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A NOTE ON THE ASYMPTOTIC EQUIVALENCE OF SAMPLING
WITH AND WITHOUT REPLACEMENT

By OLAv KALLENBERG
University of Géteborg

The vague statement that ‘‘sampling with and without replacement
from a finite population are approximately equivalent when the sampling
fraction is small” is given a precise meaning in terms of limit theorems for
distributions in R* and D[0, o).

It is a well-known and commonly used “fact” that sampling with and without
replacement from a finite population are “approximately equivalent” provided
the sampling fraction is “small”. This vague statement has partially been made
precise in papers by Hajek (1960) and Rosén (1964). The aim of the present note
is to give a more complete justification in the form of two limit theorems which

follow easily from results in [4].
Fork = 1,2, ..., letII, be a population with real (or vector-valued) elements

Xigs s * + s Xpwr,» DA 1€t §4y, €+ - - and 7, - + -, N4, b the values obtained by simple
random sampling with and without replacement respectively from II,. For con-
venience of writing, let 7,;, j > N,, be arbitrary random variables. We introduce
the random sequences

Ek=(‘5k1’5k2”")’ 77k=(0kv7}kz,°")’ k=1,2,...,

and further, for arbitrary positive #,, n,, - - -, the random processes X, and Y,
k=1,2, ..., defined by

Xe(®) = Zisnye b Yi(f) = Dlisnye Mai » t=0.
The former will be considered as random elements in R~ endowed with the
product topology (cf. [1], page 19), and the latter as random elements in D[0, co)

endowed with the Skorohod-Stone topology (cf. [5]). Write =, and —, for
equality and convergence in distribution respectively with respect to these

topologies [1].
THEOREM 1. Suppose that N, — oo. Then &, —, some & if and only if 1, —, some
7, and in case of convergence, & =, 7.
THEOREM 2. Suppose that n, — oo and n,/N, — 0. Then the following statements
are equivalent.
(i) X, —, some X,
(i) Y, —, some Y,
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(iii) X,(t) —, some a, for some (any) t > 0,
(iv) Y (t) >, some B, for some (any) t > 0.

If the statements are true, then X =, Y and X(t) =, a, =, B, =, Y(¢), t > O.

In Theorem 1, the “only if” part is due to Rosén (1964, Lemma 3.1). As for
Theorem 2, the equivalence of (i) and (iii) is due to Prohorov (1956, page 197)
and Skorohod (1957, Theorem 2.7), while the equivalence of (iii) and (iv) is
due to Hajek (1960, Theorem S5.1) in the particular case when Var (Y (¢)) —
Var (8,) < . (Note, however, that the statements of Theorem 2 may be true
even without this assumption, cf. Theorem 4.1 in [4].)

To indicate how the above theorems may be deduced from [4], note that
Theorem 1 follows from the fact that, by Theorems 1.2 and 1.3 in [4], the
convergence in distribution of {§,} and {7,} are both equivalent to weak con-
vergence of the empirical distributions

”k=Nk_IZ§Yi‘15xkj, k=1,2,...,

towards some probability distribution y, and that, in case of convergence, the
components of the limiting sequence are independent with common distribution
p. Similarly, statements (i) and (ii) of Theorem 2 are equivalent (with X =, Y
in case of convergence) since, by Theorems 3.2 and 4.1 in [4], they are both
equivalent to the conditions on {z,} occurring in the classical limit theorem for
null-arrays (cf. [2], page 564). Next, by continuity, (ii) implies (iv) with 8, =,
Y(t), so it remains to derive (ii) from (iv). Now (iv) implies tightness of {Y,} by
Lemma 2.1 in [4], and any limit Y of {Y,} has stationary independent increments
since this is true for {X,}. Again Y(¢r) =, 8,, determining the distribution of Y
uniquely, so we may use Theorem 2.3 in [1] to complete the proof.

It may be worthwhile to point out that Theorem 1 is equivalent to the asser-
tion (i) < (ii) of Theorem 2 in the case n, = n, = -... However, the assertions
(iii) = (i) and (iv) = (ii) are false in this case, although the corresponding tight-
ness implications remain true (cf. Lemma 2.1 in [4]). It is also interesting to note
that, if the statements of Theorem 2 (or Theorem 1) are true for one particular
sequence {n,}, then nothing can be said in general about the asymptotic behavior
when using an essentially different sequence {r,’} (and an appropriate renormal-
ization of the X, and Y,). In particular, neither of the above theorems may be
deduced from the other one.

Acknowledgment. I am grateful to the referee for some valuable suggestions.

REFERENCES

[1] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.

[2] FELLER, W. (1971). An Introduction to Probability Theory and Its Applications, 2 (2nd ed.).
Wiley, New York.

[3] HAsex, J. (1960). Limiting distributions in simple random sampling from a finite population.
Magyar Tud. Akad. Mat. Kutaté Int. Kozl. 5 361-374.



SAMPLING WITH AND WITHOUT REPLACEMENT 821

[4] KALLENBERG, O. (1973). Canonical represehtations and convergence criteria for processes
with interchangeable increments. Z. Wabhrscheinlichkeitstheorie und Verw. Gebiete 27
23-36.

[5]1 LinpvALL, T. (1973). Weak convergence of probability measures and random functions in
the function space D[0, o). J. Appl. Probability 10 109-121.

[6] ProkHOROV, YU. V. (1956). Convergence of random processes and limit theorems in prob-
ability theory. Theor. Probability Appl. 1 157-214.

[7] RosEN, B. (1964). Limit theorems for sampling from a finite population. Ark. Mat. 5 383-
424.

[8] SkoroHOD, A. V. (1957). Limit theorems for stochastic processes with independent incre-
ments. Theor. Probability Appl. 2 138-171.

DEPARTMENT OF MATHEMATICS

CHALMERS INSTITUTE OF TECHNOLOGY
AND THE UNIVERSITY OF GOTEBORG

Fack S-402 20 GOTEBORG 5

SWEDEN



