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THE BERRY-ESSEEN THEOREM FOR U-STATISTICS

By HERMAN CALLAERT AND PAUL JANSSEN
Limburgs Universitair Centrum, Belgium

Assuming only the existence of the third absolute moment we prove
that sup; |P(on2Uns < x) — ©(x)| < Cvsa,~%n~t where U, is a U-statistic.
This concludes a series of investigations on the Berry-Esseen theorem for
U-statistics by Grams and Serfling, Bickel, and Chan and Wierman.

1. Introduction. Let X, X,,. .., X, n>2,bei.i.d. random variables with com-
mon distribution function F. Define a U-statistic by U, = (3)™! 3} ,<i<;5. #(X;, X))
where 4 is a symmetric function of two variables with EA(X,, X,) = 0 and such
that g(X,) = E(h(X,, X,)| X,) has a positive variance ¢,. It then follows from
Hoeffding (1948) that the distribution function (df) of ¢,-'U, converges for
n — oo to the standard normal df @ under the sole condition of the existence
of ER(X,, X;). A study of the rate of this convergence started in 1973 with a
paper by Grams and Serfling showing that sup, |P(¢,7'U, < x) — @(x)| is of the
order O(n=7/**), n — oo, when Ei" < oo, leading to O(n~#*¢), ¢ > 0, when A
has finite moments of all orders. An order bound of exactly O(n-t) was found by
Bickel (1974) assuming U-statistics with bounded kernels 2. Chan and Wierman
(1977) succeeded in weakening considerably the assumptions of the previous
theorems obtaining the order bound of O(n-t) when the fourth moment exists
and O(n~t log? n) for kernels A with finite third absolute moment. We now prove
that O(n=t) can be attained requiring only the existence of the third absolute
moment which is a natural assumption for a Berry-Esseen theorem. With only
some easy additional computations it will be shown that sup, |P(s,'U, < x) —
®(x)| < Cyyo,~*n~t for all n > 2, indicating a nice analogy with the classical
Berry-Esseen theorem.

The notation of this paper mainly adheres to that of Chan and Wierman and
also the technique used in the first part of the proof is based on their work.

2. The Berry-Esseen bound. Let U, = (3)™ Zisicisa (9(X:) + 9(X;)) be the
projection of U,. Note that E U, =0and put ¢,* = EU,? which equals 4¢ *n~'.
Denote (U, — U,)é,"* by A, and split it up into two parts A,” and A,” such that
A, = (3)7'6,7" Digicise, Yi; With Yy, = h(X,, X;) — g(X,) — g(X;). The quantity
¢, will be determined in the course of the proof and plays an essential role in
obtaining various order bounds for several terms to be estimated.

THEOREM. Let U, = (3)7" Xigicisa M(Xi, X;) be a U-statistic such that 9(X)) =
E(k(X,, X,)| X,) has positive variance ¢ 2. If v, = E|h(X,, X,)|* < oo then there exists
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an absolute constant C such that for all n =2 )
(1) sup, |P(¢,7U, < x) — O(x)| < cua}r,-an—é .
Proor. First note that
o) = E¢¥(X,) = Eh(X,, X;)h(X,, X;) < ER(X,, X,) S vt < o0,
so that v;0,7* = 1. Also E|g(X,)]’ < v, Let S, = 4,70, = n-ie," 37, 9(X,)
which is a standardized sum of i.i.d. random variables with finite third absolute
moment. Note that ¢,~'U, = (S, + 4,’) + A,” and write
) sup, |K(3,7U, < x) — D()|
< sup, |P(S, + A, < %) — ()| + K(A,"| = a,) + O(a,) .
Then, with ¢, the characteristic function of X,

() §ee” — g (D) dt

< 55 e — g (] dt + 5 s (1) — s, (D)) dE
From the proof of the classical Berry-Esseen theorem it follows that
(4) Jort e — g (1)] dt < C,E|g(X,)['o,"n"t < Cyvy0,5n~

for ¢ = ¢,%/E|g(X,)]>. Throughout the C, are absolute constants.

We now start the estimation of the last integral in (3). Writing » for the
characteristic function ¢, ,, we have [p(9)| < exp(—49%?) for |9| < es,~* and
¢ as above. Also note that E(f(X;)Y,;) = 0 for any bounded Borel-measurable
function f. Then |¢s (1) —@s, 1a (1) = |E€™Sn(1—e*ta)| < |Eet*Snith,!| + $EA,"”.
Now, for 0 < ¢t < ent and n > 4,
|Ee"*nd,[| = 30,714(3) 7 Disicise, E(explitn™to,™! 3isy ; 9(X,)])

X E(exp[itn~ia,"[g(X;) + 9(X )Y )l
= §0,7'n4(3) 7 p(nta, )
X IZngjgcn E(expl[itn—to ,~'g(X;)]— 1)(exp[itn—to ,'g(X,)]—1)Y,|
< Jo,~nHeIE|g(X,)g(X )Y, |
< 3v,0,7n et
Hence, for d, < ent,
(%) §an t=1| Ee*Snith,!| dt < 3v,0,7%n4 (In e~/ dt
_ < 9(6m)ty,0,n7t .

Remark that the last estimate, which is also valid for n = 2, 3 as may be seen
by direct computations, is independent of the choice of d,. Also ¢, does not play
any particular role at this moment. Further, since EA,” < ER'(X,, X,)o0,7?n"! <
v,0,7°n"!, we have
(6) $EA.” (g tdt < Yvgo,7%n7d,}

which for d, = nt yields the upper bound 1v,0,~°n=%. The estimates (5) and (6)
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are sufficient for all n such that ent < nt. If d, < en? we write
|Eetsn(1 — eitt)|
|E explitn~to, ™ 34, 9(X,)]|E|exp[itn~ta,~ Dikse, 9(X)](1 — €4n)|
tE|A,|[p(nta,7M)|"0n
tvyo,~*n~t exp(—(n — c,)n='2[3) .

IA A A

Hence
(1) § s, () — @s,ea(D] dE < o, 00t {5 exp(—(n — c,)n'r[3) dr .
Here the flexibility of a choice for.d, and ¢, already becomes clear. As an
example we could take d, = n* and ¢, = [n — 3nt log n] which is, in the Chan
and Wierman paper, a crucial choice for obtaining the overall order bound of
O(n~*logt n). The estimate in (7) then becomes C,v,¢,~°n~* but it is easily seen
that many other d, and ¢, provide an analogous bound. From the classical
Berry-Esseen argument, together with (4), (5), (6), (7) and a suitable choice of
d, and ¢, we obtain '

sup, |P(S, + A, < x) — O(x)| < Cyyo,~*nt

yielding the desired result for the first term on the right-hand side of (2). For
an estimate of the other terms in (2) we use the following

LEMMA. With the notations and the assumptions as in the above theorem one has
(8) , E|A,]P £ Cyy0,7%(n — ¢,)in™? for n=2,3,....

We postpone the proof of the lemma to the end of this paper.
It now follows from the Markov inequality that

9) P(A,| = a,) £ Cyy0,7°n7%(n — c,)ia,™?

and again we have a lot of freedom in choosing a, and ¢,. One systematic way
consists in taking ‘

(10) a, = [n~¥(n — c,)i}
and then choosing ¢, such that a, < C;n~t. This yields
(11) P(A,| = vy0,7%,) < P(|A,)| = a,) £ C0,7%,

which is sufficient for obtaining the estimate Cyv,0,~*n~* for the last two terms
in (2). We finally note that ¢,’ = (3)"Y(ER*(X,, X,) + 2(n — 2)0,%), and hence
forn =2

g

_1‘§ onz‘lté 1 <I+M)§3ya%-an-l,

g,z n—1 20}

n

s,
completing the proof of the theorem.

3. Some remarks on the quantities a,, c,, and d,. If one only wants the order
bound O(n~*) in the Berry-Esseen theorem, the above proof could be somewhat
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simplified by making in advance a suitable choice of a,, ¢, and d, and then,
without further discussion, showing that (1) holds. We preferred not to follow
this way for the following reason. If one is interested in some numerical value
for the constant C in (1) the possibility of altering a,, ¢, and d, within some
suitable ranges may provide easier and sharper numerical bounds on the various
C, appearing in the proof. In fact, within our framework, one is able to dis-
tinguish between dominant terms yielding O(n~*) and terms which are o(n-%)
for n — oo.

To make this explicit we determine the ranges for the quantities under con-
sideration. From (7) and (10) it follows that n — ¢, may vary from O(n} log n)
to O(n*) while d, is at most O(n) by (6). Taking.n — ¢, = nt in (7) we find
O(ni(log n)t) as a lower bound for d,. Finally a,, is related to ¢, by (10). It now
becomes clear that apart from the estimate in (4) which obviously cannot be
smaller than O(n~t), the only dominant term appears in (5). All other estimates
relevant in the proof of (1) can be made o(n~*) by staying away from the end-
points of the ranges indicated above. This makes it possible to write (1) as

sup, |P(s,7'U, < x) — @(x)| £ C/v,0,7*n "t 4 Clo(n7t)
where C, is considerably smaller than C,'.

PROOF OF THE LEMMA. Define §; by

(12) (g)énAn" = Z;!’=c”+1 Zg;]ﬁ} Yij - Z;'L=c,n+1 éj .
We have §, = 0 and E(§,,, |, -- -, §,)=0as.forj=1,2,.... Hencethe §;
are martingale summands and, by optional skipping, V, = ;7;‘:’; 1§, forms a

martingale, k = 1,2, ..., n — ¢c,. Applying a theorem. of Dharmadhikari,
Fabian and Jogdeo (1968) we get for k = n — ¢,
(13) BV, [ < 2%(n — ¢,) max, .z, EIEI .
But for fixed j > ¢, + 1, W, = 3k, Y, , k =1,2,...,j — 1, is also a martin-
gale and the same argument yields for j = 2, 3, ...
(14) E|§,P = E|W,_\|° < 2%(j — )i max,,_;, E|Y,|* < 2123%(j — 1)by,.
Then, from (12), (13) and (14)

E|(3)3,4,"° < 243%(n — c )} (n — 1)k,
and hence .
E|A,]P < 2M34n — c,)in",0,73 for n=2,3,...,
which proves the lemma.

4. The c-sample case. Although we proved the Berry-Esseen theorem only
for a one-sample U-statistic of order two, the result remains valid for the general
case of multisample U-statistics of arbitrary order provided that the minimum
sample size tends to infinity. The proof is based on the same ideas as used in
this paper but becomes computationally more involved and will not be given
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here. For more details we refer to the Ph. D. thesis to be completed by Paul
Janssen.

Notke. In the proof of the theorem the quantity A,” has been separated from
the U-statistic and handled by the Markov inequality. An alternative procedure
consists in writing A, = A,, + A,,, then making a Taylor-expansion of Ee*s
and using an independence argument. This method will be displayed in a forth-
coming paper on the Edgeworth expansion for U-statistics, co-authored by N.
Veraverbeke and the authors.
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gestion of showing the dependence of the order bound on F and # explicitly.

REFERENCES

[1] BickkL,P.J.(1974). Edgeworth expansions in nonparametric statistics. Ann. Statist. 2 1-20.

[2] CALLAERT, H., JAnssEN, P. and VERAVERBEKE, N. (1977). Edgeworth expansion for U-sta-
tistics. Unpublished manuscript. ' '

[3] CHAN, Y. and WIERMAN, J. (1977). On the Berry-Esseen theorem for U-statistics. Ann.

" Probability 5 136-139. . o

[4] DHARMADHIKARI, S. W., FABIAN, V. and JoGDEO, K. (1968). Bounds on the moments of
martingales. Ann. Math. Statist. 39 1719-1723.

[5] Grams, W. F. and SERFLING, R. J. (1973). Convergence rates for U-statistics and related
statistics. Ann. Statist. 1 153-160. '

[6] HOEFFDING, W. (1948). A class of statistics with asymptotically normal distribution. Ann.
Math. Statist. 19 293-325.

DEPARTMENT OF MATHEMATICS
LiMBURGS UNIVERSITAIR CENTRUM
B-3610 DIEPENBEEK, BELGIUM



