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CHARACTERIZATIONS OF ESTIMABILITY IN THE GENERAL
LINEAR MODEL!

By I. S. ALALOUF AND G. P. H. StyaN
Université du Québec a Montréal and McGill University

In the general linear model &(y) = XB, the vector AB is estimable
whenever there is a matrix B so that &(By) = AB. Several characterizations of
estimability are presented along with short easy proofs. The characterizations
involve rank equalities, generalized inverses, Schur complements and parti-
tioned matrices.

1. Introduction. Consider the general linear model

(1) b(y) = XB,

where X is a given n X p matrix, B is a p X 1 vector of unrestricted unknown
parameters, and y is an n X 1 vector of observable random variables. We wish to
estimate the s X 1 vector

2 AB,
where A is a given s X p matrix. When there exists an s X n matrix B so that
(3) &(By) = AB,

then AP is said to be estimable (Bose, 1944; Scheffé, 1959, page 13). It follows at
once, using (1), that (3) holds if and only if

(4) A = BX,
or equivalently,
) %) = rx),

where r(-) denotes rank.
Roy and Roy (1959) showed that the null hypothesis AB =0 is completely

tesgable whenever
(6) r(XT) = r(X) — r(A),

where the matrix T spans the null space of A. Milliken (1971) showed that (4) and

(6) are equivalent; see also Alalouf (1975, page 50) and Baksalary and Kala (1976).
Other characterizations of (4) have been obtained. If X~ is any generalized
inverse or g-inverse of X satisfying

@ XXX =X,
then (4) holds if and only if
®) AX X = A

This was proved by Searle (1965) with X~ = (X’X) X', which is a g-inverse also
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satisfying

9) ) X XX =X~
and

(10) (XX~) = XX".

Following Rao and Mitra (1971, page 16) we say that X~ is a reflexive g-inverse if
both (7) and (9) are satisfied, and then set X~ = X, and say that X~ is a least
squares g-inverse if both (7) and (10) are satisfied and then set X~ = X . It is easy
to see that a g-inverse X~ is reflexive if and only if »(X™) = r(X). Moreover,
B = Ky is a solution of the normal equations X'’X8 = X’y if and only if K is a
least-squares g-inverse of X, cf. Rao and Mitra (1971, page 48). (Golub and Styan
(1973, page 266) asserted that such a g-inverse must also be reflexive, i.e., of the
form X~ = (X'’X)~X’, but this is not necessary.) .

It has also been shown, e.g., by Scheffé (1959, page 14), that if AB is estimable
then AP is invariant to the choice of solution § to the normal equations. Equiv-
alently, AX; is invariant to the choice of least-squares g-inverse X, . We show that
this condition also implies estimability. Mitra (1972) showed that r(AX ™) invariant
for every g-inverse X~ is equivalent to (4).

Milliken (1971) claimed that estimability is generally difficult to check, and
recommended using (6) with
(11) r(XT) = tr XT(XT)",
where (XT)* is the Moore-Penrose g-inverse of XT, i.e., that reflexive least-squares
g-inverse (XT)~ for which (XT)™XT is symmetric. We prefer using (5) or (8) after
an orthogonal reduction of X to triangular form, as recommended by Golub and
Styan (1973, page 269).

Our purpose in this paper is to collect together the various characterizations of
estimability and as far as possible to supply short easy proofs. We believe that
some of the characterizations and almost all of the proofs are new. We will assume
only that

(12) r(X) < min(n, p).

2. Results. The characterizations of estimability fall easily into those that
involve X and those that involve X'X.

THEOREM 1. Characterizations of estimability based on X. The vector AB is
estimable when & (y) = X, if and only if any one of the following seven conditions
holds.

(1.1) A = BX for some matrix B,

(1.2) r(?: = 1(X), |

(1.3) r{X(I — A7A)} = r(X) — r(A) for some g-inverse A~,
(1.4) AX™X = A for some g-inverse X,

(1.5) AX; is invariant for every least-squares g-inverse X,
(1.6) r(AX)") is invariant for every least-squares g-inverse X,
(1.7) r(AX;") = r(A) for every least-squares g-inverse X; .
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If any one of these seven conditions holds then (1.3), (1.4), (1.6) and (1.7) hold for
all g-inverses A~ and X~.

Conditions (1.5), (1.6) and (1.7) appear to be new characterizations of estimabil-
ity. They point to the interesting fact that the weaker condition (1.6) implies the
stronger condition (1.5). Characterizations involving least-squares g-inverses are
especially interesting since these are the g-inverses that provide estimators and test
statistics. Moreover, computationally stable procedures, such as those suggested by
Golub and Styan (1973), provide a least-squares g-inverse in addition to estimators
and statistics.

From a computational point of view forming the matrix X'X and solving the
normal equations X’XB = X'y may lead to difficulties, cf. e.g., Stewart (1973, page
225). In some design situations, however, the matrix X’X may be known explicitly,
cf. e.g., Searle (1971, Chapter 7), and it might then be easier to check estimability
using the square p X p matrix X'X than the (usually larger) n X p X.

THEOREM 2. Characterizations of estimability based on X'X. The vector A is
estimable when & (y) = XB, if and only if any one of the following ten conditions
holds: :

2.1) Aﬁ is invariant for every B satisfying X’Xﬁ = Xy,

2.2) r( XAX) = HX'X),
(2.3) rH{X'X(I — ATA)} = r(X'X) — r(A) for some g-inverse A~,
(24) AX'X)"X'X = A for some g-inverse (X'X),

(2.5) AX'X)" A’ is invariant for every g-inverse (X'X)~,

(2.6) r{AX'X)" A’} is invariant for every g-inverse (X'X)",
2.7) r{AX'X)"A’} = r(A) for every g-inverse (X'X)~,

2.8) r(x'x A') = r(X'X) + r{AX'X)"A’} for some g-inverse (X'X)",

A 0
(X'X)™ + (XX)"ASTAXX)", —(XX)TAST) _(XX A')-
(2.9) B _
- S_A(X'X) s S- A 0
for some g-inverses (X'X)™ and S™, where S = — AX'X)" A/,
@.10) [ XX+ XX)TASTAXX)", -~ (XX)"A'S* =(X’X A,)+’
_S+A(Xlx)+ , S+ A 0

where S = — AX'X)*A".

" If any one of these ten conditions holds then (2.3), (2.4), (2.8) and (2.9) hold for all
g-inverses A~, (X’X)™ and S™. Moreover the g-inverses (X'X)™ and S~ in (2.9) may
then all be chosen differently.

Conditions (2.5), (2.6) and (2.7) are known to be necessary for estimability. It
does not seem to be known, however, that these conditions are also sufficient.
Conditions (2.8), (2.9) and (2.10) appear to be entirely new.

‘The matrices S = — AX’X)"A” and —AX'X)*A’ in (2.8), (2.9) and (2.10) are
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Schur complements of X'X in the partitioned matrix
(x'x A )
A 0/
a partitioned matrix of this type has been extensively considered by Rao (1973,
pages 294-298) and is called “the fundamental bordered matrix of linear estima-
tion” by Hall and Meyer (1975). Thus (2.8) represents rank additivity on the Schur
complement, while (2.9) and (2.10) show then that the usual formula for the inverse
of a partitioned matrix may be extended using g-inverses. As shown by Rao (1973,
pages 294-298), the fundamental bordered matrix of linear estimation plays a
central unifying role in his treatment of the general linear model. It is, therefore,
not unlikely that the matrix
(x'x A’)
A 0
will prove useful in this context also.

3. Proofs. To establish Theorem 1 we will use the following lemma.

LemMMA 1 (Marsaglia and Styan, 1974a, page 274). For conformable matrices E
and F and for any choices of their g-inverses E~ and F~

(13) r(PF:) — HE) + r{F( — E"E)} = r{E(I - FF)} + r(F),

(14) r(E, F) = r(E) + r{(I — EE7)F} = r{(1 - FF)E} + r(F).
Proor. Since the matrix
- I 0
G= ( —FE- 1)
is nonsingular, we have that
r(g) = r{G(E)} = r(F(I —EE‘E)) =r(E) + r{FOI—EE)},

as the row spaces of E and FI — E™E) are virtually disjoint. The other equality in
(13) follows similarly, while (13) = (14) by transposition. []

Proor oF THEOREM 1. From (13) we have

as) A X) =0+ (AT - X7X0) = (XU~ A74)) + A(A)
and so (1.2) & (1.4) & (1.3) follow at once; putting B = AX™ gives (1.4) < (1.1).
Moreover (1.1)=> (1.5) because the symmetric projector XX, is unique. Clearly
(1.5)= (1.6). We now prove that (1.6) =(1.7)=(1.1). Let X have rank r and

singular value decomposition

—_plD 0) ,
1 =
(16) x-p(D Yo,

where D is r X r diagonal positive definite, P is n X n orthogonal and Q isp X p
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orthogonal. Then, cf. Marsaglia and Styan (1974a, page 273),
-1
17 X; = (D 0 )P’
(17) F=q(%' o
is the general form of a least-squares g-inverse, where G is (p — r) X r and H is
(p — r) X (n — r). From (12) we see that both G and H are always present in (17).
Substituting (17) into (1.6) yields

(18) r(AX;) = r(A; + A,G, AH) = g,

say, for every G and H, where

(19) AQ = (A}, A),

with A, s X r. It follows then that with G = 0, .

(20) g =r(A) = r(A, AH) = r(A) + r{(I - A|AT)AH}

for every H, using (14). Thus (I — A|A;)A,H = 0 for every H and hence (I —
AAD)A, = 0, so that using (14) again,

(21) g=r(A)=r(A)+r{I- AADIA, ) = r(A),

and so (1.6) = (1.7). Now choose G = — Ay A, and H = 0 in (18). Then

(22) g=r{I- AA7)A} = r(A) — r(Ay)

using (14), and so A, = 0. Thus

(23) A=(A,00Q =(AD}, 0)P’P(]3 g)Q',

and (1.7) = (1.1), with B = (A,D "}, O)P".

If any one of the conditions (1.1) through (1.7) holds then (1.3) and (1.4) hold for
all g-inverses A~ and X~ by Lemma 1; with A = BX from (1.1) we see that
rAX™) = r(BXX") = r(BX) = r(A), since (XX~) = r(X), and so (1.6) and (1.7)
hold for every g-inverse X™. []

To prove Theorem 2 we will use Lemma 1 above and the following three
lemmas.

LemMMA 2 (Rao and Mitra, 1971, page 48). Let K be a p X n matrix. Then K is a
least-squares g-inverse of X if and only if X'’XK = X'.

LemMa 3 (Rao, 1973, page 296). Let X and A each have p columns. Then

XX A)_ (X

(24) r( A0 ) = r(A) + r(A).

LEMMA 4 (Marsaglia and Styan, 1974b). Let E” be a particular g-inverse of E
and let S = H — GE'F. Then for a particular g-inverse S™,
(25) (E‘+E”FS‘GE“ —E"FS‘) - (E F )‘

—-S~GE S~ G H

if and only if

(26) r(g fl) = r(E) + r(H — GE'F),
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and then (26) holds for every g-inverse S~. Moreover if S = H — GE™F then
@7) (E++E+FS+GE+ —E+Fs+) - (E F )*

—-S*GE* S+ G H
if and only if

(28) r(g) =rEF)=r(E) and r(ll_;) = r(G, H) = r(S).

While both Lemma 2 and Lemma 3 are easy to prove, we have not been able to
find a short and easy proof of Lemma 4.

PrOOF OF THEOREM 2. We note that § = Ky solves X'Xp = Xy = X'XK = X’
and so (2.1) & (1.5) by Lemma 2. From (13) we have

@ o XAX) = r(XX) + r{A[I - (XX)”XX]} = r(XX(I - A-A)} + r(A),
and thus (2.2) & (2.4) & (2.3). Putting AX'X) "X’ = B in (2.4) implies (1.1), while
(1.1) = (2.4) since X(X'X)"X'X = X. Also (1.1) = (2.5) as X(X'X) X' is invariant,
and (2.5) clearly implies (2.6). Choosing (X'X) ™ positive definite gives (2.6) = (2.7).
To show that (2.7) = (1.1) we use (16) to write

(30) AX'X)" A’ = AQ( Dl\;z ;)Q’A’.

NowletM = — A7A D 2=L"and N = A;A,D %A; A)), where AQ = (A, A)),
cf. (19). Then

(31) HA) = r{A(XX)~ A') = r{ A, Az)( N )D—2}
=r{(I— AA7)A )} = r(A) — r(Ay),
using Lemma 1. Thus A, =0, and using (23) we see that (2.7)=(1.1). Now

suppose (2.8) holds. Then using Lemma 3 we have that

(32) r(i() + r(A) = r(X’X) + r{A(X'X)” A"}

< r(X) + HA) < r(f) + H(A),

and so (2.8) = (1.2). To see that estimability implies (2.8) we note from (2.7) and
(1.2) that

(33) HX'X) + r{AX'X)” A’} = r(X) + r(A) = r(i) + r(A).

Then (2.8) follows at once using Lemma 3. The first part of Lemma 4 proves that
(2.8) = (2.9), while the second part of Lemma 4 shows that (2.10) holds if and only
if, from (28),

(34) r( XAX) = r(XX) and r(A) = r{AXX)" A},

cf. (2.2) and (2.7).
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It follows from Lemma 1 that if (2.2) holds then (2.3) and (2.4) hold for all
g-inverses A~ and (X'X)”. Moreover, (2.5) shows that (2.8) holds for every
g-inverse (X'X)~, while Lemma 4 then implies that (2.9) is valid for all g-inverses
(X'X)” and S™ = {—AX'X) A’} 7; to see that these g-inverses may all be chosen
differently, multiply out

(35)

(x'x A’) XX)r + (XX); ASTAXX);  — (XX);A'S;y (x'x A’)
A 0 —S;AXX)S Si A0

using (2.4) and (2.5). Also needed are the invariance of A’'S™A and of A’S™S which
follow from (2.7).]]
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