observed random vector y =
�y1; : : : ; yn�′ whose distribution depends on an
unknown parameter ζ = �ζ1; : : : ; ζp�′, and let
l�ζ� = l�ζyy� be the log-likelihood function for ζ
based on y. Suppose the parameter θ = t�ζ� is es-
timated by θ̂ = t�ζ̂�, where ζ̂ = �ζ̂1; : : : ; ζ̂p�′ is the
maximum likelihood estimator. Parametric boot-
strap distributions are generally constructed using
samples y∗ drawn from the fitted distribution for y,
that is, from the distribution having ζ = ζ̂.

Asymptotic formulae for the first three cumulants
of θ̂ are given by McCullagh (1987, Chapter 7), and
using these formulae in conjunction with (8.16)
shows that σ2 = λi; jtitj +O�n−2� and

k1 = −
√
n
[( 1

2λi; j; k + 1
2λij; k

)
λi; jλk; ltl

− 1
2λ

i; jtij
]
/
(
λi; jtitj

)1/2
;

k2 = −
√
n
[(
λi; j; k + 2λij; k

)
λi; lλj;mλk;ntltmtn

− 2λi; jλk; ltitktjl
]
/
(
λi; jtitj

)3/2
;

k3 = −
√
n
[(

2λi; j; k + 3λij; k
)
λi; lλj;mλk;ntltmtn

− 3λi; jλk; ltitktjl
]
/
(
λi; jtitj

)3/2
;

(9.1)

to error of order O�n−1/2�, where λi; j = E
(
lilj

)
,

λij; k = E
(
lijlk

)
, λi; j; k = E

(
liljlk

)
, with li =

∂l�ζ�/∂ζi and lij = ∂2l�ζ�/∂ζi∂ζj, and �λi; j� is the
p × p matrix inverse of �λi; j�. The quantities λi; j,
λij; k and λi; j; k are assumed to be of order O�n�.
The expected information estimate of variance is
σ̂2 = λ̂i; jt̂it̂j, where λ̂i; j = λi; j�ζ̂�, and the vari-
ance of the bootstrap distribution of θ̂ satisfies
var�θ̂∗� = σ̂2 + Op�n−2�. Thus, if the Studentized
statistic is defined using the expected information
estimate of variance, say TE = �θ̂ − θ�/σ̂ , then the
results of Section 5 show that the BCa method is
second-order correct with respect to TE. Using (8.8)
in conjunction with (9.1) to calculate a yields

a = 1
6λi; j; kλ

i; lλj;mλk;ntltmtn/
(
λijtitj

)3/2
;(9.2)

to error of order O�n−1�. This formula for a was
given by Efron (1987).

If nuisance parameters are absent �p = 1� and
θ = ζ, then (8.9), (9.1), and (9.2) show that

a = z0 = 1
6λ1;1;1�λ1;1�−3/2

= 1
6 skew

(
∂l�θ�/∂θ

)
;

(9.3)

to error of order O�n−1�. The equality of z0 and a in
this context was demonstrated by Efron (1987).

In addition to being invariant under monotoni-
cally increasing transformations of the parameter
of interest as described in Section 3, the quantities
a and z0 are also invariant under reparameteriza-
tions η = η�ζ� of the model. Expression (9.2) for a is
invariant under reparameterizations of the model,
as is the formula for z0 obtained by substituting
(9.1) into (8.9). There is no restriction then in as-
suming the model is parameterized so that θ = ζ1

and the nuisance parameters ζ2; : : : ; ζp are orthog-
onal to θ. Here, orthogonality means λ1; a = λ1; a = 0
�a = 2; : : : ; p�; see Cox and Reid (1987). In this case,
(6.2) becomes

a = 1
6λ1;1;1�λ1;1�−3/2 = 1

6 skew
(
∂l�ζ�/∂ζ1):(9.4)

Comparison of (9.4) with (9.3) indicates that, to er-
ror of order O�n−1�, a coincides with its version that
would apply if the orthogonal nuisance parameters
were known. In this sense, a can be regarded as un-
affected by the presence of nuisance parameters. In
contrast, for the orthogonal case,

z0 =
( 1

2λa; b;1 + 1
2λab;1

)
λa; b�λ1;1�−1/2

+ 1
6λ1;1;1�λ1;1�−3/2;

(9.5)

to error of order O�n−1�, where, for purpose of the
summation convention, the indices a and b range
over 2; : : : ; p. Expression (9.5) shows that z0 reflects
the presence of unknown nuisance parameters.

Another possibility for Studentizing is to use
the observed information estimate of variance,
σ2 = −l̂ijt̂it̂j, where

(
l̂ij
)

is the p × p matrix in-
verse of

(
l̂ij
)

and l̂ij = lij�ζ̂�. Let TO = �θ̂ − θ�/σ .
Using the bootstrap-t method with TE and TO
produces approximate confidence limits θ̂TE�α�
and θ̂TO�α�, which both have coverage error of
order O�n−1�. However, σ = σ̂ + Op�n−1�, so
TO = TE + Op�n−1/2�, and θ̂TE�α� and θ̂TO�α� typ-
ically differ by order Op�n−1�. The Studentized
quantities TE and TO produce different definitions
of second-order correctness. In particular, θ̂BCa�α�
differs from θ̂TO�α� by order Op�n−1�, and the BCa
method, which is second-order correct with respect
to TE, fails to be second-order correct with respect
to TO. For exponential families, σ̂2 = σ2 since
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λi; j = −lij, and no distinction arises between TE
and TO in the definition of second-order correctness.

Although TE and TO generally differ by order
Op�n−1/2�, their first three cumulants agree to er-
ror of order O�n−1�. It follows then from (5.5) that
θ̂TE�α� and θ̂TO�α� have expansions

θ̂TE�α� = θ̂+ σ̂z�α� − n−1/2σ̂

·
[
�k1 − 1

6k3� − � 1
2k2 − 1

6k3�
{
z�α�

}2]

+Op�n−3/2�;
θ̂TO�α� = θ̂+ σz�α� − n−1/2σ

·
[
�k1 − 1

6k3� − � 1
2k2 − 1

6k3�
{
z�α�

}2]

+Op�n−3/2�;

(9.6)

where k1, k2, k3 are given by (9.1). Expression (9.6)
shows that if θ̂E�α� is a second-order correct con-
fidence limit with respect to TE, such as θ̂BCa�α�,
then

θ̂O�α� = θ̂+
σ

σ̂

(
θ̂E�α� − θ̂

)

is second-order correct with respect to TO.
Confidence limits that are second-order correct

with respect to TO agree closely with second-order
accurate confidence limits obtained from likelihood
ratio statistics. The profile log-likelihood function
for θ is lp�θ� = l�ζ̂θ�, where ζ̂θ is the constrained
maximum likelihood estimator of ζ given θ; that is,
ζ̂θ maximizes l�ζ� subject to the constraint t�ζ� = θ.
Since ζ̂θ̂ is the global maximum likelihood estima-
tor ζ̂, lp�θ� is maximized at θ̂. The likelihood ratio
statistic for θ is

Wp�θ� = 2
{
l�ζ̂� − l�ζ̂θ�

}
= 2

{
lp�θ̂� − lp�θ�

}
;

and the signed root of the likelihood ratio statistic
is

Rp�θ� = sgn�θ̂− θ�
√
Wp�θ�:

In wide generality, Wp�θ� and Rp�θ� are asymptot-
ically distributed as χ2

1 and N�0;1�, respectively.
Straightforward calculations show that the

derivatives of lp�θ� satisfy l�1�p �θ̂� = 0, l�2�p �θ̂� = −σ2

and

l
�3�
p �θ̂� =

(
−l̂ijkl̂ill̂jml̂knt̂lt̂mt̂n + 3l̂ijl̂klt̂it̂kt̂jl

)/
σ6

=
(
λijkλ

i; lλj;mλk;ntltmtn + 3λi; jλk; ltitktjl
)/

σ6 +Op�n1/2�
= n−1/2�3k2 − k3�/σ3 +Op�n1/2�
= �2a+ cq�/σ3 +Op�n1/2�y

these calculations make use of the Bartlett identi-
ties λij = E�lij� = −λi; j and

λijk = E�lijk� = −λi; j; k − λij; k − λik; j − λjk; i:

Consequently, Wp�θ� and Rp�θ� have expansions

Wp�θ� = T2
O + n−1/2�k2 − 1

3k3�T3
O

+Op�n−1�;
Rp�θ� = TO + n−1/2� 1

2k2 − 1
6k3�T2

O

+Op�n−1�:

(9.7)

Expansion (9.7) shows that

E�Rp� = n−1/2�k1 − 1
6k3� +O�n−1�

= −z0 +O�n−1�;
var�Rp� = 1+O�n−1�; skew�Rp� = O�n−1�:

(9.8)

Thus, the distribution of Rp�θ�+ ẑ0 is standard nor-
mal to error of order O�n−1�, and the approximate
limit θ̂p�α� that satisfies

Rp�θ̂p�α�� + ẑ0 = −z�α�(9.9)

is second-order accurate. Moreover, comparing (9.7)
with the Cornish–Fisher expansion in (8.2) shows
that this limit is second-order correct with respect
to TO. Approximate confidence limits obtained us-
ing (9.9) have been discussed by several authors,
including Lawley (1956), Sprott (1980), McCullagh
(1984) and Barndorff-Nielsen (1986). McCullagh
(1984) and Barndorff-Nielsen (1986) have shown
that these limits are second-order accurate con-
ditionally; that is, they have conditional coverage
error of order O�n−1� given exact or approximate
ancillary statistics. It follows that second-order
conditional coverage accuracy is a property of all
approximate confidence limits that are second-
order correct with respect to TO. In contrast, limits
that are second-order correct with respect to TE
typically have conditional coverage error of order
O�n−1/2�. Conditional validity provides a reason for
preferring TO over TE to define “exact” confidence
limits.

The profile log likelihood function lp�θ� is not a
genuine likelihood. In particular, the expectation of
the profile score, l�1�p �θ�, is not identically 0 and is
generally of order O�1�. It can be shown that

E
{
l�1�p �θ�

}
= �a− z0�/σ +O�n−1�;

and hence, the estimating equation l
�1�
p �θ� = 0,

which yields the estimate θ̂, is not unbiased.
To eliminate this bias, several authors, includ-
ing Barndorff-Nielsen (1983, 1994), Cox and Reid
(1987, 1993) and McCullagh and Tibshirani (1990),
have recommended that the profile log-likelihood
function lp�θ� be replaced by an adjusted version

lap�θ� = lp�θ� + d�θ�;
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where the adjustment function d�θ� satisfies

d�θ� = �â− ẑ0�TO +Op�n−1�;(9.10)

so that

d�1��θ� = −E
{
l�1�p �θ�

}
+Op�n−1�:

Hence, E
{
l
�1�
ap �θ�

}
= O�n−1�, and lap�θ� behaves

more like a genuine likelihood than does lp�θ�.
For instance, McCullagh and Tibshirani (1990)
suggested the adjustment

m�θ� = −
∫ θ
θ̂

{
a
(
ζ̂u
)
− z0

(
ζ̂u
)}/

σ
(
ζ̂u
)
du:(9.11)

The estimator θ̂ap that maximizes lap�θ� satisfies

θ̂ap = θ̂+ �z0 − a�σ +Op�n−3/2�:
The adjusted likelihood ratio statistic arising from

lap�θ� is

Wap�θ� = 2
{
lap
(
θ̂ap

)
− lap

(
θ
)}
;

and its signed root is Rap�θ� = sgn
(
θ̂ap−θ

)√
Wap�θ�.

It can be shown that
Wap�θ� =Wp�θ� + �z0 − a�TO +Op�n−1�
Rap�θ� = Rp�θ� + �z0 − a� +Op�n−1�;

(9.12)

so it follows from (6.8) that

E�Rap� = −a+O�n−1�;
var�Rap� = 1+O�n−1�;

skew�Rap� = O�n−1�:
Consequently, the approximate confidence limit
θ̂ap�α� that satisfies

Rap

(
θ̂ap�α�

)
+ â = −z�α�(9.13)

is a second-order accurate confidence limit. Expan-
sion (9.12) shows that θ̂ap�α� = θ̂p�α� + Op�n−3/2�,
so θ̂ap�α� is also second-order correct with respect
to TO. Confidence limits obtained by (9.13) have
been discussed by DiCiccio and Efron (1992), DiCic-
cio and Martin (1993), Efron (1993) and Barndorff-
Nielsen and Chamberlin (1994).

Numerical examples, especially in cases where
the number of nuisance parameters is large, indi-
cate that the standard normal approximation for
Rap�θ� + â can be much more accurate than for
Rp�θ�+ẑ0, and hence the limits obtained from (9.13)
have better coverage accuracy than limits obtained
from (9.12). Now, (9.8) suggests that the distribution
of Rp�θ� is affected by the presence of nuisance pa-
rameters at the O�n−1/2� level through the quantity
z0. However, the distribution of Rap�θ� is insensi-
tive to the presence of nuisance parameters at that
level, because of the remarks made about a at (9.4).

Consider again the orthogonal case with θ = ζ1.
Let R�θ� be the signed root of the likelihood ratio
statistic that would apply if the nuisance parame-
ters ζ2; : : : ; ζp were known. It follows from the com-
parison of (9.3) and (9.4) that the distributions of
R�θ� and Rap�θ� agree to order O�n−1�, while the
distributions of R�θ� and Rp�θ� agree only to order
O�n−1/2�. Since R�θ� does not require estimation of
nuisance parameters, its distribution is likely to be
fairly close to standard normal. On the other hand,
because of presence of nuisance parameters, the dis-
tribution of Rp�θ� can be far from standard normal,
and asymptotic corrections can fail to remedy ade-
quately the standard normal approximation.

These remarks can be illustrated by taking θ to
be the variance in a normal linear regression model
with q regression coefficients. In this case, θ is or-
thogonal to the regression coefficients, and

σ2 = 2θ2

n
; a = 2

3
√

2n
+O�n−1�;

z0 =
q√
2n
+ 2

3
√

2n
+O�n−1�;

by (9.4) and (9.5). Note that a does not involve the
nuisance parameters, while z0 reflects the nuisance
parameters through its dependence on q. In this
case, �a− z0�/σ = −q/�2θ�, and (9.11) produces the
adjustment function d�θ� = �q/2� log θ. The effect
making this adjustment to the profile log-likelihood
is to account for the degrees of freedom; in particu-
lar, θ̂ap = nθ̂/�n−q�. Table 7 shows, in the case n = 8
and q = 3, the true left-hand tail probabilities of ap-
proximate quantiles for Rp, Rap, R and their mean-
adjusted versions obtained using the standard
normal approximation. Note the accuracy and the
closeness of the approximation for Rap and R; in
constrast, the approximation for Rp is very poor.

Approximate confidence limits that are second-
order correct with respect to TO can be used to re-
cover the profile and adjusted profile log-likelihoods,
at least to error of order Op�n−1�. Suppose that
θ̂O�α� is second-order correct; then, by (6.9),

Rp�θ̂O�α�� + ẑ0 = −z�α� +Op�n−1�:
It follows that

lp
(
θ̂O�α�

)
= constant − 1

2

(
z�α� + z0

)2

+Op�n−1�;
(9.14)

and, by (6.10),

lap
(
θ̂O�α�

)
= constant − 1

2

(
z�α� + z0

)2

−
{
�â− ẑ0�/σ

}
θ̂O�α�

+Op�n−1�:
(9.15)
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Table 7
True left-hand tail probabilities of approximate percentage points obtained from the standard normal approximation; table

entries are percentages

Nominal Rp Rp + ẑ0 Rap Rap + â R R+ â

1 13.67 2.85 1.81 1.19 1.60 1.04
2.5 22.10 5.69 4.18 2.90 3.75 2.58
5 31.34 9.62 7.83 5.68 7.12 5.13

10 43.68 16.32 14.54 11.09 13.44 10.18
50 84.38 56.81 58.41 51.90 56.65 50.08
90 98.60 91.09 93.06 90.58 92.51 89.88
95 99.44 95.38 96.71 95.30 96.42 94.90
97.5 99.77 97.59 98.43 97.65 98.28 97.43
99 99.93 98.98 99.40 99.06 99.34 98.96

Approximations (9.14) and (9.15) to lp�θ� and lap�θ�
are especially useful in complex situations. Efron
(1993) discussed the use of second-order correct
confidence limits, particularly the ABC limits, to
construct implied likelihoods automatically in both
parametric and nonparametric situations.

Second-order accurate confidence limits can also
be constructed by using Bayesian methods with non-
informative prior distributions. Assume θ = ζ1, with
the nuisance parameters ζ2; : : : ; ζp not necessarily
orthogonal to θ, and consider Bayesian inference
based on a prior density π�ζ�. DiCiccio and Mar-
tin (1993) showed that the posterior distribution of

Rp +
1
Rp

log
(
S

Rp

)
;(9.16)

is standard normal to error of order O�n−3/2�, where

S = l1
(
ζ̂θ
){
−l11(ζ̂θ

)}1/2
∣∣− lij

(
ζ̂θ
)∣∣1/2

∣∣− lij
(
ζ̂
)∣∣1/2

π
(
ζ̂
)

π
(
ζ̂θ
) ;

and
∣∣− lij

(
ζ̂θ
)∣∣ denotes the determinant of the p×p

matrix
(
− lij

(
ζ̂θ
))

. Thus, the quantity θ̂π�α� that
satisfies

Rp

(
θ̂π�α�

)
+ 1

Rp

(
θ̂π�α�

)

· log
(
S
(
θ̂π�α�

)

Rp

(
θ̂π�α�

)
)
= −z0

(9.17)

agrees with the posterior α quantile of θ to error of
order O�n−2�.

From a frequentist perspective,

S = TO +Op�n−1/2� = Rp +Op�n−1/2�;

so the adjustment term R−1
p log�S/Rp� in (6.16) is of

order Op�n−1/2� under repeated sampling. Indeed,

standard Taylor expansions show that

1
Rp

log
(
S

Rp

)
= z0 +

p∑
i=1

∂

∂ζi
{
λi;1�λ1;1�−1/2}

+ πi�ζ�
π�ζ� λ

i;1�λ1;1�−1/2

+Op�n−1�;

(9.18)

where πi�ζ� = ∂π�ζ�/∂ζi. It is apparent from (9.18)
that if the prior density π�ζ� is chosen to satisfy

πi�ζ�
π�ζ�

{
λi;1�λ1;1�−1/2}

= −
p∑
i=1

∂

∂ζi
{
λi;1�λ1;1�−1/2};

(9.19)

then R−1
p log�S/Rp� = z0 + Op�n−1�. In this case,

θ̂π�α�, the solution to (9.17), agrees to error of order
Op�n−3/2� with θ̂p�α�, the solution to (9.9). Conse-
quently, when the prior π�ζ� satisfies (9.19), θ̂π�α�
is second-order correct with respect to TO, as is the
posterior α quantile of θ. These approximate con-
fidence limits also have conditional coverage error
of order Op�n−1� given exact or approximate an-
cillary statistics. Prior distributions for which the
posterior quantiles are second-order accurate ap-
proximate confidence limits under repeated sam-
pling are usually called noninformative.

Equation (9.19) was given by Peers (1965). When
the nuisance parameters ζ2; : : : ; ζp are orthogonal
to θ = ζ1, this equation reduces to

π1�ζ�
π�ζ� �λ1;1�−1/2 = − ∂

∂ζ1
�λ1;1�−1/2:

Tibshirani (1989) showed that this equation has so-
lutions of the form

π�ζ� ∝ �λ1;1�1/2g;
where g is arbitrary and depends only on the nui-
sance parameters.
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Professors DiCiccio and Efron have offered a com-
pelling and insightful look at the current state of
research into bootstrap confidence intervals. Their
account is both timely and motivating, drawing to-
gether important connections between bootstrap
confidence intervals and likelihood-based inference
and pointing out that there are no uniformly supe-
rior methods. The paper also raises several issues
that bear further comment, such as those below.
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1. WHITHER CONFIDENCE INTERVALS?

As the authors point out in their Introduction, the
bootstrap offers a highly accurate and attractive al-
ternative to the “standard interval,” which has dom-
inated classical statistical inference for more than
70 years. However, we wonder if, like the standard
interval, the whole notion of a confidence interval is
not in need of reassessment. It provides a restric-
tive, one-dimensional level of information about the
error associated with a point estimate. Indeed, the
information conveyed by confidence intervals is so
tied to the classical notion of the standard interval
that practitioners have difficulty interpreting con-
fidence intervals in other contexts. For example, it
is natural, given two interval endpoints, to imagine
that the true parameter value has greatest a pos-
teriori likelihood of lying close to the middle of the
interval.

One could incorporate numerical information
about left–right asymmetry, for example, in terms of
the skewness of the bootstrap estimate of the distri-
bution of a statistic. Information about asymmetry
is implicit in so-called short confidence intervals,
such as those described by Hall (1988). But why
not replace them altogether with more informative
tools? The bootstrap affords a unique opportunity
for obtaining a large amount of information very
simply. The process of setting confidence intervals
merely picks two points off a bootstrap histogram,
ignoring much relevant information about shape
and other important features.

“Confidence pictures” (e.g., Hall, 1992, Appendix
III), essentially smoothed and transformed boot-
strap histograms, are one alternative to confidence
intervals. Graphics such as these provide a simple
but powerful way to convey information lost in nu-
merical summaries. The opportunities offered by
dynamic graphics are also attractive, particularly
when confidence information needs to be passed
to a lay audience. (Consider, e.g., the need to pro-
vide information about the errors associated with
predictions from opinion polls.) Bootstrap methods
and new graphical ways of presenting informa-
tion offer, together, exciting prospects for conveying
information about uncertainty.

2. HOW AUTOMATIC SHOULD THE
BOOTSTRAP BE?

While an “automatic” procedure, such as some
forms of the bootstrap, has advantages, there are
also potential problems, just as there may be with
“automatic” statistical software in the hands of
untrained users. Like any multipurpose tool, the
bootstrap can be, and often is, bested by a special-

purpose technique, and where such techniques are
available, they should be promoted.

Nevertheless, the generality with which the
bootstrap applies lends itself readily to solution
of problems for which special techniques might
not exist. The use of bootstrap methods has re-
cently been greatly facilitated by the publication by
Efron and Tibshirani, in their excellent monograph
(Efron and Tibshirani, 1993) of a set of S-PLUS
routines. However, if use of the bootstrap is to be-
come truly widespread, it should make the leap into
mainstream statistical packages.

3. NONPARAMETRIC LIKELIHOOD

The parallels that DiCiccio and Efron draw to
likelihood-based parametric theory might be com-
pleted by mentioning extensive recent work in the
area of nonparametric likelihood. Owen’s (1988,
1990) empirical likelihood, Davison, Hinkley and
Worton’s (1992) bootstrap partial likelihood, and
Efron’s (1993) implied likelihood could be men-
tioned in this regard. Efron and Tibshirani (1993b,
Chapter 24) provide an excellent review. Perhaps
some of the theoretical development given in Sec-
tion 9 of the paper could be brought to bear in the
case of nonparametric likelihood.

We should mention in particular the ties that ex-
ist between parametric and empirical likelihood.
The nonparametric bootstrap estimator is “max-
imum likelihood,” in that it maximizes Owen’s
empirical likelihood. Empirical likelihood confi-
dence regions are nonparametric analogues of
profile likelihood regions, and the parallels extend
to high-order features such as Bartlett correction.

4. PERCENTILE-t VERSUS BCa

One of the more interesting aspects of the devel-
opment of bootstrap methods has been the debate
about relative merits of BCa and percentile-t. Both
methods stem from a simple philosophy that un-
derlies much of statistical theory: inference should
ideally be based on statistics whose distributions de-
pend as little as possible on unknown parameters.
Percentile-t is based on bootstrapping a quantity
whose distribution depends very little on unknowns,
and BCa works by correcting for unknowns in a
transformation to normality. The former approach
is arguably simpler to use and understand, but not
always a good performer.

Indeed, much has been said about the erratic be-
havior of percentile-t in problems where no obvious,
good variance estimator exists. Moreover, there is
empirical evidence that in such cases BCa usually
works well. Asymptotic theory is not obviously of



214 T. J. DICICCIO AND B. EFRON

help in solving this mystery, although perhaps the
inferior performance of Studentized statistics in ap-
proximating large deviation probabilities is at the
root of the matter.

5. THE DOUBLE BOOTSTRAP

One might summarize the respective theoreti-
cal drawbacks of percentile-t and BCa methods
by noting that the former are not transformation
invariant, and the latter are not monotone in cov-
erage level. As a utilitarian procedure we favor a
calibrated version of a simple method such as per-
centile. The percentile method is transformation
respecting; its calibrated form “almost” respects
transformations and is monotone in coverage level.
Also, it is not hindered by problems associated with
ratios of random variables, which are sometimes
the downfall of percentile-t.

An oft-stated drawback of the double bootstrap
is its computational expense. This is perhaps over-
stated, however, since the amount of computation
needed to obtain a single double bootstrap inter-
val is really not onerous in today’s world of fast,
inexpensive computers. Nonetheless, a significant
amount of recent work has resulted in development
of analytical approximations to double bootstrap
confidence intervals that are accurate and that can

be computed in a small fraction of the time needed
for a double bootstrap calculation carried out by
simulation alone. See, for example, Davison and
Hinkley (1988), Daniels and Young (1991), DiCic-
cio, Martin and Young (1992, 1993) and Lee and
Young (1995, 1996a). The latter papers by Lee and
Young seem particularly promising, as they propose
methods for producing approximate double boot-
strap confidence intervals without the need for any
resampling. A drawback of such analytical methods
is that a measure of user intervention is required in
setting up and calculating the necessary numerical
adjustments, although that would greatly dimin-
ish if algorithmic support were provided by readily
available software.

Finally, harking back to our original point about
the appropriateness of the confidence interval
paradigm itself, we note that the double bootstrap
is flexible. When applied to the confidence interval
problem, it targets a particular feature of interval
performance, say coverage error, and uses the boot-
strap to estimate and correct for error in that area.
If we move from confidence intervals to another
form of inference, provided we can quantify the no-
tion of error in our procedure, there is every chance
we can still use the double bootstrap to provide
accurate inferences.

Comment
A. J. Canty, A. C. Davison and D. V. Hinkley

INTRODUCTION

Both authors have played important roles in de-
veloping and deepening our understanding of small-
sample confidence interval methods, and we are
grateful for the chance to comment on this paper.
Time and space are limited, so we shall confine our
remarks to the question “What makes a confidence
interval reliable?” in the context of a nonparametric
bootstrap analysis of the cd4 data.

A. J. Canty is Research Assistant and A. C. Davison
is Professor of Statistics, both at the Swiss Federal
Institute of Technology, Department of Mathematics,
Lausanne, Switzerland. D. V. Hinkley is Professor of
Statistics, University of California, Santa Barbara,
California (e-mail: hinkley@pstat.ucsb.edu).

DATA ANALYSIS

If the data are of high enough quality to address
the substantive question, and the statistic of in-
terest, (here taken to be the largest eigenvalue t)
bears on that issue, an applied worker who has con-
structed a confidence interval will want to know
its sensitivity to underlying assumptions, to slight
changes in the data and so forth. For a bootstrap
interval, these questions can be addressed, to some
extent, by examining the simulation output. To il-
lustrate this, we performed 999 nonparametric boot-
strap simulations from the cd4 data and, for each
simulated dataset, obtained the largest eigenvalue
t∗ and an estimate v∗L of its variance. The top left
panel of Figure 1 contains the plot of the v∗L against
t∗ and shows that the variance is roughly a linear
function of the eigenvalue; we explain the plotting
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Fig. 1. Nonparametric bootstrap results for largest eigenvalue of cd4 data; based on 999 nonparametric simulations: (top left) approxi-
mate variance v∗L plotted against bootstrap statistics, t∗; with simulations in which neither case 5 nor case 6 appears marked by circles;
(top right) corresponding plot for t∗1/2; (bottom left) jackknife-after-bootstrap plot for largest eigenvalue; (bottom right) data plot showing
case numbers. See text for details.

symbols below. This suggests that a square root
transformation of the eigenvalue will be variance-
stabilizing, and this impression is confirmed by the
plot of v∗L/t

∗ against t∗1/2 in the top right panel,
which shows a weaker relation between the trans-
formed statistic and its variance. This suggests that
the square root scale should be used for calcula-
tion of any confidence intervals that are not scale-
invariant.

However, there is a further difficulty: there is
clear bunching in the lower part of the top pan-
els, which suggests some problem with the simu-
lation. The lower left panel of the figure shows a
jackknife-after-bootstrap plot for t∗ (Efron, 1992).
The ingenious idea that underlies this is that we can
get the effect of bootstrapping the reduced data set
y1; : : : ; yj−1; yj+1; : : : ; yn by considering only those
bootstrap samples in which yj did not appear. The
horizontal dotted lines are quantiles of t∗ − t for all
999 bootstrap replicates, while the solid lines join
the corresponding quantiles for the subsets of boot-
strap replicates in which each of the 20 observations
did not appear. The x-axis shows empirical influence

values lj; which measure the effect on t of putting
more mass on each of the observations separately.
If F̂ represents the empirical distribution function
of the data, which puts mass n−1 on each of the ob-
servations y1; : : : ; yn; and t�F̂� is the corresponding
statistic, we can write

lj
:= t��1− ε�F̂+ εlj� − t�F̂�

ε
;

where 1j puts unit mass on yj and ε is a suitably
small value: thus 1j is the instantaneous change in t
when the sample is perturbed in the direction of yj:
Although numerical differentiation could have been
used, to save computing time we used the formula

lj =
{
eT�yj − ȳ�

}2 − t;
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where e is the eigenvalue corresponding to t; and ȳ
is the average of the yj: The lj play an important
role in nonparametric statistics. In particular, they
provide an approximate variance for t through the
expression

vL = n−2
n∑
j=1

l2j ;

the bootstrap version of which was used above.
We see that when case 1, 5 or 6 is deleted, the

distribution of t∗ shifts to the left (l1, l5 and l6 are
positive) and becomes more peaked (the quantiles
are closer together). The circles in the top left panel
show the roughly 999 ×�1 − 2/20�20 simulations in
which neither case 5 nor case 6 appears: the esti-
mated variances are small and the values of t∗ are
shifted left and are less variable, as we had already
surmised. The lower right panel explains this: val-
ues of t∗ for samples where cases 5 and 6 do not
appear will be less elliptical than those where they
do.

What do we learn from this? A general lesson is
that a bootstrap is a simulation study and should
be treated as such. We need to think of informa-
tive displays of the output, to inspect them and to
act accordingly. A particular lesson is that, for this
dataset, arguments that rely heavily on smoothness
assumptions, expansions, and so forth, are not trust-
worthy, as the statistic is overly dependent on a few
observations. We would need to know more about
the context of the example to say whether this can
be fixed. Perhaps the authors could say more about
the data in their Rejoinder.

METHOD ANALYSIS

To a mathematical statistician, there can be no
such thing as a reliable confidence interval, only a
reliable confidence interval method; that is, one giv-
ing intervals whose actual coverage probability is
close to the nominal value. From this point of view,
we want to construct a random interval I1−2α with
nominal coverage 1 − 2α such that, when θ is the
true parameter value,

pr�θ ∈ I1−2α� = 1− 2α ;

with the probability calculation conditioned on a
suitable ancillary statistic when one exists. Ancil-
laries usually arise from the particular parametric
model being used. As pointed out in the paper, they
can be difficult to identify in the nonparametric con-
text, so we shall ignore them below. Here is a small
selection from the smörgȧsbord of bootstrap confi-
dence interval methods:

• normal intervals t±zαv∗1/2; where v∗ is the vari-
ance of the bootstrap replicates t∗ and zα is the
α-quantile of the standard normal distribution;
• transformed normal intervals

h−1�h�t� ± zαv∗1/2�;
where v∗ is the variance of the bootstrap repli-
cates h�t∗�; with h�·� the “variance-stabilizing”
square root transformation;
• basic bootstrap intervals

(
2t− t∗��R+1��1−α��;2t− t∗��R+1�α�

)
;

which are based on the assumed pivotality of
T− θ; here, T is the random variable of which
t is the observed value;
• transformed basic bootstrap intervals, basic

bootstrap intervals calculated on the trans-
formed scale, then back-transformed;
• Studentized bootstrap confidence intervals

(
t− v∗1/2L z∗��R+1��1−α��; t− v

∗1/2
L z∗��R+1�α�

)
;

where z∗ = �t∗− t�/v∗1/2L is the Studentized ver-
sion of t∗; and z∗�r� is the rth order statistic of
the simulations z∗1; : : : ; z

∗
R y

• transformed Studentized bootstrap confidence
intervals, studentized bootstrap confidence in-
tervals computed using the transformed scale,
then back-transformed;
• percentile confidence intervals

�t∗��R+1�α��; t∗��R+1��1−α���;
based on assuming that there is a (unknown)
transformation g�·� such that the distribution
of g�T� − g�θ� is pivotal and also symmetric
about zero;
• BCa confidence intervals, as described in the

paper;
• ABC confidence intervals, as described in the

paper.

Our normal intervals are the standard intervals
of the paper, except that we use a bootstrap estimate
of variance, and our Studentized bootstrap intervals
are the bootstrap-t intervals of the paper. More de-
tails of the methods above, and descriptions of other
bootstrap confidence interval methods, can be found
in Chapter 5 of Davison and Hinkley (1996) as well
as in the paper.

Our Table 1 augments Table 3 of the paper by
giving these intervals for the cd4 data, based on
R = 999 nonparametric bootstrap simulations. We
calculated the Studentized intervals using

v∗L = n−2
n∑
j=1

l∗2j ;
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Table 1
Lower and upper 90% bootstrap confidence limits (L, U) for the
largest eigenvalue of the covariance matrix underlying the cd4
data, calculated on the original and the square root scale; all but

the ABC method are based on 999 simulations

Original scale Transformed scale

L U L U

Normal 1.00 2.35 1.06 2.44
Basic 1.07 2.41 1.16 2.62
Studentized 1.14 2.93 1.15 2.93
Percentile 0.94 2.28
BCa 1.18 2.64
ABC 1.15 2.56

where l∗j is the jth empirical influence value for a
value of t∗ based on a bootstrap sample y∗1; : : : ; y

∗
n:

When the studentized bootstrap method is numeri-
cally unstable, it is often because v∗L is too small, but
in this example v∗L is typically slightly larger than
the variance of t∗ estimated using a small double
bootstrap.

The BCa interval uses the 148th and 990th or-
dered values of the 999 t∗; as opposed to the 50th
and 950th used by the percentile interval. This is
the large correction that we saw in Figure 2 of the
paper, so large that a bigger simulation is needed to
get a more accurate estimate of the upper limit. The
BCa interval in Table 3 of the paper has less Monte
Carlo error and is very close to the endpoints 1.16
and 2.52 we obtained with 2,499 simulations. When
a correction of this size is needed, the Studentized
bootstrap requires a smaller simulation because it
uses less extreme quantiles of the simulated z∗; in
this case z∗�50� and z∗�950�.

Our table shows that the more sophisticated
methods—studentized, BCa and ABC—give higher
upper endpoints, and the effect of transformation is
to shift intervals slightly rightward. This was also
the effect of calibrating the ABC intervals, as we see
from Table 3 of the paper.

There are nine intervals in our Table 1. Which
is most reliable, in the sense that it results from
a method whose coverage is closest to nominal? We
performed a small simulation study to estimate cov-
erages for the eigenvalue example. We generated
1,600 samples of size 20 from the bivariate nor-
mal distribution fitted to the cd4 data, and for each
we used R = 999 bootstrap simulations to obtain
the intervals described above. Table 2 shows the
empirical coverages from this experiment. All the
methods tend to undercover—some dramatically. No
method performs very well overall, but the Studen-
tized method works best, with two-sided coverages
only slightly less than nominal. The normal, basic

and percentile methods do very poorly in the up-
per tail: the top endpoint of these intervals is too
low. Unfortunately the same is true of the BCa and
the ABC methods, which do only as well as the
much simpler normal and basic bootstrap intervals
on the transformed scale. The Studentized intervals
do best in the upper tail, although transformation
has little effect on their coverage accuracy. This is
consistent with Table 1.

Figure 2 shows boxplots of the lengths of the con-
fidence intervals. The most pronounced feature is
the long intervals for the two Studentized methods,
which helps to account for their better error rates.
Far from being a drawback, in this problem the fact
that the Studentized bootstrap method can give long
confidence intervals is precisely what gives it the
best coverage of the methods considered in our sim-
ulation study, and the “conservativeness” of the BCa
method is what leads it to undercover.

Other numerical studies have led us to similar
conclusions: in small samples, nonparametric boot-
strap methods typically undercover somewhat, and
the Studentized bootstrap method can work better
than the BCa or ABC method, particularly if com-
bined with a transformation. See Davison and Hink-
ley (1996, Chapter 5).

CONCLUDING COMMENTS

Any reader still with us will realize that we
are uneasy about describing any confidence interval
method as “automatic.” Too much can go wrong: the
free lunch arrives with an unidentified flying object
in the soup. Data must be carefully scrutinized and
simulation output checked for oddities, particularly
when a nonparametric bootstrap analysis has been
performed with a small sample. Simulation meth-
ods have made good confidence intervals easier to
get, in the sense that fearsome mathematics need
not be used, but they have not removed the need for
thoughtful data analysis. A corollary of this point is
that we are nervous about attempts (including our
own) to replace nonparametric bootstrap simulation
by analytical calculation, as in that case there are
no simulation results to be inspected.

In the eigenvalue example, the nonparametric
BCa and ABC methods give intervals whose cover-
age is only slightly better than the much simpler
normal and basic methods used with transforma-
tion. It is true that the transformation was guessed
by a “trick,” but the trick required just a few lines of
code, in addition to the calculation of t; and in fact
we could have used Monte Carlo ideas described
in Chapter 9 of Davison and Hinkley (1996) to est-
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Table 2
Empirical coverages (percent) for nonparametric bootstrap confidence limits in eigenvalue estimation; R = 999 for all simulation methods;

1,600 data sets generated from bivariate normal distribution; approximate standard errors for the results are also given

Nominal coverage

Lower limit Upper limit Overall

Method 2.5 5 10 90 95 97.5 80 90 95

Normal 0.3 1.6 5.2 76.2 81.4 85.1 71.0 79.8 84.8
transformed 0.9 2.3 6.1 78.5 84.5 88.6 72.4 82.2 87.7

Basic 0.8 2.6 7.4 77.9 82.1 84.4 70.5 79.5 83.6
transformed 2.5 5.2 10.4 82.9 87.6 90.8 72.5 82.4 88.3

Studentized 1.5 4.2 9.4 88.4 92.4 95.6 79.0 88.2 94.1
transformed 1.9 4.6 9.9 88.4 92.5 95.6 78.5 87.9 93.7

Bootstrap percentile 0.3 1.0 3.2 73.6 80.7 85.8 70.4 79.7 85.5
BCa 2.3 5.5 10.0 83.7 88.8 91.6 73.7 83.3 89.3
ABC 2.5 5.6 10.8 83.8 88.7 91.2 73.8 83.1 88.7

Standard error 0.4 0.5 0.8 0.8 0.5 0.4 1.5 0.8 0.5

Fig. 2. Boxplots of confidence interval lengths for the 1,600 simulated samples in the numerical experiment with bivariate normal data;
the dotted horizontal line is at the median length of the transformed Studentized bootstrap interval; note the log scale of the vertical axis.

mate it without calculating the estimated variances
v∗L or needing a double bootstrap.

The simple intervals share with the more ac-
curate Studentized bootstrap the drawback that
they are not scale-invariant, and of course this
reduces their appeal. Choice among confidence
interval methods is partly aesthetic, with some
researchers insisting more strongly than others on
the importance of parametrization-invariance. Our
view is that in this example, the gain in coverage
accuracy from using the Studentized bootstrap in-
tervals outweighs the disadvantage that they are
not invariant.

Our limited simulation underlines the unfortu-
nate fact that the impressive theoretical analysis
of confidence interval methods outlined in Sections
8 and 9 of the paper is not the whole story. In prin-
ciple, the BCa, ABC and Studentized methods are
all second-order accurate, but for normal samples
of size 20 the coverage of the Studentized method
is better than the others by some margin. It turns
out that, in practice, the ABC intervals can give
a poor approximation to Studentized bootstrap in-
tervals, and although this can be fixed by calibra-
tion, our Table 2 suggests that calibration cannot
improve much on using the Studentized bootstrap,



BOOTSTRAP CONFIDENCE INTERVALS 219

which itself requires less effort than does calibrat-
ing an ABC interval.

While we admire the authors’s efforts to find the
Holy Grail of accurate, invariant, reliable confidence
intervals for small-sample problems, and hope that
they will continue their quest, our numerical work
suggests that the end is not yet in sight.

Our comments above imply a need for methods
of “post bootstrap” analysis. Some are described in
Efron (1992), with a general discussion in Chapter 3
of Davison and Hinkley (1996). We have developed

a library of bootstrap functions in S-PLUS which
facilitates this type of analysis. The library may be
obtained by anonymous ftp to markov.stats.ox.ac.uk
and retrieving the file pub/canty/bootlib.sh.Z.
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Comment
Leon Jay Gleser

The term “bootstrap confidence interval” con-
cerns me because the use of the word “confidence”
promises that a lower bound for the coverage proba-
bility of the interval is being maintained regardless
of the true value of the parameter(s) or the choice
of distribution within the family of distributions. In
fact, the bootstrap method cannot always achieve
that goal and in “routine, automatic” application
may appear to apply when it actually does not.

A case in point is the problem of estimating
the ratio of two means, the so-called Fieller prob-
lem. In their technical report (DiCiccio and Efron,
1995), which appears by its title to have been an
earlier version of the present paper, the authors
discussed using their methods for this problem in
the context of the simple example of Figure 1, but
apparently decided not to present this application
here. Perhaps the reason for this decision is that
they became aware that their bootstrap intervals
cannot achieve the goal of maintaining a positive
lower bound for coverage probability in this prob-
lem. A proof of this assertion is given in Gleser and
Hwang (1987), where it is shown that for both ra-
tios of means problems and a wide class of other
estimation problems there does not exist an inter-
val estimator which produces intervals with both
almost surely finite length and coverage probability
bounded below by a positive number. Put another

Leon Gleser is Professor, Department of Mathemat-
ics and Statistics, University of Pittsburgh, Pitts-
burgh, Pennsylvania, 15260 (e-mail: gleser@vms.cis.
pitt.edu).

way, any confidence interval procedure (such as the
authors’ various bootstrap procedures) that pro-
duces finite intervals with probability 1 must have
minimum coverage probability zero!

Yet the bootstrap methods presented by DiCic-
cio and Efron are said to have coverage probabil-
ity equal to the desired confidence level 1− α up to
an approximation whose error goes to 0 as n → ∞
irrespective of what the true value of the parame-
ter (and the true distribution of the data) may be.
This assertion is correct, but the problem is that
the value N of n for which n ≥ N guarantees that
the error of the approximation is less than a spec-
ified value ε may depend on the true value of the
parameter (or the true distribution). That is, the
order-in n terms displayed by the authors are not
necessarily uniform in the parameters (or true dis-
tribution). This fact is not mentioned by the authors
and is rarely discussed in the bootstrap and Edge-
worth expansion literature (a notable exception be-
ing Hall and Jing, 1995), but is crucial to analyti-
cal evaluation of the applicability of the bootstrap
methodology.

It is important to note that this nonuniformity
problem can occur in the simplest and most innocu-
ous of parameter estimation problems. Consider, for
example, the problem where we observe i.i.d. obser-
vations from a normal distribution with unknown
(but nonzero) mean µ and variance 1; and wish
to estimate 1/µ: Using the methods in Gleser and
Hwang (1987), it can be shown that any interval es-
timator for 1/µ that takes on only finite intervals
as values must have 0 confidence. It is not hard to
see that the difficulty occurs because the parameter
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space contains both positive and negative values of
µ that are arbitrarily close to 0: Nothing in the boot-
strap methodology gives warning of this problem,
and thus naive users misled by the claims made for
the bootstrap approach may apply this methodology
to the problem of estimating 1/µ in the belief that
they can achieve a guaranteed coverage probability
regardless of the value of µ.

Bootstrap procedures are not alone in having this
problem. Almost all “automatic” large-sample inter-
val estimation procedures advocated in the litera-
ture share similar difficulties (as was noted long ago
by Jack Wolfowitz in the case of Wald’s method). It
is strange that students in my elementary statis-
tics classes are quick to question “how large must n
be?” in order that a certain approximate statistical
method have its claimed performance (to, say, two-
decimal accuracy), but this question is rarely an-
swered (much less asked) in the literature. Granted,
these are hard questions. But I would think that the
advent of modern computers now would make it pos-
sible to provide useful answers to such questions.

ACCURACY AND CORRECTNESS

DiCiccio and Efron talk about the coverage accu-
racy and correctness of their confidence intervals. I
have already discussed the coverage accuracy and
how the advertised orders of magnitude of the error
as functions of the sample size n overlook the fact
that such errors also depend on the parameter (and
perhaps also the true distribution as a whole). Nev-
ertheless, the concept of accuracy in determining (or
achieving) coverage probability is clear.

It is less clear what the authors mean by “correct-
ness” (they themselves admit this). They appear to
be talking about the closeness of the bootstrap in-
terval endpoints to certain ideal confidence interval
endpoints, for example, those corresponding to most
accurate or smallest expected length confidence in-
tervals for the given problem. There are, however,
many such choices of ideal confidence intervals, de-
pending upon what restrictions are placed upon the
underlying distributions. The theoretical material
in Section 8 of DiCiccio and Efron’s paper tries to
show how bootstrap methods approximate ideal ex-
act confidence intervals based on a “mean-like” (in
the sense of having cumulants of the same order in
the sample size n as the sample mean) estimator in
very general distributional contexts. Section 9 uses
likelihood-based intervals for exponential families
as the benchmark. In both cases, the asymptotic or-
ders of accuracy are again not necessarily uniform
in the parameters. Thus, although such theoreti-
cal comparisons are interesting, they do not answer

the question of greatest interest to the practitioner,
namely, “Is the sample size I have large enough for
the bootstrap procedure to be, say, within 5% of be-
ing “correct”?”

THE FIRST LAW OF APPLIED STATISTICS

In his classic paper, Efron (1981) presented the
bootstrap as a unified way of looking at many ad
hoc techniques that were part of the bag of tricks
of most applied statisticians. One of the insights
provided by this overview was that such meth-
ods as cross-validation could be viewed as crude
Monte Carlo approximations to functionals of the
sample cumulative distribution function (c.d.f.).
Modern computational power made it possible to
replace such Monte Carlo approximations by better
ones, even to the extent of being able to evaluate
such functionals exactly. Later work by Efron and
others, however, seems to have abandoned exact
calculations in favor of Monte Carlo approxima-
tions, perhaps because the iterative nature of the
bootstrap methods being studied (which placed a
premium on quick computation) precluded exact cal-
culation. The resulting emphasis on (re)sampling,
and accompanying terminology, has tended to ob-
scure the concept of the bootstrap as an evaluated
functional of the sample c.d.f.

Thus, it should be noted that Monte Carlo and
other resampling algorithms introduce variability
that is not present in the data. Unless this extra
variability is negligible, the consequence can be a
violation of what, in my graduate statistics lectures,
I call “the first law of applied statistics”:

Two individuals using the same statistical
method on the same data should arrive at the
same conclusion.

This requirement is clearly fundamental to scien-
tific reasoning, for otherwise how can scientists
check each others’ work? From my reading of the
literature, adherence to this law largely explains
why applied statisticians almost unanimously reject
randomized hypothesis testing procedures such as
the Fisher–Irwin–Tocher test for 2 × 2 contingency
tables.

Consider now the bootstrap procedures such as
the ABC in which there is a series of Monte Carlo
approximations to functionals of the sample c.d.f. Al-
though each individual Monte Carlo approximation
may be fairly accurate, the ensemble of such approx-
imations can add a nontrivial amount of extraneous
sampling error. Consequently, bootstrap confidence
intervals formed using the same method from the
same data by two different individuals can differ in
a noticeable way. How much attention has been paid
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to this possible problem? As bootstrap methods in-
crease in sophistication and complexity, greater at-
tention needs to be paid to increasing the accuracy
of each Monte Carlo approximation; otherwise the
greater accuracy achieved by the more sophisticated
method may be undone by its greater unreliability
(variation).

CONFIDENCE AND ACCURACY:
A SUGGESTED APPROACH

DiCiccio and Efron seem to be attempting to cre-
ate their confidence intervals by use of a pivotal ap-
proach. Such an approach appealed to R. A. Fisher
because he thought it allowed him to transfer the
variability of the estimate and assign it to the un-
known parameter (fiducial inference). His theory
floundered in part because pivotals were not always
unique (something that may also be of concern for
bootstrap pivotals). Neyman found pivotals useful
because they were often optimal test statistics (thus
leading to uniformly most accurate confidence re-
gions) and because they simplified calculation of ex-
act coverage probabilities. The resulting intervals
answer the following question about a point esti-
mator: “What accuracy can I obtain for a specified

confidence?” In most practical contexts, the confi-
dence interval derived from a pivotal has a random
length; this length may have little relevance to the
accuracy the practitioner wishes to obtain. Instead,
I think most users of confidence interval methodol-
ogy want to know, “Approximately how likely is it
that I can achieve a specified accuracy d with my
point estimator?”

Using the bootstrap methodology (specifically the
bootstrap c.d.f. of an estimator), one can straightfor-
wardly and directly estimate PL�d� and PU�d�; the
respective probabilities that an estimator is d units
or more below and d units or more above the true
value of the parameter being estimated. An estima-
tor and its two estimated accuracy functions PL�d�
and PU�d� are an extension of the (estimator, esti-
mated loss) summary advocated by Lu and Berger
(1989a, b) and others. This melding of bootstrap and
decision theory should suggest to my mathematical
statistical colleagues some new problems on which
to try their techniques. More important, particularly
because there is some hope of obtaining uniform (in
the parameters) estimates of rates of convergence
in n; it may give practitioners an applicable esti-
mation methodology.

Comment
Stephen M. S. Lee and G. Alastair Young

This is a timely and provoking article. Recent
years have seen enormous research efforts into the
properties and scope of the bootstrap. While sub-
stantial attention has been paid to extending the
seminal ideas of Efron (1979) to complicated and
wide-ranging problems, it is the context of the paper
by DiCiccio and Efron that has seen most progress
in the development of practical and effective boot-
strap inference.

Stephen M. S. Lee is at the Department of Statis-
tics, University of Hong Kong, Pokfulam Road,
Hong Kong. G. Alastair Young is Lecturer, Sta-
tistical Laboratory, University of Cambridge, 16
Mill Lane, Cambridge CB2 1SB, United Kingdom
(e-mail: g.a.young@statslab.cam.ac.uk).

AN AGREED SOLUTION?

Efron and LePage (1992) remark that “the goal of
automatically producing highly accurate confidence
intervals seems to be moving towards a practical
solution.” DiCiccio and Efron offer us the solution.
Their paper, while providing a beautiful general ex-
position of the principles behind the bootstrap solu-
tion to confidence interval construction, amounts to
a strong piece of advocacy for one particular method,
the ABC method. The reasons behind their view
that this method constitutes the sought-for practical
solution to the confidence interval problem are clear,
and well-argued in their paper. The ABC method
approximates the theoretically favored BCa and
bootstrap-t methods and therefore enjoys good accu-
racy and correctness properties, eliminates the need
for Monte Carlo simulation and works well in prac-
tice, as the examples of the paper illustrate. With
bootstrap calibration, even better performance can
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be squeezed, and we can diagnose potential prob-
lems for the method.

But there is another solution to the problem, as
sketched by Hall (1992, Section 3.11.1). Instead of
using a refined bootstrap procedure such as BCa or
ABC, use bootstrap calibration directly on the crude
percentile-based procedures these methods refine,
and which seem currently favored in published ap-
plications of the bootstrap, as any literature search
confirms. In doing so, we retain the desirable proper-
ties of these basic procedures (stability of length and
endpoints, invariance under parametrization etc.)
yet improve their coverage accuracy. The price is
one of great computational expense, although, as is
demonstrated by Lee and Young (1995), there are
approximations which can bring such bootstrap it-
eration within the reach of even a modest compu-
tational budget. An advantage of this solution lies
in its simplicity: there is no need to explain the me-
chanics of the method, in the way that is done for
the BCa and ABC methods in Sections 2–4 of DiCi-
ccio and Efron’s paper.

Which solution is best? To answer this requires
a careful analysis of what we believe the bootstrap
methodology to be. Our view is that willingness to
use extensive computation to extract information
from a data sample, by simulation or resampling,
is quite fundamental. In other words, in comparing
different methods, computational expense should
not be a factor. All things being equal, we naturally
look for computational efficiency, but things are
hardly ever equal. How do the two solutions, that
provided by DiCiccio and Efron and that involving
the iterated percentile bootstrap, compare? There
are two concerns here, theoretical performance and
empirical performance, and the two might conflict.
We demonstrate by considering the simple problem
of constructing a two-sided nonparametric bootstrap
confidence interval for a scalar population mean.

CALIBRATION AND COVERAGE PROPERTIES

All the common two-sided bootstrap intervals, in-
cluding the percentile and ABC methods, have, for
the “smooth function” model of Hall (1988), cover-
age error of order n−1, where n is the sample size.
The order of coverage error may be reduced by cali-
bration, typically to order n−2. In terms of the order
of coverage error, we prefer the calibrated percentile
method over the ABC method, although there is no
immediate preference for the calibrated percentile
interval over the calibrated ABC method.

For this context, the use of bootstrap iteration or
calibration to reduce coverage error is due to Hall
(1986) and Beran (1987). The calibration method

of Loh (1987) corresponds to the method of Beran
(1987) when applied to a bootstrap confidence inter-
val. For the confidence interval problem the method
of Hall (1986) amounts to making an additive ad-
justment, estimated by the bootstrap, to the end-
points of the confidence interval, while the method
of Beran (1987) amounts to making an additive ad-
justment, again estimated by bootstrapping, to the
nominal coverage level of the bootstrap interval.
The method of calibration described by DiCiccio and
Efron in Section 7 of their paper is a subtle varia-
tion on the latter procedure, and one which should
be used with care. DiCiccio and Efron use a method
in which the bootstrap is used to calibrate sepa-
rately the nominal levels of the lower and upper lim-
its of the interval, rather than the overall nominal
level.

Theoretical and empirical evidence which we shall
present elsewhere leads to the conclusion that, all
things being taken into consideration, preference
should be shown to methods which adjust nomi-
nal coverage, rather than the interval endpoints. We
shall therefore focus on the question of how to cali-
brate the nominal coverage of a bootstrap confidence
interval.

The major difference between the two approaches
to adjusting nominal coverage is that the method
as illustrated by DiCiccio and Efron is only effective
in reducing coverage error of the two-sided interval
to order n−2 when the one-sided coverage-corrected
interval achieves a coverage error of order n−3/2,
as is the case with the ABC interval, but not the
percentile interval. The effect of bootstrap calibra-
tion on the coverage error of one-sided intervals is
discussed by Hall and Martin (1988) and by Martin
(1990), who show that bootstrap coverage correction
produces improvements in coverage accuracy of or-
der n−1/2, therefore reducing coverage error from
order n−1/2 to order n−1 for percentile intervals, but
from order n−1 to order n−3/2 for the ABC interval.
If the one-sided corrected interval has coverage er-
ror of order n−3/2, then separate correction of the
upper and lower limits gives a two-sided interval
with coverage error of order n−2, due to the fact that
the order n−3/2 term involves an even polynomial.
With the percentile interval, the coverage error, of
order n−1, of the coverage-corrected one-sided inter-
val typically involves an odd polynomial, and terms
of that order will not cancel when determining the
coverage error of the two-sided interval, which re-
mains of order n−1. On the face of it, therefore, we
should be wary of the calibration method described
by DiCiccio and Efron, although the problems with
it do not arise with the ABC interval.
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A CLOSER EXAMINATION

The above discussion is phrased in terms of the
magnitude of coverage error. Lee and Young (1996b)
describe techniques by which we may obtain explic-
itly the leading term in an asymptotic expansion of
the coverage error of a general confidence limit pro-
cedure: see also Martin (1990). Application of these
methods to the intervals under consideration here
allows closer examination of coverage error.

Table 1 gives information on the theoretical lead-
ing terms in expansions of the coverage error of the
percentile interval (denoted IP), iterated percentile
interval (denoted IPITa and IPITb), ABC interval (de-
noted IABC) and iterated ABC interval (denoted by
IABCITa and IABCITb). Figures refer to two-sided in-
tervals of nominal coverage 90% and are shown for
the two methods of nominal coverage calibration, for
each of four underlying distributions. The intervals
IPITa and IABCITa calibrate the overall nominal cov-
erage, while the other two iterated intervals use cal-
ibration in the way discussed by DiCiccio and Efron.

What is immediately obvious from the table is
that the order of coverage error only tells part of
the story. Compare the coefficients of n−1 for the in-
terval IPITb with the coefficients of n−2 for the other
iterated intervals.

However, if we focus on those intervals that en-
sure a coverage error of order n−2, it appears that
the two types of iterated ABC interval are not sig-
nificantly different, but that the iterated percentile
interval has a leading error term consistently and
significantly smaller than that of the ABC method.
This same conclusion is true for any nominal cover-
age in the range 0.9–0.99.

THEORY AND PRACTICE

Theory and practice are two different things. Ta-
ble 1 also reports a simulation by which we es-
timated the coverage probabilities of the various
intervals, using 1,600 random samples of sizes n =

15 and 30 drawn from each of the four distribu-
tions. The intervals IP were each constructed from
1,000 (outer level) bootstrap samples. Each of the
iterated intervals was calibrated by drawing 1,000
(inner level) bootstrap samples.

The simulation confirms clearly the advantages
of calibration on coverage error. Without calibra-
tion the ABC method may have substantial cover-
age error and might be little better than the crude
percentile method. Equally, however, the simulation
demonstrates the theory to have only a strictly qual-
itative value in predicting the reduction in error ob-
tained by calibration.

Considering the percentile intervals, we see little
practical difference in coverage for the two calibra-
tion methods, although separate calibration of the
upper and lower limits is strikingly more effective
with a lognormal parent population. For the ABC
limits, calibration of the overall nominal coverage
seems distinctly preferable, contrary to the asymp-
totic conclusion. On the other hand, the empirical
findings do match the theoretical conclusion that it-
erated percentile intervals are to be preferred over
the calibrated ABC intervals.

CONCLUSIONS

A theoretical comparison of the coverage proper-
ties of bootstrap confidence intervals points strongly
toward the use of calibration methods to reduce cov-
erage error, in terms of a reduction in the order
of coverage error. Closer inspection of the theory
demonstrates that we should be careful in how we
apply the notion of calibration and alerts us to the
possibility that solution of the problem of producing
bootstrap confidence intervals of low coverage er-
ror may require more than consideration of the the-
ory. We should especially welcome therefore a paper
such as that by DiCiccio and Efron, where the focus
is not on the general properties of the methods, but
rather on the behavior of the methods in particular
well-chosen examples.

Rejoinder
Thomas J. DiCiccio and Bradley Efron

If the standard intervals were invented today,
they might not be publishable. Simulation studies
would show that they perform poorly in problems

like those in our paper. In fact the standard inter-
vals are immensely useful, and accurate enough to
have been happily used by scientists on literally mil-
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Table 1
Estimated coverage probabilities for mean, based on 1,600 random samples of sizes n = 15 and 30 drawn from each of four different

distributions and theoretical leading terms in expansion of coverage error

Interval

IP IPITa IPITb IABC IABCITa IABCITb

Normal data N�0;1�
n = 15 0.860 0.897 0.891 0.862 0.889 0.877
n = 30 0.892 0.902 0.899 0.893 0.902 0.892
Error −0:48395n−1 −0:5410n−2 0n−1 −0:48395n−1 −4:7845n−2 −4:7845n−2

Folded normal data �N�0;1��
n = 15 0.839 0.883 0.909 0.861 0.878 0.869
n = 30 0.869 0.888 0.910 0.875 0.888 0.882
Error −0:59605n−1 −2:8452n−2 0:084197n−1 −0:38375n−1 −7:7742n−2 −5:4852n−2

Negative exponential data exp �1�
n = 15 0.819 0.874 0.874 0.826 0.869 0.829
n = 30 0.876 0.901 0.900 0.875 0.898 0.889
Error −1:2079n−1 −40:336n−2 0n−1 −1:0028n−1 −99:900n−2 −99:900n−2

Log normal data exp �N�0;1��
n = 15 0.765 0.829 0.875 0.778 0.837 0.750
n = 30 0.815 0.853 0.889 0.819 0.858 0.824
Error −13:241n−1 −132844n−2 −14:251n−1 −25:308n−1 −665027n−2 −805445n−2

lions of real problems. Statistical methods have to
be judged by their competition, and until recently
there has been no competition to the standard in-
tervals for most situations that arise in practice.

Modern statistical theory combined with modern
computation now allows us to improve upon the
standard intervals, and to do so in a routine way
that is suitable for day-to-day statistical applica-
tions. Our paper discusses several bootstrap-based
methods for doing so. The BCa and ABC methods
are featured in the paper, mainly because their de-
velopment shows clearly just what it is about the
standard intervals that needs improvement. There
is also the practical point that the BCa and ABC
methods consistently improve upon the standard in-
tervals, although not always in dramatic fashion.
Our particular focus here on the ABC intervals
has a lot to do with their computational simplicity.
The discussion of calibration in Section 7 involved
a lot of computation, but it would have been im-
mensly more if we had tried to calibrate the BCa or
bootstrap-t intevals.

So how well does the ABC method perform? Bet-
ter than suggested by the commentaries, at least
for smoothly continuous statistics like means, cor-
relation and eigenvalues. Here is a closer look at
Lee and Young’s last example. We observe a ran-
dom sample of size n = 30 from a normal distribu-

tion with unknown expectation and variance,

�1� x1; x2; : : : ; x30 ∼i:i:d: N�λ; 0�;
and wish to form confidence intervals for the pa-
rameter

�2� θ = λ+ 5 · 0
or equivalently for

�3� γ = eθy
γ is the expectation of the lognormal variate
exp�X�, X ∼ N�λ; 0�. “Equivalently” in the pre-
vious sentence applies to the ABC method, which
is transformation invariant, but not to the standard
method, which will have different coverage proba-
bilities for θ and γ.

The top half of Table 1 shows the results of 2,000
Monte Carlo simulations: situation (1) was repli-
cated 2,000 times, with γ = 0, and 0 = 1, so θ = 1/2.
The parametric ABC and standard confidence in-
terval endpoints θ̂ABC�α� and θ̂STAN�α� were com-
puted for each simulation, as in Section 4, for var-
ious values of α. Also computed was γ̂STAN�α�, the
standard interval endpoint for γ. The table shows
the actual coverage proportions in the 2,000 simu-
lations, so, for example, 0.931 of the simulations had
θ < θ̂ABC�0:95�. Also shown is the central 90% two-
sided coverage, the proportion of simulations with
θ̂�0:05� < θ < θ̂�0:95�.
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Table 1
Empirical coverage probabilities of the ABC and standard intervals �−∞; θ̂�α�� for the lognormal expectation problem (lines 1–3); line 3

concerns γ̂STAN�α�; the standard interval applied to γ instead of θ; 2,000 Monte Carlo simulations for lines 1–3, 1,000 for lines 4–5

α

Method 0.025 0.05 0.1 0.16 0.84 0.9 0.95 0.975 Central 0.90

1. parametric ABC 0.033 0.062 0.106 0.165 0.827 0.884 0.931 0.960 0.869
2. parametric standard 0.014 0.030 0.087 0.144 0.795 0.848 0.906 0.934 0.876
3. parametric standard γ 0.000 0.001 0.030 0.090 0.769 0.826 0.893 0.923 0:892
4. nonparametric ABC 0.028 0.070 0.118 0.172 0.809 0.863 0.916 0.943 0.846
5. nonparametric standard 0.019 0.043 0.102 0.150 0.780 0.844 0.901 0.921 0.858

Looking just at the two-sided 0.90 coverage proba-
bilities, the clear winner is the parametric standard
method applied to γ. It has empirical coverage 0.892
(for γ, or for θ taking the logs of the γ endpoints),
nearly equal to the target value 0.90, compared to
0.869 for the parametric ABC intervals and 0.876
for the parametric standard method applied on the
θ scale.

Wrong! In fact the standard method applied to
γ performs dreadfully: γ̂STAN�0:05� was less than γ
only 0.001 of the time, while γ exceeded γ̂STAN�0:95�
in 0.107 of the cases. This kind of behavior, although
not usually to this degree, is typical of the stan-
dard intervals, a too-liberal result at one end being
balanced by a too-conservative result at the other.
At the minimum, simulation studies must report a
range of coverage probabilities, as in Table 1, and
not just the central coverage. Hall and Martin make
this point nicely in their “whither” comments.

However coverage probabilities by themselves are
not enough. This is where the difficult notion of
correctness comes in. Suppose that in situation (1)
we desired a confidence interval for the expecta-
tion λ. The Student’s-t endpoints based on the first
15 observations would be perfectly accurate, giv-
ing exactly the right coverage probabilities, but
they would be inferentially incorrect. In this situ-
ation there is a correct answer, the Student’s-t end-
points based on all 30 observations. We would expect
a good approximate confidence interval method to
track the correct endpoints closely, as well as hav-
ing good coverage properties. The trouble is that in
most situations, including the lognormal problem,
we do not have a correct confidence method to use
as a gold standard.

Section 8 follows Hall’s way around this problem:
an idealized Student’s-t endpoint,

�4� θ̂exact�α� = θ̂− σ̂K−1�1− α�;
serves as the gold standard, where K is the c.d.f.
of the t-like variable �θ̂ − θ�/σ̂ . The θ̂exact�α� end-
points cannot be used in practice, because we will

not know K, but we can use them as reference
points in a simulation study, where K can always
be found by Monte Carlo. Section 8 shows that all of
the second-order accurate methods agree to second
order with θ̂exact�α�, implying that θ̂exact�α� is a rea-
sonable target for correct performance. The name
“exact” is appropriate because (4) gives exactly the
right coverage probability for every choice of α.

Table 2 applies this comparison to the parametric
ABC and standard endpoints for θ = λ+ 0:5 ·0. The
table shows the 0.05 and 0.95 endpoints for the first
7 of 100 simulations of (1), �λ; 0� = �0;1�. Notice
that θ̂ABC�α� is always closer than θ̂STAN�α� to the
gold standard value θ̂exact�α�. This was true in all
100 simulations. Table 3 summarizes the endpoint
differences θ̂ABC�α�−θ̂exact�α� and θ̂STAN�α�−θ̂exact�α�
for all 100 simulations. We see that θ̂ABC�α� is al-
most an order magnitude better than θ̂STAN�α� at
tracking the exact endpoints.

In other words, the ABC method gives a substan-
tial and consistent improvement over the standard
intervals. The same thing happens using the non-
parametric ABC and standard intervals, although
both methods are less accurate than they were para-
metrically.

In the authors’ experience, the BCa and ABC
methods reliably improve upon the standard inter-

Table 2
Comparison of exact, ABC and standard parametric endpoints
for θ; first 7 of 100 simulations; the ABC endpoints are always

closer to the exact endpoints

α = 0:05 α = 0:95

Exact ABC Standard Exact ABC Standard

0.49 0.49 0.44 1.26 1.23 1.16
0.41 0.42 0.34 1.39 1.37 1.26
0.23 0.24 0.18 1.03 1.01 0.93
0.08 0.08 0.03 0.84 0.82 0.74
0.08 0.08 0.05 0.65 0.62 0.58
−0:02 −0:02 −0:06 0.54 0.51 0.47

0.20 0.20 0.16 0.87 0.84 0.78
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Table 3
Summary statistics for θ̂ABC�α�−θ̂exact�α� and θ̂STAN�α�−θ̂exact�α�;

100 simulations of situation (1), parametric methods

Difference

α = 0:05 α = 0:95

ABC Standard ABC Standard

Mean 0.0059 −0:0509 −0:0252 −0:0989
Std. dev. 0.0062 0.0100 0.0070 0.0184

vals. That is why they were featured in our pa-
per. They tend to be rather cautious improvements,
sometimes not improving enough on the standard
intervals. This is the case for the nonparametric
upper limit in the maximum eigenvalue problem,
Table 3 of the paper. (We disagree with Canty, Davi-
son and Hinkley here: calibration is quite likely to
improve the upper ABC endpoint substantially, as
strongly suggested by the right panel of Figure 6.)

None of this is to say that the BCa and ABC
methods are the last word in approximate con-
fidence intervals. This is a hot research area in
both the bootstrap and the likelihood literatures. All
four commentaries (and the paper) include interest-
ing suggestions for doing better. Further improve-
ments are likely to involve a deeper understanding
of the confidence interval problem as well as bet-
ter practical methods. From a theoretical point of
view, estimates and hypothesis tests are much bet-
ter understood than confidence intervals. There is
no equivalent to the Cramér–Rao lower bound or
the Neyman–Pearson lemma for confidence limits,
but the methodological progress reported in our pa-
per may foretell a theoretical breakthrough.

We note some specific points:

• The ABC intervals satisfy Gleser’s “first law of
applied statistics.” In theory so do the BCa in-
tervals, and the other bootstrap methods, but in
practice “ideal bootstrap” definitions like (2.3)
have to be approximated by Monte Carlo cal-
culations. The recommended value B = 2,000
for the number of bootstrap replications, based
on simple binomial calculations, is sufficient to
make the Monte Carlo error small relative to
the underlying sampling error in most situa-
tions. Permutation tests, multiple imputation,
the Gibbs sampler, and so forth also fail the
first law of applied statistics, for the same rea-
son as the bootstrap.
• Some practitioners are troubled by the failure

of resampling methods to satisfy Gleser’s first
law (although comparing the Monte Carlo er-

ror in the bootstrap to randomized hypothesis
tests does seem extreme). Consequently, higher-
order methods that avoid simulation, such as
the ABC for one-sided limits and the methods of
Lee and Young for two-sided intervals, might be
especially easy to market. Perhaps any short-
comings in their coverage accuracies would be
offset in practice by their speed and widespread
acceptability.
• Gleser’s concerns about uniformity are certainly

justified. A practical statement of this concern
is “how accurate are my confidence interval cov-
erages for my particular statistic and sample
size?” The calibration methods of Section 7 pro-
vide at least a partial answer. Insisting on uni-
formity means you will never get an approx-
imate confidence interval for some important
problems, for example, the nonparametric esti-
mation of an expectation.
• In the lognormal problem, the theory of simi-

lar tests applies, and Jensen (1986) has shown
that the confidence limits obtained from the
bias-adjusted signed root of the likelihood ratio
statistic are second-order correct with respect
to limits given by this theory. Consequently, for
this problem, the ABC intervals are also second-
order correct from the “similar test” point of
view, partially answering Gleser’s concerns.
• Two of the commentaries, by Hall and Martin

and by Lee and Young, recommend a double
bootstrap method that starts from the crude
percentile method. This is the kind of sugges-
tion that might turn out to be important in
practice. The equivalent of Table 2 above, com-
paring the double bootstrap with the ABC, for
example, would be most interesting. It would
be particularly nice to see how well Lee and
Young’s intriguing “leading terms” (done one-
sided) predict small-sample behavior for the
various methods.
• In fact it is difficult to run a good simulation

study of confidence intervals methods. Besides
the pitfalls mentioned earlier, and the cruel
computational burden, there is the question of
interval length variability. One way to get bet-
ter coverage accuracy is to make your intervals
longer and more variable. As an extreme exam-
ple, one could choose U uniform on �0;1� and
define

θ̂�α� =
{ ∞; if U ≤ α;
−∞; if U > α:

Then the interval �−∞; θ̂�α�� would cover the
true θ (or any other value) with probability α.
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In Canty, Davison and Hinkley’s simulation the
Studentized intervals are longer and more vari-
able than the others, raising some question
about their better coverage values at the up-
per limit. This concern is really another ques-
tion about correctness. The classical criterion of
minimum coverage for untrue θ values weeds
out silly examples like the one above, but seems
hard to apply in general situations.
• Apart from the construction of confidence lim-

its, one contribution of the ABC method is to
identify the quantities �â; ẑ0; ĉq�, which are im-
portant in all second-order methods. For confi-
dence interval procedures, Hall and Martin ad-
vocate the incorporation of information about
the asymmetry of intervals based on skewness
of bootstrap distributions. Indeed, according to
expression (8.10), the asymmetry of the second-
order correct intervals can be measured by the
quantity in square brackets, z0+�2a+cq��z�α��2.
By the formula preceding (8.1), the skewness of
the Studentized pivot is −6�2a+cq�+O�n−1�, so
the ABC method already offers such skewness
information.
• Graphical analysis of a bootstrap simulation,

even just printing out the bootstrap histogram,
can be quite informative, as Canty, Davison and
Hinkley show. Hall’s “confidence pictures” are
another nice device, being basically a fiducial
description of the bootstrap-t inferences.
• Hall and Martin mention nonparametric like-

lihood. The theory of Section 9 extends imme-
diately to the nonparametric framework. The
basic property of likelihood needed in Section
9 is that the Bartlett identities are satisfied.
Empirical likelihood and other versions of non-
parametric likelihood do not satisfy the Bartlett
identities exactly, but they do so to a sufficiently
high order of accuracy for all the same argu-
ments to go through. Such extensions of the
theory were indicated by Efron (1993), and we
are currently examining them more fully.
• Gleser notes that a potential problem for a the-

ory of confidence intervals based on pivots is
that pivotal quantities are not unique. The im-
pact of this nonuniqueness is shown in the nu-
merical results of Canty, Davison and Hink-
ley, who demonstrate that the performance of
the bootstrap-t is substantially affected by the
choice of parameterization for its implementa-
tion. Canty, Davison and Hinkley, in a long tra-
dition, choose a variance-stabilizing reparame-
terization of the eigenvalue problem. However,
in the parametric context, other authors (DiCi-
ccio, 1984) have advocated the use of reparam-

terizations that reduce the skewness of the Stu-
dentized pivot. This approach would be consis-
tent with the view of Hall and Martin, who
suggest that the success of the bootstrap-t “is
based on bootstrapping a quantity whose distri-
bution depends very little on unknowns.” Thus,
the skewness expression −6�2a + cq� could be
useful as a diagnostic for establishing appropri-
ate parameterizations for the bootstrap-t. We
are currently investigating this use of the ABC
quantities.
• In line with Gleser’s comments concerning

nonuniqueness of confidence interval proce-
dures, a goal of the paper was to show that
many of the second-order accurate methods
currently available, even likelihood-based and
Bayesian ones, are somewhat similar. The nu-
merical results of Canty, Davison and Hinkley
and of Lee and Young show emphatically that
there are appreciable higher-order differences
between the methods. We are currently work-
ing on third-order procedures.
• Our paper features smooth statistics like cor-

relations and eigenvalues, for which the ABC
method tends to agree well with the BCa, its
parent method. The ABC method might not
have looked so good if we had investigated
rougher statistics like coefficients in a robust
regression. As far as “automatic” usage is con-
cerned, the BCa intervals are easier for the
statistician, if not for the computer. In nonpara-
metric situations ABC requires an expression
of the statistic θ̂ as a function of the bootstrap
weights on the data points x1; x2; : : : ; xn. This
usually is not very hard to do, but it can be an-
noying. The BCa method proceeds directly from
the original definition of θ̂ as a function of the
data x [using definition (6.7) to compute â].

Are bootstrap confidence intervals ready for the
prime time? If the question is one of always giving
highly accurate coverage probabilities in small sam-
ples, the answer is no. But this would mean letting
the perfect be the enemy of the possible. A more rel-
evant question is whether we can reliably improve
upon the standard intervals, and there the answer
is yes.
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