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The Method of Gauss in 1799
Aivars Celmin( š

Abstract. It has been suggested that Gauss used the method of least
squares on a data set published in 1799. The data set and its adjustment
are reexamined, and it is concluded that the result of Gauss cannot be
obtained by the least-squares method nor by any other approach men-
tioned by Gauss.
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1. INTRODUCTION

The controversy about the discovery of the method
of least squares is described in detail by Plackett
Ž . Ž . Ž .1972 , Sprott 1978 , Stigler 1977, 1981 and

Ž .Stewart in Gauss, 1995 . It might be summarized
Ž .as follows. Legendre 1752]1833 published in 1805

a memoir, Nouvelles methodes pour la determina-´
tion des cometes, in which he introduced and named`

Ž .the method of least squares. Gauss 1777]1855
published in 1809 a book, Theoria motus corporum
coelestium in sectionibus conicis solem ambientium
Ž .Gauss, 1809 or 1963 , where he discussed the
method of least squares and, mentioning Legendre’s
work, stated that he himself had used the method
since 1795. Legendre was offended by Gauss’s
statement, and in a letter to Gauss with compli-
ments about the new book, he indicated that claims
of priority should not be made without proof by
previous publications. Gauss did not have such a
publication, but was convinced that the idea of
least-squares adjustment is so simple that many
people must have used the method even before
Gauss. In the following years, Gauss tried to pro-
duce evidence for his claim but had only little suc-
cess. His own computational notes were lost; his
diary entry of 1798 where he indicates work on a
probability theory different from Laplace’s is am-
biguous; and his colleagues apparently did not re-
member discussions with Gauss or did not want to
be involved in the dispute. After repeated prodding,
only the astronomer Olbers included in a paper in
1816 a footnote asserting that Gauss had shown

Žhim the method of least squares in 1802. Bessel
.published a similar note in a report in 1832. Even-

tually Gauss gave up the search but did not retract
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his claim. In 1820 Legendre published a supple-
ment to his 1805 memoir with an appendix where
he publicly attacked Gauss’s claims of priority. The
controversy continued, and in 1831 Schumacher
wrote to Gauss about a publication of 1799 that
contains data and adjustment results by Gauss.
Schumacher suggested repeating the calculations
and thereby demonstrating that the method of least
squares was indeed used by Gauss in 1799. Gauss’s
answer was that he was well aware of the data but
would not permit a recalculation, and that he
furthermore opposed any more public testimony
on his behalf; his word should be enough, and a
testimony would only suggest that he could not be
trusted. Nevertheless, the priority continued to be
on Gauss’s mind. In 1840 he expressed disappoint-
ment for not having found evidence of applications
of the least-squares method among the papers of
the deceased astronomer Tobias Mayer. Earlier
Gauss had named Mayer as someone who most
certainly must have used the method even before
Gauss.

Schumacher’s suggestion to repeat Gauss’s calcu-
Ž .lations was taken up by Stigler 1981 . He obtained

the data in question and tried least-squares adjust-
ments on them. He could not reproduce Gauss’s
results and hypothesized that Gauss might have
used a constraint that is more accurate than the
linearized one-term expansion of the constraint
equation which was used by Stigler. In the present
paper, we review the adjustment and conclude that
the results published by Gauss certainly are not
obtained by a minimization of observational errors
in a least-squares sense even when the exact con-
straints are used. This raises the intriguing ques-
tion, what method or principle did Gauss use? In
his note, Gauss called the calculation procedure
‘‘my method’’ and announced a publication of it.
However, the method was never published. There-
fore, by reconstructing Gauss’s calculations, one
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could obtain an indication of what numerical ap-
proach was considered by Gauss appropriate for the
particular adjustment problem in 1799.

2. THE ADJUSTMENT PROBLEM

The data in question are from the measurement
of a meridian arc of the Earth. In 1770 the French
Academy of Sciences was directed to work out a
system of units that would be suitable for the whole
world. The Academy proposed to define a new length
unit metre as one 107th part of the quadrant of the
meridian arc of the Earth. To determine the length
of the arc, measurements were made along a merid-
ian from Dunkirk to Barcelona. The measurements
consisted of astronomical determinations of lati-
tudes and land surveying between the latitude ob-
servations. The results of the measurements are

Žlisted in Table 1 see also Plackett, 1972, and
.Stigler, 1981 . Originally, the data were published

Žin Allgemeine Geographische Ephemeriden 1799,
.4, page XXXV . Gauss reported his results in the

same publication, page 378, and added a comment
in the Corrections to Volume 4 of the Allgemeine

Ž .Geographische Ephemeriden 1800, page 193 . The
originally published data contained a printer’s er-
ror, and Gauss asserted that he had used his

Ž .method which was not explained on both sets,
with and without the error. His values for the
ellipticity f of the meridian ellipse and the length
Q of the quadrant are as follows:

v data without error, f s 1r187 and Q s 2,565,006
modules;

v data with printer’s error, f s 1r50.

Ž .One module s 1r1000 league f 3.898 metres.
Gauss also reported in his comment that the ellip-
ticity found by French surveyors was f s 1r150
and that the difference between his and the French
result was ‘‘not important in this case.’’ The method

TABLE 1
Original data

No. Location S , modules d , degrees Fi i i

X Y1 Barcelona to 52,749.48 1.852 66 428 17 20
Carcassone

X Y2 Carcassone to 84,424.55 2.963 36 448 41 48
Evaux

X Y3 Evaux to Pantheon 76,145.74 2.668 68 478 30 46
X Y4 Pantheon to 62,472.59 2.189 10 498 56 30

Dunkirk
Totals 275,792.36 9.673 80

Note: S are the distances between the indicated locations, di i
are the corresponding differences in latitudes, and F are thei
latitudes of the midpoints of the distances. The distance S3
between Evaux and Pantheon was due to a printer’s error
originally given as 76,545.74 modules.

used by the French is not known. Using the exact
constraint equations and a simultaneous adjust-
ment of all observations one obtains the following
least-squares results:

v data without error, f s 1r152 and Q s 2,564,897
modules;

v data with printer’s error, f s 1r79 and Q s
2,568,230 modules.

The presently agreed ellipticity of the International
Ellipsoid of the Earth is 1r297.

Assuming that the meridian is an ellipse and
that the latitude is defined by the elevation angle of
the normal to the ellipse, one has the following
relation between an arc length S and the latitudes

Ž .L and L of its end points see the Appendix :S E

L y3r2E 2Ž . Ž .2.1 S s A 1 y B sin f df ,H
LS

where A and B are constants. These constants can
be determined by a least-squares adjustment of the

Ž .data listed in Table 1 with 2.1 as constraint. After
determination of the values of A and B, the ellip-
ticity and the length of the quadrant can be com-
puted as follows. Let a and b be the semimajor and
semiminor axis of the ellipse, respectively, and let e
be its eccentricity. Then

b2
2Ž . Ž .2.2 A s s a 1 y e

a
and

a2 y b2
2Ž .2.3 B s s e .2a

The ellipticity is defined by

a y b
2' 'Ž .2.4 f s s 1 y 1 y e s 1 y 1 y B .

a

The length Q of the quadrant is given by the
integral

pr2 y3r22Ž . Ž .2.5 Q s A 1 y B sin f df .H
0

Ž .The integral in 2.1 cannot be evaluated in closed
form. Therefore one might use an approximate ex-
pression for the numerical treatment of the adjust-
ment problem. Because in our case B g 1 and LE
y L - 38 a good approximation of S isS

3 L q LS E2Ž . Ž .2.6 S f L y L A 1 q B sin .E S ž /2 2

Ž .This one-term approximation of 2.1 is also sug-
gested by the form in which the data were pub-
lished in Table 1. The table entries are the arc
lengths S; the differences d s L y L betweenE S
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the latitudes of the end points; and the midpoint
Ž .latitudes F s L q L r2. If one treats the mid-S E

Ž .point latitudes F as fixed parameters, then 2.6 is
a linear constraint equation for the observations S
and d . Most likely this linearized form of the con-

Ž .straint 2.1 was used by everyone working on the
problem in the 1790s. The most general least-
squares constraint equation considered by Gauss in

Ž .Theoria motus has the form S s f A, B, . . . , where
S is an adjustable observable and A, B, . . . are free

Ž . Ž .parameters. Equations 2.1 and 2.6 both have
this form if the arc length is the regressand. If
d s L y L is treated as the regressand, thenE S
Ž .2.6 can be brought into such a form by solving it
for d .

Ž .The exact constraint 2.1 can be approximated
Ž .also by more sophisticated formulas than 2.6 .

Therefore, a duplication of Gauss’s calculations is
complicated by the necessity to guess which con-

Ž .straint form he could have used. Stigler 1981 has
found by numerical experimentation that Gauss did

Ž .not use the linearized form 2.6 of the constraint
with S as regressand in a least-squares adjustment
and suggested that Gauss had a better approxima-
tion to the exact constraint. If this were true, then

Ž .an adjustment based on the exact constraint 2.1
should be closer to Gauss’s solution than to an

Ž .adjustment with the approximate constraint 2.6 .
We shall test this property of the solution by com-
puting several variants of adjustments based on
exact constraints. We need several variants because
even with a given constraint equation, one can
adjust, for instance, only the surveyed arc lengths
S, or only the observed latitudes L or both with
appropriate weights.

Also missing are estimates of data accuracies
that might have been used by Gauss for the compu-

Žtation of adjustment weights. Gauss mentions
.weighted adjustment in Theoria motus. In particu-

lar, one would normally assume that the standard
deviations of the arc lengths S are proportional toi

S , but we are not at all sure that Gauss made' i
such an assumption. Moreover, if one simultane-
ously adjusts the arc length S as well as thei
latitudes L , then one needs prior estimates of thej
standard deviations of all data. Fortunately, as-
sumptions about data accuracies are not essential
for the present investigation because they do not
greatly influence the values of the fitted constants
A and B.

3. PROBLEM FORMULATIONS

We describe in this section three formulations of
the adjustment problem that were used in our cal-
culations. The corresponding numerical solutions

can be easily obtained with any software for
weighted adjustment that allows general constraint
equations. For the present paper we used the utility

Ž .routines described in Celmin(s 1979 . Those rou-ˇ
tines solve constrained least-squares problems that
are defined as follows:

Minimize
s

T y1Ž .3.1a W s c P cÝ i i i
is1

subject to

Ž . Ž .3.1b F X q c ; T s 0, i s 1, . . . , s,i i i

Ž .where X are observed vectors with dim X s n ,i i i
c are the corresponding least-squares corrections,i
P are estimated variance]covariance matrices ofi
the observations X , T is a free model parameteri

Ž .vector with dim T s p and the F are constrainti
Ž .functions with dim F s r . The unknowns of thei i

problem are the corrections c of the observationsi
X and the parameter vector T. It is assumed thati
the constraint or model functions F are twice dif-i
ferentiable with respect to all their arguments and
that

Ž .3.2 r y n - p - r .Ý Ý Ýi i i

Ž .If the constraint functions F are scalar r ' 1i i
Ž .then the utility routine COLSAC Celmin(s, 1979ˇ

can be used. If the constraints F s 0 contain setsi
Ž .of simultaneous equations for the c r ) 1 , theni i

the more complicated routine COLSMU must be
used.

We have tried adjustments of the arc lengths as
well as of the latitude observations. The adjustment
of the latter can be somewhat simplified by express-
ing the constraints in terms of the endpoint obser-
vations L themselves rather than in terms of thei
differences d and midpoint latitudes F that arei i
given in Table 1 because the differences and mid-

Žpoint values are interdependent. They are con-
strained by the condition that adjacent arcs must

.have common endpoints after adjustment. We
therefore reconstructed the observed endpoint lati-
tudes from the data in Table 1. The result is shown
in Table 2, which also contains a priori estimates of
the standard deviations of the observations. Such
estimates are necessary for the joint adjustment of
arc lengths and latitudes. We obtained the esti-
mates with the help of preliminary adjustments as
follows.

To obtain estimates for the standard deviations
e of the arc length measurements, we assumedSi
that they are proportional to S , and that the' i
latitude observations are free of errors. We solved
the corresponding adjustment problem with the
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TABLE 2
Reconstructed latitude data

Arc, modulesLatitude, degrees
No. Location L S et i Si

1 Barcelona 41.362 42
52, 749.48 22.16

2 Carcassone 43.215 08
84,424.55 28.03

3 Evaux 46.178 44
76,145.74 26.62

4 Pantheon 48.847 12
62,472.59 24.11

5 Dunkirk 51.036 22

Note: The estimated standard errors of the latitudes are
e s 5.005 ? 10y4 degrees. The estimated standard error forL

the erroneous distance S s 76,545.74 is e s 26.69 mod-3 S3
ules.

Žhelp of the utility routine COLSAC see Case 1 for
.details using the correct data set from Table 1 and

Ž .the exact constraint 2.1 . The solution provided the
proportionality factor for the standard deviations of
S :i

Ž .3.3 e s 0.0965 S modules.'Si i

The corresponding values of e are listed in TableSi
2. One notices that the estimated standard devia-
tions of all four arc measurements are similar be-
cause the differences among the square roots of the
arc lengths are small.

To obtain an estimate for the standard deviation
e of the astronomic observations of the latitudesL

we assumed that all latitude observations are
equally accurate and that the measurements S ofi
the arc lengths are free of errors. We then solved
the adjustment problem with the L from Table 2i

Ž .as observations, the exact equation 2.1 as con-
straint and the correct distances S as regressori
variables. The problem was numerically solved us-

Žing the utility program COLSMU see Case 2,
.described below . The program produced for the

standard deviation of the latitude observations the
estimate

Ž . y4 Y3.4 e s 5.005 ? 10 degrees s 1.802 .L

We now describe the adjustment processes for
which we distinguish three cases.

CASE 1. Adjustment of arc lengths. In this case
the adjustable data are the surveyed arc lengths Si
whereas the latitude observations L are treated asj
fixed nonadjustable constants. In terms of the prob-

Ž .lem formulation 3.1 we have, therefore, the data
Ž .regressand variables

Ž .3.5 X s S , i s 1, 2, 3, 4,i i

Ž .with variance estimates from 3.3 ,

Ž . 23.6 P s e , i s 1, 2, 3, 4.i Si

Ž .From the exact relation 2.1 we obtain the follow-
ing constraint equations for i s 1, 2, 3, 4:

Ž .F S q c ; A , Bi i Si

s S q ci SiŽ .3.7
L y3r2iq1 2Ž .yA 1 y B sin f df s 0,H

L i

Žwhere the L are fixed constants regressor vari-j
.ables . Corresponding linearized constraints are, for

i s 1, 2, 3, 4,

Ž .L S q c ; A , Bi i Si

3
2s S q c y Ad 1 q B sin Fi Si i iž /2

Ž .3.8

s 0,

Ž .where d s L y L , and F s L q L r2 arei iq1 i i iq1 i
Ž .fixed constants regressor variables . The parame-

ters of the adjustment problem are the free con-
Ž .stants A and B. Condition 3.2 is satisfied with

Ýr s 4, Ýn s 4 and p s 2. Because the con-i i
straints are scalar, this problem can be solved us-
ing the utility program COLSAC with either the

Ž .exact constraints 3.7 or the linearized constraints
Ž .3.8 .

CASE 2. Adjustment of latitudes. In this case, we
adjust the latitude observations L and treat thej
surveyed arc lengths S as fixed numbers. Becausei

Ž .the L enter the model equation 2.1 as limits ofj
the arc-length integrals, the same latitude observa-
tion generally appears in two constraint equations
corresponding to adjacent arcs. Particularly, the
adjustable latitude observations L , L and L2 3 4
appear each in two of the four constraint equations,
and the constraints must be treated as a single
equation system F s 0 of four simultaneous equa-1
tions.

To cast the adjustment problem into the form
Ž . Ž3.1 , we define the adjustable data the regressand

.variables as a single vector X of observations.1
Ž .That is, in 3.1a , s s 1 and the data vector is

Ž . T Ž .3.9 X s L , L , L , L , L .1 1 2 3 4 5

Ž .The data variance matrix P is diagonal 5 = 5 -1
matrix with the diagonal elements e2. The singleL
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Ž .constraint function F X q c ; A, B has four com-1 1 1
Ž .ponents f . If the exact relation 2.1 is used, theni

the components f s 0 of the constraint equationi
F s 0 are as follows:1

f s S y Ai i

L qc y3r2iq1 L , iq1 2Ž .? 1 y B sin f dfH
L qci L , i

Ž .3.10

s 0, i s 1, 2, 3, 4.

In linearized form, the constraint equation has the
components

Ž .l s S y L q c y L y ci i iq1 L , iq1 i L , i

3
2?A 1 q B sin F s 0,iž /2

Ž .3.11

for i s 1, 2, 3, 4. The arc lengths S and the mid-i
Žpoint latitudes F in the linearized constraintsi

Ž ..3.11 are assumed to be fixed nonadjustable con-
Ž . Ž .stants regressor variables . Condition 3.2 is satis-

fied with r s 4, n s 5 and p s 2. This type of1 1
Žproblem with constraints in form of simultaneous
.equations can be solved using the utility program

COLSMU.

CASE 3. Adjustment of arc lengths and latitudes.
In this case, all observations, the surveyed arc
lengths S as well as the latitude observations L ,i j
are adjusted simultaneously. The problem can be
solved by treating the arc lengths S in the con-i

Ž . Ž .straint equations 3.10 or 3.11 as adjustable ob-
servations and using the utility program COLSMU
for constraints in the form of simultaneous equa-
tions. Then the corresponding vector of observa-

Žtions X would have nine components five L and1 j
.four S . The variance matrix P of the singlei 1

Ž .observation vector would be a diagonal 9 = 9 -
matrix, and the constraint F s 0 would again be a1
system of four simultaneous equations. However,
the numerical treatment and the coding of the
problem can be simplified by introducing nonessen-

Ž .tial parameters Celmin(s, 1982 that render theˇ
problem separable and transform the constraints
into a set of nine independent scalar equations. Let
the added parameters be Q , . . . , Q so that the1 5
augmented parameter vector T has seven compo-
nents:

Ž . T Ž .3.12 T s A , B , Q , Q , Q , Q , Q .1 2 3 4 5

The data are nine scalars:

X s S , i s 1, 2, 3, 4,i i

X s L , i s 5, 6, 7, 8, 9.i iy4

Ž .3.13a

The corresponding variances are

P s e2 , i s 1, 2, 3, 4,i SiŽ .3.13b
P s e2 i s 5, 6, 7, 8, 9.i L

The constraints are nine scalar equations. The first
Ž .four equations are, if the exact relation 2.1 is

used,

F s S q ci i Si

Q y3r2iq1 2Ž .y A 1 y B sin f dfH
Qi

Ž .3.14

s 0, i s 1, 2, 3, 4.
The next five constraint equations are new and
define the nonessential parameters:

F s L q c y Q s 0,i iy4 L , iy4 iy4Ž .3.15
i s 5, 6, 7, 8, 9.

The linearized form of the constraint equations
Ž .3.14 is

Ž .L s S q c y Q y Q Ai i Si iq1 i

3
2? 1 q B sin F s 0,iž /2

Ž .3.16

i s 1, 2, 3, 4,
where the midpoint latitudes F are assumed to bei

Ž .fixed parameters. The remaining constraints 3.15
for i s 5, 6, 7, 8, 9 are already linear and need not
be simplified.

Ž . Ž . Ž .Because the constraints 3.14 , 3.15 and 3.16
are scalar, the exact as well as the linearized ad-
justment problem can be solved with the help of the

Ž .utility routine COLSAC. Condition 3.2 is satisfied
with Ýr s 9, Ýn s 9 and p s 7.i i

4. LEAST-SQUARES RESULTS

The results of adjustments using the correct data
set are listed in Table 3 and shown in Figures 1 and

Ž2. Table 3 lists six adjustment results Cases 1, 2
and 3 with exact and linearized constraints, respec-

.tively giving the values of the arc length Q; the
inverse ellipticity 1rf ; their corresponding esti-
mated standard deviations e and e , respec-Q 1r f
tively; and an estimate of the correlation coefficient
between Q and 1rf. For the adjustments involving

Ž .only the arc length S Case 1 we assumed thati
their standard deviations are proportional to S .' i

Ž .The adjustments of the L only Case 2 were madei
assuming that the standard deviations of the data
are all equal. The adjustment weights in Case 3
were estimated as explained Section 3.

Figure 1 shows the results of adjustments with
the linearized constraints, that is, results which we
expect to be close to Gauss’s result. The figure
displays the values of Q and 1rf and error ellipses
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FIG. 1. Linearized adjustments of correct data.

TABLE 3
Least-squares results for correct data set

Constraint Observ. Q e 1 rrrrr f e CorrelationQ 1rrrrr f

Exact S 2,564,891 501 155.3 31.3 0.338477
S and L 4,897 544 151.8 36.8 0.380900

L 4,909 198 148.7 20.2 0.576044
Linear S 5,100 479 152.7 31.3 0.174293

S and L 5,116 513 149.3 36.8 0.192755
L 5,138 170 146.2 20.2 0.299832

representing one standard deviation. The dashed
curve corresponds to distance adjustments, the
dot-dash curve corresponds to latitude adjustments,
and the solid curve represents the standard devia-
tion in the case where all data are adjusted simul-
taneously. Gauss’s result is about one standard
deviation apart from our result. The difference is
not important statistically, but it indicates that the
values reported by Gauss are not obtained with the

Ž .linearized constraint. Based on this, Stigler 1981
hypothesized that Gauss might have used a better

Ž . Ž .approximation than 2.6 or 3.8 to the exact con-
Ž . Žstraint 2.1 . Stigler also considered the possibility

FIG. 2. Adjustments of correct data.
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that the differences between his and Gauss’s re-
sults could have been caused by rounding errors,
but found that trigonometric and logarithmic tables
available to Gauss were sufficiently accurate to

.prevent such large differences in the results. To
test Stigler’s hypothesis, we also calculated the
adjustments using exact constraints instead of the

Žlinearized ones. The integrals in the exact con-
straints were numerically evaluated using a

.Romberg algorithm; see Acton, 1990. The results
are shown in Figure 2 in the same form as in
Figure 1, and for comparison the results from Fig-
ure 1 are also displayed. The solution of Gauss is
about equally far removed from the exact solution
as from the solution using the linearized constraint
but is not located between them. This clearly shows
that the values of Q and 1rf that were reported by
Gauss are not obtained from a least-squares adjust-
ment with improved constraints.

Next we consider the data set that contains the
printer’s error. The adjustment results are listed in
Table 4 and displayed in Figure 3. One observes
that differences among the six results are larger
than in Figure 2 but the overall situation is about
the same as shown in Figure 2. In this case, Gauss
did not report a value for the quadrant length Q

Žand we can only compare the line 1rf s 50 Gauss’s
.value with our results. The line is well below any

of our results.
Figure 4 is a combined display of all least-squares

results. The error ellipses correspond to one stan-
dard deviation, as before, and are for the simulta-
neous adjustments of all data. The figure shows
that the quadrant length and the inverse elliptici-

TABLE 4
Least-squares results for data set with error

Constraint Observ. Q e 1 rrrrr f e CorrelationQ 1rrrrr f

Exact S 2,568,000 491 87.8 9.9 0.281788
S and L 8,230 528 79.3 10.0 0.303993

L 8,523 183 72.7 4.8 0.457031
Linear S 8,682 472 85.0 9.9 y0.043977

S and L 9,067 507 76.6 9.9 y0.116073
L 9,525 171 70.0 4.8 y0.320064

ties that were reported by Gauss are not obtained
by least-squares adjustments. A printer’s error in
the results reported by Gauss is not likely, because
Gauss’s ellipticity values were published twice, in
two different issues of the journal. Thus we are left
with the question whether Gauss used a different
adjustment principle or made an arithmetical error.

5. ADJUSTMENTS USING
DIFFERENT PRINCIPLES

Candidates for adjustment principles that might
have been used by Gauss are the minimization of
the sum of nth powers of the absolute values of

Ž .residuals, Boscowich’s 1711]1787 method and a
Žminimization of the maximum deviation. Bosco-

wich’s method consisted of a minimization of the
sum of absolute values of the residuals under the
condition that the sum of the residuals should be

.equal to zero. Gauss discusses all these methods in
Article 186 of Theoria motus: the minimization of
the sum of even powers of residuals, Boscowich’s
method and the minimization of very large powers
of residuals that produces a minimax solution. He

FIG. 3. Adjustments of data with error.
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FIG. 4. All least-squares adjustments.

suggests using least squares on grounds of numeri-
cal expediency.

A further method that might have been used by
Ž .Gauss is suggested by Sheynin 1993 . In that

method, a least-squares technique is not used to
minimize a norm of observational errors but to
minimize an objective function in the parameter
space. The method has an ad hoc nature and it is
not considered by Gauss in Theoria motus, but
Sheynin asserts that the method has been widely
used in land surveying during the past two cen-
turies.

To get an idea about the range of results that can
be obtained with these different adjustment meth-
ods, we carried out a number of adjustments of the
arc length measurements S , equally weighted, andi

Ž .using the linearized constraint 3.8 . The solutions
were obtained by a numerical search for the mini-
mum of the respective objective function. Some typ-
ical results are listed in Tables 5 and 6 and dis-

TABLE 5
Various adjustments of correct distance set

Constraint Objective Q 1 rrrrr f

Exact Boscowich 2,564,907 158.2
< <S c re 4,684 173.6S S

1.5< <S c re 4,804 159.2S S
2< <S c re 4,875 151.3S S
4< <S c re 4,995 150.0S S
`< <S c re 5,108 152.7S S

Linear Boscowich 2,565,108 155.7
< <S c re 4,853 171.1S S

1.5< <S c re 5,004 156.7S S
2< <S c re 5,096 148.7S S
4< <S c re 5,218 147.3S S
`< <S c re 5,323 150.0S S

Žplayed in Figure 5. A comparison of the corre-
sponding entries in Tables 3 and 5, or Tables 4 and
5, respectively, shows that the weighting of the Si
inversely proportional to S indeed makes little' i

.difference in the least-squares results. The results
for the correct data show that the quality and
consistency of the data are so good that the adjust-
ment method does not matter: all methods produce
very similar results, and all are different from
Gauss’s result. On the other hand, adjustments of
the data with the printer’s error produce parame-
ters that vary over a large range as the power n of
the residuals varies between unity and infinity. The
Boscowich method produces solutions that are in
both cases close to the corresponding least-squares
solutions. One also notices that the minimization of
the sum of the absolute values of the residuals
without additional conditions produces exactly the
same result for both data sets. That is, the error in
the value of S does not affect the result. Gauss3

TABLE 6
Various adjustments of distance set with error

Constraint Objective Q 1 rrrrr f

Exact Boscowich 2,567,820 74.9
< <S c re 4,684 173.6S S

1.5< <S c re 6,858 89.7S S
2< <S c re 8,137 79.3S S
4< <S c re 2,570,072 93.0S S
`< <S c re 1,205 105.8S S

Linear Boscowich 2,568,760 72.4
< <S c re 4,853 171.1S S

1.5< <S c re 7,512 87.0S S
2< <S c re 8,974 76.5S S
4< <S c re 2,570,670 90.2S S
`< <S c re 1,663 103.1S S
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FIG. 5. Adjustments by various methods.

warned in Theoria motus about this property of the
method if the condition of zero sum for the residu-
als is not added. Gauss’s results again are found to
be different from all other results.

The least-squares technique suggested by Shey-
nin applies to linear models and can be formulated
in our case as follows. The linearized constraints
Ž .3.8 ,

3 2Ad q ABd sin F y S s 0,i i i i2Ž .5.1
i s 1, 2, 3, 4,

represent in a parameter space with the coordi-
nates x s A and y s A ? B four straight lines that
would intersect in a single point if the observations
S , d and F were error free. A plausible estimatei i i

Žof the true common intersection point and a least-
squares solution of the overdetermined equation

.system can be defined as the point for which the
sum of squares of the distances to the four lines is a
minimum. The ad hoc nature of this formulation is
obvious because one obtains different results for
different definitions of the coordinates of the pa-

Žrameter space. For instance, one could use the
Ž . .coordinates A, a AB with arbitrary a . In the

space with the coordinates x s A and y s A ? B the
solution is found by minimizing the expression

Ž .U A , AB
24 3

2s w Ad q ABd sin F y SÝ i i i i iž /2is1

Ž .5.2

with the weights

1
Ž .5.3 w s .i 22 2Ž Ž . .d q d 3r2 sin Fi i i

The numerical results are as follows:

v data without error, f s 1r155 and Q s 2,565,096
modules;

v data with printer’s error, f s 1r90 and Q s
2,568,391 modules.

These results are close to the respective least-
squares values shown in Figure 5 and listed in
Tables 5 and 6. Experiments with different defini-
tions of the parameter space produced inverse ellip-
ticities that were only a few units apart from the
quoted values.

From the above computations we conclude that
the numerical values reported by Gauss are not
obtained by any adjustment of observations that
uses a principle which has been mentioned by Gauss
nor by the least-squares approximation in the pa-
rameter space suggested by Sheynin.

6. CONCLUSIONS

The numerical results presented in Sections 4
and 5 suggest that Gauss’s results are not consis-
tent with any obvious and reasonable adjustment of
observational errors nor with a least-square adjust-
ment in the parameter space. This leaves three
possible explanations for the strange values:

Ž .1. Gauss used a relation different from 2.1 as a
basis for his analysis.

2. Gauss made an error in simplifying the exact
Ž .constraint 2.1 .

3. Gauss’s computations contain arithmetical er-
rors.

We now discuss these possibilities in turn.
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Ž .A relation different from 2.1 is obtained if the
latitude is differently defined, for instance, as the
elevation angle of the plumb line to a solid ellip-
soid, or as the elevation angle of the ray from the
center of the ellipsoid. Corresponding constraint
equations are derived in the Appendix, which also
contains a transformation formula for the values of
the ellipticities in the three cases. Let f , f and fC N P
be the ellipticities that correspond to latitude defi-
nitions in terms of the center ray, the normal to the
ellipsoid, and the plumb line to the ellipsoid, re-
spectively. Then one obtains, with a linearized un-
weighted least-squares adjustment of the arc

wlengths S , the results in Table 7 see Tables 5 andi
Ž . Ž .x6 and A.33 ] A.35 . If one uses the center-ray

definition of the latitudes, then the inverse elliptic-
ity 1rf is less than 1rf for both data sets. If oneC N
uses the plumb-line definition, then 1rf is largerP
than 1rf for both data sets. Gauss’s value isN
higher than 1rf for the correct data and lower forN
the erroneous data set. Hence a change of the
definition of latitudes that reduces the difference
between Gauss’s values and our 1rf for one dataN
set increases the difference for the other data set.
Therefore, neither of the two alternative definitions
considered can explain the discrepancies.

An error in the simplification of the exact con-
Ž .straint equation 2.1 cannot be excluded, except for

the reason that the equation and corresponding
analyses are so simple that it is difficult to make an
error.

Arithmetical errors seem at first unlikely be-
cause both results by Gauss are erroneous, suggest-
ing at least two errors. However, this need not be
the case. The calculations by Gauss were done man-
ually, writing down intermediate results, such as
the values of trigonometric functions and loga-

Žrithms. The usefulness of writing down intermedi-
ate results is emphasized in several places in Theo-

.ria motus. Then, as the problem was solved again
with a corrected value of the distance S , only those3
parts had to be recalculated that directly involved
the new datum. An error in a quantity that was not
recalculated would influence both results. We tested
this possibility by assuming that one of the four
values of sin F was in error. By a proper choice ofi
the value of sin F we obtained 1rf s 187 for the3
correct data set and a corresponding 1rf s 64 for

TABLE 7

Data set 1 rrrrr f 1 rrrrr f 1 rrrrr f GaussC N P

Correct distances 49.2 148.7 168.6 187
Distances with error 25.2 76.5 86.8 50

the data set with printer’s error. This does not
exactly duplicate Gauss’s result, but it shows that a
single error can indeed increase the ellipticity in
one case and reduce it for the other data set.

We conclude from these considerations that the
results published by Gauss likely contain arith-
metical errors. Hence Gauss’s publication neither
supports nor falsifies his claim that he used the
method of least squares before 1800. As Gauss
suggested, we have to trust his word.

APPENDIX: DERIVATION OF
CONSTRAINT EQUATIONS

Astronomical latitude observations measure the
elevation angle of the local plumb line with respect
to the equatorial plane. Usually, it is assumed that
the observed plumb line approximately coincides
with the local normal to the ellipsoid of the Earth.
Alternatively, one might assume that the observed
plumb line coincides with the local plumb line of a
homogeneous ellipsoid of the Earth, or, because the
ellipticity of the Earth is very small, coincides with
the ray to the center of the ellipsoid. Each of these
assumptions yields a different relation between the
measurement of the lengths of an arc and the
corresponding difference of latitudes of the end-
points of the arc. This appendix provides a deriva-
tion of these relations.

Let a be the semimajor and b the semiminor axis
of an ellipse. Then the ellipse can be represented by
the following set of equations:

x s a cos f ,

y s b sin f ,
Ž .A.1

where f is the elevation angle of a ray from the
center of the ellipse. The arc length element of the
ellipse is

1r22 2­ x ­ y
ds s q dfž / ž /ž /Ž . ­f ­fA.2

1r22 2 2 2Ž .s a sin f q b cos f df .

Let e be the eccentricity of the ellipse, defined by

a2 y b2
2Ž .A.3 e s .2a

Ž .Then A.2 can be expressed in the form

1r22e
2 2'Ž .A.4 ds s a 1 y e 1 q sin f df .2ž /1 y e

Now let us assume that the latitudes are defined by
the angle f; that is, the plumb line coincides with
the ray to the center of the ellipsoid, and that arc
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lengths DS and corresponding latitude differences
Df have been observed. Because for the ellipsoid of

2 Ž .the Earth e g 1, A.4 can be expressed in the
following linearized form:

12 2 2'Ž .A.5 DS s Df a 1 y e 1 q e sin F ,Ž .2

where F is the midpoint latitude of the observed
arc Df.

We now differently define the latitude l as the
Želevation angle of the normal to the ellipse. This is

.the usual definition. The unit normal vector to the
ellipse is

1 b cos fŽ .A.6 n s .1r2 ž /2 2 2 2 a sin fŽ .a sin f q b cos f

Hence
a

Ž .A.7 tan l s tan f ,
b

Ž 2 . 21 y e sin l
2Ž .A.8 sin f s 2 21 y e sin l

and

2 2'b cos f 1 y e
Ž .A.9 df s dl s dl.2 2 2a cos l 1 y e sin l

Ž . Ž . Ž .Substituting expressions A.8 and A.9 into A.4 ,
one obtains

1
2Ž . Ž .A.10 ds s a 1 y e dl.3r22 2Ž .1 y e sin l

Ž . Ž .An integration of A.10 yields 2.1 . A linearization
for small e2 produces

32 2 2Ž . Ž .A.11 DS s Dl a 1 y e 1 q e sin L .Ž .2

where L is the midpoint latitude of the observed
w Ž .xarc Dl cf. 2.6 .

Next, we define the latitude as the angle of eleva-
tion of the plumb line to a homogeneous rotational
ellipsoid with density r. The gravity potential of
such an ellipsoid is, assuming that the semiminor

Žaxis b is the rotation axis see Kellogg, 1953, page
.194 ,

1 1
2 2Ž .A.12 U s D y x y y ,

a b

where

` dt
2Ž .A.13 D s pr a b ,H 1r22 20 Ž .Ž .a q t b q t

`1 dt
2Ž .A.14 s pr a bH 2 1r22 2a 0 Ž . Ž .a q t b q t

and

`1 dt
2Ž .A.15 s pr a b .H 3r22 2b 0 Ž .Ž .a q t b q t

The components of the gravitational force are

­U 2 x
f s s y ,x ­ x a

­U 2 y
f s s y .y ­ y b

Ž .A.16

Hence the elevation angle c of the plumb line and
the angle f are related by

f ayŽ .A.17 tan c s s tan f .
f bx

We define « 2 by

a 2 y b 2
2Ž .A.18 « s .2a

Then

Ž 2 . 21 y « sin c
2Ž .A.19 sin f s 2 21 y « sin c

and

2'1 y «
Ž .A.20 df s dc .2 21 y « sin c

Ž . Ž . Ž .Substituting expressions A.19 and A.20 into A.4
one obtains

1r22 2ŽŽ .Ž ..ds s a 1 y e 1 y «

Ž 2 2 . Ž 2 . 21 q e y « r 1 y e sin c
? dc .3r22 2Ž .1 y « sin c

Ž .A.21

To compare this expression with the previous ones,
we want to express « in terms of e. To that end we
first derive formulas for a and b in terms of e2,

2 Ž .assuming as before that e g 1. From A.14 we
Ž .obtain, using definition A.3 ,

1
2s pr a b

a

` dt
?H 1r25r22 2 2 20 Ž . w Ž .xa q t 1 y e a r a q t

` dt 1
2 2 2s pr a b q e aH 5r2ž 2 20 Ž .a q t

Ž .A.22

` dt
4Ž .? q O e .H 7r2 /20 Ž .a q t
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After integration, one obtains

1 b 1 3
2 4Ž . Ž .A.23 s pr 1 q e q O e .ž /a a 3 10

Ž .The formula for 1rb is A.15 or

1
2s pr a b

b

` dt
?H 3r25r22 2 2 20 Ž . w Ž .xa q t 1 y e a r a q t

` dt 3
2 2 2s pr a b q e aH 5r2ž 2 20 Ž .a q t

Ž .A.24

` dt
4Ž .? q O e .H 7r2 /20 Ž .a q t

After integration it yields

1 b 1 9
2 4Ž . Ž .A.25 s pr 1 q e q O e .ž /b a 3 10

Hence

Ž . 2 Ž 4 .b 1 q 3r10 e q O e
s 2 4Ž . Ž .a 1 q 9r10 e q O eŽ .A.26

3
2 4Ž .s 1 y e q O e ,

5
2b 6

2 2 4Ž . Ž .A.27 « s 1 y s e q O ež /a 5

and

e2 y « 2 1
2 4Ž . Ž .A.28 s y e q O e .2 51 y e

Ž . Ž .Substituting expressions A.27 and A.28 into
Ž .A.21 we obtain

1r22 2w Ž .Ž .xds s a 1 y e 1 y «

1r22 2 4Ž Ž . Ž ..1 y 1r5 e sin c q O e
? dc3r22 2 4Ž Ž . Ž ..1 y 6r5 « sin c q O eŽ .A.29

1r22 2w Ž .Ž .xs a 1 y e 1 y «

17
2 2 4Ž .? 1 q e sin c q O e dc .ž /10

Ž .The linearized form of A.29 is

1r22 2w Ž .Ž .xDS s Dc a 1 y e 1 y «

17
2 2? 1 q e sin c ,ž /10

Ž .A.30

TABLE 8

Definition of Linearized constraint
latitude formula Eccentricity

1 2 2 2Ž .Elevation angle DS s Df A 1 q e sin F e s 2CC C2

of center ray
3 22 2 2Ž .Elevation angle DS s Dl A 1 q e sin L e s CN N2 3

of normal
17 102 2 2Ž .Elevation angle DS s Dc A 1 q e sin C e s CP P10 17

of plumb line

where c is the midpoint latitude of the observed
arc Dc .

To summarize, we have in all three cases a lin-
earized constraint equation of the form

Ž . Ž 2 .A.31 DS s Dl A 1 q C sin L ,

whereby the meaning of the observed Dl and L
depends on the definition of the latitude. An adjust-
ment provides numerical values for the constants
A and C. These values depend on the data but are
independent of the definition of the latitude. On the
other hand, the formula for the computation of the
eccentricity of the fitted ellipse from the value of C
depends on the definition. The different formulas
are summarized in Table 8. To derive relations
among the ellipticities f that correspond to differ-
ence eccentricities e, let us assume that the square
e2 of an eccentricity is related to the square e2 ofN
the ‘‘normal’’ eccentricity by

Ž . 2 2A.32 e s g e .N

Ž .Then one can derive from 2.4 the following rela-
tionship between the corresponding ellipticities:

2 y fNŽ .A.33 f s g f .N Ž .1 q 1 y g f 2 y f' N N

The value of g for the center ray is

Ž .A.34 g s 3.C

and the value of g for the plumb line is

15
Ž .A.35 g s .P 17

Ž .Equation A.33 is used in Section 6 with the corre-
sponding constraints g and g to compute theC P
inverse ellipticities 1rf and 1rf , respectively.C P
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