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A RATE OF CONVERGENCE OF A DISTRIBUTION
CONNECTED WITH INTEGRAL REGRESSION
FUNCTION ESTIMATION

By GARY MAKOWSKI
Marquette University

Brunk studied integral regression functions and has obtained strong
laws and limiting distributions for estimators of these functions. In this
note we will study additional conditions that ensure a rate of convergence
of the distribution function of the maximum absolute difference of an
integral regression function and its estimator, suitably normalized, to the
distribution function of a normalized maximum absolute value of partial
sums of random variables. These results are corollaries of convergence
results obtained by Sawyer and Rosenkrantz.

1. Introduction. We will define and discuss integral regression functions.
What immediately follows is very similar to Section 2 of [1].

Suppose that associated with each point 7 of the unit interval there is a uni-
variate distribution D(r) with mean p(r); u(+) is called the regression function.
Let {t,} be a sequence of numbers in [0, 1], not necessarily distinct, to be called
observation points. For each n, let Y,(¢,) denote a random variable having the
distribution associated with z,, so that EY,(z,) = p(¢,); and let the random
variables {Y,(,)} be independent. Write 4;(+) the indicator function of [#;, 1]
and set

S, () = 271 Yi(t)hy(t) tef0, 1].
Define s, to be the variance of S,(1) = 237, Y;(z;). Let F,(+) denote the
“empirical distribution function” of {#,, - - -, z,}. For a given probability distri-
bution function F with support in [0, 1] set

M(t) = S0,y () dF(v)
for each 7in [0, 1]. M is called the integral regression function. Also let
M, (t) = ES,()[n = §p0,4 #(v) dF,(v) .

We will take S,(¢)/n as our estimator of M(7). Brunk [1] has obtained sufficient
conditions for the a.s. convergence of D, = sup, |S,(f)/n — M(?)| to zero. (Here
and elsewhere we will write sup, in place of sup,,,.) He also obtained the
limiting distribution of D,.

2. Maximum absolute value of partial sums. In what follows let {X,} be a
sequence of independent random variables that are centered at expectations. Let
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S, = 2%, X; and write ¢,? for the variance of S,. Define G,(x) and G(x) by
G,(x) = P[max,giz, S| < x0,]
G(x) = (4/=) L [(—=1)"/(2n + D] exp[—(2n + 17z/(8x7)], x>0
=0 ) X é 0.
This note is a corollary of the following result obtained for 2 < p < 4 by
Rosenkrantz [2] and for 5 < p < oo by Sawyer [3].

THEOREM 1. If ¢,*/n = J, and Y %, E(|X,|?)/n < J, where J, and J, are positive

constants and p satisfies either 2 < p < 4 or 5 < p < oo, then
sup, |G,(x) — G(x)| < A(log n)in=4#=2/2+D — W(n)
for some positive constant A whose value depends only on J,, J, and p.

3. Integral regression functions. In applying the preceding to integral re-
gression functions set D,’ = sup, |S,(1)/n — M,(?)|, A, = sup, [M, (1) — M(?)],
d, = sup, |F,(t) — F(7)|, and observe that
(1) Dn’_A'néDn éJDn’_l'An'

Thus
PID,’ < (x — A,/s,)s,] < P[D, < x5,] < P[D,’ < (x + A,[s,)s,]
and
sup, IP[D'n = xsn] - G(X)I
< max {sup, |P[D,’ < (x + A,/s,)s.] — G(x)],
sup, [P[D," = (x — Au/s.)5,] — G(x)l}
< max {sup, |P[D,’ < (x + A,/s,)s,] — G(x + Du/s,)|
+ sup, |G(x + A,/s,) — G(x)],
sup, IP[Du, = (X - An/sn)sn] - G(X - A'n/sn)l
-+ sup, IG(X - A'n/sn) - G(X)I}
= sup, |P[D,’ < x5,] — G(x)| + sup, [G(x + A.[s,) — G(x)| -

Since G(-) satisfies a Lipschitz condition we can write sup, |G(x + A,/s,) —
G(x)| £ 4,A,/s, for some positive constant 4;,. Hence
(2) sup, |P[D, £ xs,] — G(x)| < sup, |P[D,’ < xs,] — G(x)| + A,4,/s, .
Theorem 1 and the above discussion enable us to state the following result.

THEOREM 2. If {Y,(t,)}:., satisfies the hypotheses of Theorem 1 and p is continu-
ous on [0, 1], then there is a positive constant A, such that
©) sup, |P[D, < x5,] — G(x)| < W(n) + Ayd,[n}

< W(n) + Ay/nt.

ProoOF. Since D,’ is just a maximum absolute value of partial sums of the

random variables {Y;(#) — (1)), Ya(ts) — p(t), - - +» Yo(t,) — p(t,)} when they
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are permuted in some way (see [1], page 179) we can use Theorem I to conclude

that
sup, |P[D,’ < xs,] — G(x)| = ¥(n) .

Since x(-) is continuous on [0, 1], A, < 4,d, < A, for some positive constant
A,. The conclusion follows from (2) and the hypothesis ,’/n = J; of Theorem 1.

It is interesting to note that W(n)~' = o(n?). Thus for the rate W(n) and the
variance s, that is bounded away from zero, by (2), the boundedness of A, is
all that is needed to ensure a 2W(n) convergence rate for sup, |P[D < xs,] —
G(x)|; this rate obtains whether or not F, converges to F.

The situation when the observation points {T,} are random variables and the
distribution of Y, given [T, = #,] is denoted by D(z,) (so that E(Y,|T, = 1) =
(7)) is called an independent observations regression model and is considered
by Brunk [1]. We now define F,(-) to be the empirical distribution function of
T, ---,T,. Following the argument of Corollary 2.5 [1] one can consider the
case where Theorem 2 holds on a set of points {z,} of probability 1 and derive
a convergence rate for sup, |P[D, < xs,] — G(x)|:

THEOREM 3. In an independent observations regression model assume that for
positive constants p, J,, and J, with probability 1 for every n the distributions D(T)),
D(Ty), - - -, D(T,) satisfy the hypothesis of Theorem 2. Then (3) holds and

sup, |P[D, < x5,] — G(x)| < 2¥(n)
for n sufficiently large.

INDICATION OF PROOF. (See [1] for definitions of terms.) Set C = {w; = (4,
t,, - - -) € Q;: for positive constants p, J; and J,, given in the hypothesis of Theorem
3, for every n, the distributions D(z,), D(t,), - - -, D(t,) satisfy the hypotheses of
Theorem 2} and B(x, ®,) = {0,€Q,: (0, ®;) €[D, < x5,]}. By assumption
P(C) =1, and

sup, |P[D, < xs,] — G(x)| = sup, |{¢ (P,"(w:; B(x, @) — G(x))Py(dw,)|
(¢ sup, |Psi(w,, B(x, w,)) — G(x)|Py(dw,)
= o [¥(n) + Ayfn*]Py(dw)
= W(n) + A4,/nt < 2¥(n)

A

for n sufficiently large.

ReMARK. The continuity of x# can be replaced by the following condition “x
is bounded, and continuous on all but a finite number of points at which g is
left continuous,” provided that the integrals §;, ,; #(v) dF(v) and §, ,; p(v) dF,(v)
are interpreted as Darboux-Stieltjes integrals.

REFERENCES

[1] Brunk, H. D. (1969). Estimation of isotonic regression. Nonparametric Techniques in Sta-
tistical Inference, 177-195. Cambridge Univ. Press.



832 GARY MAKOWSKI

[2] RoseNkRANTZ, W. A. (1967). On rates of convergence for the invariance principle. Trans.
Amer. Math. Soc. 129 542-552.

[3] SAwYER, S. (1967). A uniform rate of convergence for the maximum absolute value of par-
tial sums in probability. Comm. Pure Appl. Math. 20 647-658.

DEPARTMENT OF MATHEMATICS AND STATISTICS
MARQUETTE UNIVERSITY
MILWAUKEE, WISCONSIN 53233



