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PROBABILITY INEQUALITIES AND ERRORS
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Let X and Y be two p X 1 random vectors distributed according to a
normal distribution with respective mean vectors ¢ and ay and covariance

matrix
( I Plﬂ)
ol L)’

Let S be a random p X p matrix distributed as the Wishart distribution
Wy(Ip, r), independently of X and Y. For fixed a, p, and c, some sufficient
conditions are obtained for which P[X"Y < ¢] and P[X"S-1Y < c] increase
with p’p. These results are used to show a monotonicity property of the
probabilities of correct classification of a class of rules for classifying an
observation into one of two normal distributions. For the classification
problem, some estimates of the probability of correct classification of the
minimum distance rule are studied.

1. Introduction. Consider p independently distributed random vectors (X, Y;),
i=1,...,p, where (~ indicates “distributed as”)

(Xo> i) ~ Nof (115> apt), (5 91

i=1,...,p. Let S be a random p X p matrix distributed according to the
Wishart distribution W (1, r), independently of X,’s and Y,’s. Define

(1.1) G(y; a, p,¢) = P[X'Y < ¢],
(1.2) H(y; a, p, ¢) = P[X'S7'Y < ¢],

where X’ = (X, -+, X,), Y = (Y}, -+, Y,).

In Section 2 we have obtained some sufficient conditions for which the func-
tions G and H increase monotonically with ¢/u for fixed a, p, and ¢, where
¢ = (¢ -+ p,). These results are used in Section 3 to show a monotonicity
property of the probabilities of correct classification of a class of rules for clas-
sifying an observation into one of two p-variate normal distributions. For this
problem, some properties of two standard estimates of the probabilities of correct
classification for the minimum distance classification rule are studied in Section 4.

2. Probabilty inequalities.

THEOREM 2.1. The function G involves p only through p'p. It is a monotonic
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increasing function of p'u if any of the following conditions hold:

(l) —-1<a§0,a§p,c§0,
(i) a< —1,1/a < p,c £ 0,
(iii) a = —1.
In the above, G is a strictly increasing function of ¢/¢ unless a = p=¢ =0
ora=p=—1,¢=20,0orp=+1,(1 —a)y'p+4c<0.

Proor. By taking an orthogonal matrix L with its first row proportional to
¢’ and transforming X — LX, Y — LY, it can be seen that G involves y only
through ¢/ u.

(i) Define
2.1 U=aX—-Y, V=X-—5bY,
where
(2.2) b= (p—a)(l — pa).

Note that b is well-defined under the conditions (i). Then U and V are inde-
pendently distributed, and

(2.3) U~ N,0, (a@® + 1 — 2ap)I)

V ~ N, ((1 — ab)p, (b* + 1 — 2bp)L) .
Note that ab — 1 # 0. After simple manipulation it can be seen that
2.4) XY < c=bUU+ aV'V — (ab + 1)UV < c(ab — 1)*.

Let Mbe a p X p orthogonal (stochastic) matrix with its first row proportional
to V’. Define

(2.5) MU=W= W, -, W,).

Then the distribution of (W, V) is the same as that of (U, V). The region
XY < c is now equivalent to

(2.6) BW'W + aV'V — (ab + DHW,(V'V)t < c(ab — 1)1,

Let R(4) be the section of the region (2.6) in the W-space for fixed (V'V)t =
4> 0, and let g(2) be the conditional probability of the region given (V'V) = 4.
Then g(2) equals the probability content of the following region in the W-space:

2.7 [6(W'W) — c(ab — 1)*]/2 + ak < (ab + 1)W,.

(2.7) is equivalent to

(2.8) b[W, — (ab + 1)2/2b] + b 337, W2 < [2* + 4bc)(ab — 1)*/4b,
if 6 # 0, and to

(2.9) —c/At+ai W,

ifb=0(=a=p).
Let the left-hand side of (2.7) be denoted by %(4). By differentiating # with
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respect to 2, it is seen that A(4) strictly decreases as 2 increases unless a = b =
¢ = 0; this follows from the fact that a < 0,5 = 0, ¢ £ 0. Moreover, we note
from (2.8) that R(2) is an empty set if and only if, 2* + 4bc < 0. Thus g(2) = 0,
if 2 + 4bc < 0 and g(2) strictly increases with 2 when 2* 4+ 4bc > 0, unless
a=b=c=0.

Whena = b = ¢ = 0 (which isequivalenttoa = ¢ = p = 0), P[X'Y < c] = $.

Under the conditions (i), p = 1< b = 1. In that case V = (1 — a)u with
probability 1. Thus, when p = 1, G = 0 if (1 — a)’¢'¢ + 4¢ < 0 and G strictly
increases with p’p, otherwise.

Assume now p # 1. Then V'V/(b* + 1 — 2bp) is distributed as the noncentral
x*-distribution with p degrees of freedom and the noncentrality parameter
(ab — 1)*p'p/(b* + 1 — 2bp). Recall that the density of the noncentral y*-distri-
bution has the strict monotone likelihood-ratio property in the noncentrality
parameter. Using the above facts on the monotonicity property of g(4), the
distribution of ¥’V and the following lemma (which can be easily obtained after
some minor modifications of a result in Lehmann ([7], page 74)), we get the
desired result.

LEMMA. Let T be a random variable with pdf f(., 6) with respect to Lebesgue
measure, the parameter 6 being real-valued. Suppose f(t, ) > 0 for t > 0 and
f(t, 0) = 0, elsewhere. Assume, furthermore, that the family of densities f{(+, 6) has
the strict monotone likelihood-ratio property on (0, co) in 0. Let g(t) be a real-
valued monotone increasing function of t and suppose there exists a set S on (0, co)
with positive Lebesgue measure on which g is strictly increasing. Then E,g(T) strictly
increases with 6.

The above lemma will be frequently used later without mentioning it.
(ii) This follows from Theorem 2.1 (i) and the following fact: For a # 0,
G(y; a, p, ¢) = G(ap; 1/a, p, ¢) .

(iii) In this case, U and V, as defined in (2.1), become
(2.10) U=—-(X+Y), V=X-Y.
Then U and V are independently distributed, and

U ~ N,(0,2(1 + p)I) V ~ N,2u,2(1 — o)1) .

Moreover,
(2.11) XY<c=UUL4c+ V'V.

Let g(2) be the conditional probability of the above region given (V'V) = 4.
Then g(2) = 0, if 2* + 4c < 0; otherwise g(2) strictly increases with 4 unless

p = — 1.
When p = —1, U = 0 with probability 1, and XY < c is equivalent to

(2-12) —4e < V'V,
the probability of which increases with x4’y and strictly increases if ¢ < 0. For
¢ = 0, the probability is 1. :
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When p = +1, ¥ = 24 with probability 1. Inthiscase G =0, if 'yt + ¢ < 0;
otherwise G strictly increases with x/p.

For —1 < p < 1, we get the desired result after noting that the density of
V'V/2(1 — p) has the strict monotone likelihood-ratio property in p'p.

THEOREM 2.2. The function H depends on p only through ¢/ p. It is a monotonic
increasing function of ¢'p, if any of the following conditions hold.

(i) —1<a<0,agp,c=0
(i) a< —1,1jagp,c =0
(iii) a = —1.
In the above, H is a strictly increasing function of 4/ unless a =c=p =0
ora=p=—1,¢=0.

Proor. The proof of the first part is the same as in Theorem 2.1.
(i) Define U and V as in (2.3) and M as in Theorem 2.1 (i). Define

(2.13) U* = MU, S* = MSM' .

Then the distribution of (U*, S*, V') is the same as that of (U, S, V). Note that
U'S-U = U¥S*-1U*,

(2.14) V'S =S¥V,
U'S~V = (U¥S*le)(V'V)t,

where $*~! = [§*%], e = (1,0, ---,0): p x 1.

Define uniquely a lower-triangular matrix 7 such that 77" = $*~%, T = [:;1-
Define

(2.15) W=TU*= W, ---,W,).
Then
(2.16) UvS*-U*x = W'w, S =1, U*'S*~le = t, W,.
Note that ¥ and (W, T) are independently distributed and the distribution of
(W, T) is free from p. From (2.4), (2.14) and (2.15), we get
@2.17)  XSY <c

= bW'W + at, V'V — (ab + D)t, W(V'V)t < c(ab — 1)*.
The above region can be expressed as
(2.18) [6W'W — c(ab — 1P)(V'V) "5 + aty(V'V)E < (ab + D)Wy,
which is equivalent to
(2.19) B[W, — (ab + L)ty (V'V)}[2b] + b 2, W!

< (ab — 1y’[V'Ve, + 4bc]/4b,

if b == 0, and to
(2.20) —c(V'V) i3 + at,(V'VEL W,
if b=0.
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Note that (2.18), (2.19) and (2.20) are respectively similar (in forms) to (2.7),
(2.8) and (2.9). Let the conditional probability of the region (2.17), given
(V'V)t = 2and T =1, be g*(4, f). To get the desired result we argue exactly
as in Theorem 2.1 (i) with g*(4, 1), for fixed ¢, taking the role of g(1). However,
the case p = 1 needs special treatment.

When p = 1, it is seen from (2.18) and (2.19) that g(4, ¢) strictly increases in
2 unless %% 4 4bc < 0, in which case g(4, f) = 0. However, 2%}, + 4bc > 0
with positive probability. The result now follows after noting that V' = (1 — a)p
with probability 1.

(ii) Use Theorem 2.2 (i) and the following: For a =+ 0.

(2.21) H(y; a, p, ¢) = H(ay; 1/a, p, c) .

(iii) Define U and ¥ as in (2.10). Define an orthogonal p X p (stochastic)
matrix Q with its first row proportional to V. Define

(2.22) U* = QU, S* = QSQ'.
Then the distribution of (U*, S$*, V) is the same as that of (U, S, V). Note that
(2.23) U'S-U = U¥S*-U , V'SV = S (V'Y

where $*~! = [$*¥/]. Define a lower-triangular matrix 7 such that $*~* = TT",
T = [t,;]. Define

(2.24) W=TU= W, -, W).
From (2.11), (2.23), and (2.24) we get
(2.25) XS <caWWL 4+ 65(V'V).

Let g*(4, t) be the conditional probability of the above region, given (V'V)} =
A, T =t. Theng(4,t) =0, if 4c 4 t},4* < 0; otherwise it strictly increases with
Aunless p = —1.

When p = —1, W = 0 with probability 1, and X’Y < c is equivalent to

—4e < B,(V'V),

the probability of which increases with x'x and strictly increases if ¢ < 0. For
¢ = 0, the probability is 1.

When p = 1, V = 2¢ with probability 1. In this case, g(4, f) = 0, if #2, ¢'pt +
¢ < 0 (4 = 44/p); otherwise (which happens with positive probability) g(2, )
strictly increases with 4. The desired result now follows.

REMARK. (1) Note that
Gy a, p,¢) =1 — G(p; —a, —p, —¢)

and a similar result holds for H.

(2) It is evident from the proof of Theorem 2.2 that instead of having S distri-
buted as W (1, r) it is sufficient to assume that S and LSL’ have the same distribu-
tion for any orthogonal matrix L and that the distribution of S is free from p.



756 SOMESH DAS GUPTA

3. Monotonicity of probabilities of correct classification of a class of classi-
fication rules. Let X, X], X, be three mutually independent random p x 1 vectors
distributed as N, (¢, Z), N,(¢, Z/a,), and N,(p,, X/a,), respectively. Let S be a
random matrix distributed as W ,(Z, r), independently of X, X;, and X,. The
problem is to decide whether 4 = g, or # = p,; a, and a, are known constants.

Case A. X is known and taken to be equal to I,. We consider a class of deci-
sion rules given by ¢, (R > 0, ¢ < 0) which decides ¢ = p,, iff

(3.1) R(1 + 1/a)7|X — X[ < (1 + 1/a) 71X — X|[* + ¢,
where || X]|* = X’X. Let the probabilities of correct classification for a rule ¢ be
3.2) P(p) = P[p decides p = p,|p = p,], i=1,2.

THEOREM 3.1

(@) Py(¢g) strictly increases with ||y, — |, if

(3.3) (1 + 1a)™(1 + 1/a)"* < R.
(b) Both P\(¢y) and Py(¢y) are strictly increasing functions of ||p, — |, if
34 (I + 1/a)7'(1 + la)7 = R < (1 + la)(1 + 1/ay),
and ¢ = 0.
Proor. Define
3.5) U=[2X—X) — (X — X))/,
V=[2X—X)+ X — X)]/r.,
where
A= R + 1/a)7(1 + 1/a,)
(3.6) 2 = A1 + 1/a)) + (1 4 1/a,) — 22}, 7, >0
¢ = A1 + 1/a) + (1 + 1/a;) + 22}, 7,> 0.
Then (3.1) can be expressed as
3.7 Uuv < c*,
where
(3.8) c* =c(l + l/ay)/77, .

When ¢ = g, U and V are jointly normally distributed as the 2p-variate normal
distribution with the mean vectors —A/r, and A/r,, respectively, where A =
!, — sy, and the covariance matrix

(i, %)
ol, I,

where

(3.9) o =[A(1 + 1a) — (1 + 1a)]/zy,
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Note that Ajr, = (—1;/z,)(—A/7,). Define
(3.10) a= —rzr,.
Then —1 < a < 0, since 7, < 7, Now, it follows easily that

a<p=(1+4+1/a)? <2
=1+ 1/a)7*(1 + 1/a)"* < R.

Theorem 3 (a) follows from Theorem 2.1(i). The part (b) follows from (a) after
replacing R by 1/R.

Case B. p,, p1,and X are unknown. Consider a class of decision rules given by
¥, (R > 0,c < 0) which decides g = p,, iff

G.11) R+ 1a)7lX — Xills* < (1 + Ya) X — X|s* + ¢,
where || X]|¢* = X'S7'X.

THEOREM 3.2.

(a) If (3.3) holds, P\(¥y) strictly increases with ||p, — p,|5-
(b) If (3.4) holds and ¢ = 0, both P(¥ ) and P(¥ ) are strictly increasing func-

tions of ||pty — tto|l5-

Proor. Without loss of generality, assume X = I,. Then use Theorem 2.2
(i) and the proof of Theorem 3.1.

REMARK 1. It may be noted that when ¢ = 0, the rule ¥, becomes a “likeli-
hood-ratio” rule ([1], pages 141-142) or a minimum distance rule according as
R =1orR=(1+ 1/a)(1 + 1/a;)~". Both these values of R satisfy (3.4). These
two rules coincide if a, = a,. Sitgreaves [8] obtained a complicated expression
(though explicit) for P,(¥,) when a, = a;, ¢ = 0; however, this expression does
not yield Theorem 3.2 easily.

REMARK 2. Following Anderson’s idea ([1] pages 141-142), a likelihood-ratio
rule may be defined when X is known. It turns out that ¢, is a likelihood-ratio
rule when R = 1. Moreover, ¢, is the minimum distance rule when ¢ = 0 and
R = (1+ 1/a)(1 + 1/a,)=*. John [4], [5] obtained exact expressions for P,(¢;)
whenc = 0and R = lorR = (1 4 1/a))(1 + 1/a;)~*; however, these expressions
are too complicated to yield the desired monotonicity property. John [5] antici-
pated this monotonicity property and proved it for ¢, when ¢ = 0 and X, is
replaced by s, (known).

In the above discussions, a, and a, may be interpreted as the sizes of the sam-
ples drawn from N, (y,, Z) and N,(y,, Z), respectively.

4. Estimates of probabilities of correct classification. Consider three sets of
random samples (Z), (X,, - - -, X,) and (Y}, - - -, Y,,) from N, (g, %), N,(¢, Z) and
N,(¢5, L), respectively. When g, #,, and T are known, the minimum distance
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rule given by 4 decides x = g, if

“.1) 12 = mllz: < {12 — ]z -

The probabilities of correct classification (PCC) of the rule ¢ are given by
4.2) P,(0) = Py(0) = ©(4)2),

where

4.3) A=l —plls, O = § . e dr/2a)} .

Case A. X is known and taken to be I,. Consider the rule 8, termed as the
“plug-in version” of ¢, which decides ¢ = g, iff

“-4) Iz - X<z -1,

where
X=3rXn, Y=3r,Y/m.

Fisher [2] and Smith [9], respectively, suggested the following estimates of P,(d)
(or, sometimes used as estimates of P,(5)) as £,(6) and c,(5), where

(4.5) By =o@)2), A=)%-7|

and

(4.6)  ¢,(6) = the proportion of X-observations correctly classified by .
Hills ([3], page 17; 9.1) obtained the following results when p = 1.

4.7 P(5) < P,(d), when m=n

(4.8) P,(§) < E[e,(9)] »

where P,(9) is the unconditional probability of correct classification for 4.
it} e
4.9) P) < (IJ[%A (1 _ 2i> ] < E[¢(§)],  when m=n.
n

The last result (4.9) is not stated correctly in Hills ([3], page 17). Sorum ([10],
page 337; estimator P,) showed that

(4.10) E[c(9)] = E[(I) {%B (1 - i)"”ﬂ .

n

From Hills ([3], page 6; (2)) and from the consideration of symmetry, it follows
that (4.7) holds for p > 1. Next we shall show that (4.9) holds for p > 1.

Consider a vector a: p x 1such thata’a = 1. Reducing the p-variate problem
to the univariate one and using (4.9) for p = 1 and (4.10), we get

@11)  O[a (e — p)] < @[aa'(yl — )] <1 _ al* m
< E[(D {%]a’(z\_’— 7)| (1 _ %_)‘*ﬂ
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However,
sfofwed-ni(1- )7}
@.12) {(I)[sup“ (- 1) (1 _%>‘1}
- sfo[ane-ri(1- 2]
= E[c,(d)].
Also

(4.13) SUD, /a1 Q[%Ia'(ﬂl — )| <1 - %)q

1\~
=o[4llm -l (1-5)"]-

From (4.11), (4.12) and (4.13) we get (4.9) for p = 1. It follows from (4.5) and
(4.10) that
(4.14) E[£,(8)] < E[c,)] -

The question of getting upper bounds for P,(§) (when n # m) and EP,(6) may be
partially resolved as follows. Consider the validity of the followmg inequality:
For U, ~ N,(EU,, 1),

(4.14) E[Q(d||U,[])] = @I|IEU,|]]
for all p = 1 and some constants @ > 0, b > 0 independent of p. Define
W;+q - (Up’Vq') ’

where U, and V, are independent, ¥, ~ N, (0, 1,). Clearly,

(4.15) E[®(a||U,I)] < E[@||W, )]

for ¢ > 0. However, ||EU,|| = ||EW,,,||, and

(4.16) E[D@||W,,, D] — 1 as g — 0.
Thus (4.14) cannot hold for all p. This leads us to say that

(4.17) - EAG) < PO

cannot hold for all p > 1; numerical results in Hills ([3], Table 5, page 16) indi-
cate that (4.17) holds for p = 1, n = m. Let us consider now P,(6) when n = m
and study the validity of the following inequality:

(4.18) P,(9) < 9(|EX — T)|)) < 1
for all p, and some function g independent of p. Note that

P@) = Pr[|Z — X|| < [|1Z — T||| = pu)
=Pr[(l + Un)|Z — X| < k(1 + 1m)|1Z — F|P| ot = p]
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where
k=1 + 171 + 1/m).
By the law of large numbers
1+ 1n)YZ - X|lp—>1 as.,
I+ 1mYZ - T|lp—>1 as.,
as p — oo. Thus PI(S)—> Lifk>1(=n>m).
Let us summarize the above findings as follows.
(i) Py(d) < Py(9) < E[¢,(9)], when m = n.
(i) E[2,(9)] < E[c,(8)).
(i) Py(d) < E[¢(d)], for p = 1.
(iv) Py(d) » E[P,(d)] for all p > 1.
P,(6) » P,(0) for all p > 1, when m = n.
However, we could not answer the questions whether

P,(3) < E[¢,(9)] »
and
P,(0) < E[c,(9)] given p=#1,
when m = n.
One may get an upper bound for E[c,(d)] as follows: From the fact that ()
is a concave function for t > 0, we get

E[c,6)] = E [(D {%ll)z -7 (1 - ”nl‘>—ﬂ

<ofume-i(1- 1Y)

<o fyeg -7 (1- 17

o i+ ( Y (-2)7)

Case B. I is unknown; p,, p, are unknown. Here we redefine § as follows: o
decides ¢ = p,, iff
12 — Xlls < [|Z — Yl|s

where S is the pooled sample covariance matrix.
It follows from Hills ([3], (2), page 6) and from the consideration of symmetry
that

(4.15) P,(d) < P,(9),
if n = m. We shall show that
(4.16) P,(3) < E[¢,(9)],

when n = m, where c¢,(0) is defined as in Case A with § defined as in Case B.
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For evaluating E[c,(6)] we shall assume, without loss of generality, = = I,.
4.17) E[cl(s)] = P[(Y — X)S7\(X, — (X + ¥)/2) < 0]
o -4
=P[w<yx-FIs(1- )],
n

where

o oyvo - I\t o o
(4.18) W= (¥ — X)s (X,—X)(l _7> /[]X— 7ls.

It can be easily shown that W is independent of ||[X — ¥||s (apply sufficiency)
and the distribution of W is the same as that of

(4.19) Wi (WE + Wht,

where W, and W, are independent, W, ~ N(0, 1), W~ yi_,,f=m+n—2.
We shall use the fact that the cdf of W, given by F, is free from p. Thus

(4.20) E[e,(8)] = E|:F {%“X — Y, (1 — %)’*}] .

Let a be a p x 1 vector such that a'a = 1. Reducing the problem to the uni-
variate one, and using (4.20), (4.9), (4.10) we get

E|:F {%[a’(.f’ — P)|(@Sa)-* (1 — %)"’H
4.21) — E[CD [ ® - )| (1- %)"}]
> o[ 4n — ) (1- )" |-
The relations (4.21) easily yields
Efe @] 2 @[ 4l — mll (1 = 5-) |

> @ [} — pll] = Py(0) -

REMARKS. Lachenbruch and Mickey [6] studied P,(6) and E[c,(5)] by Monte
Carlo methods and their findings indicate that these are poor estimates. Sorum
[10], [11] also studied these estimates and several others by Monte Carlo methods.
However, the results in Section 4 seem to be the first attempt to study these esti-
mates (for p > 1) from theoretical viewpoint.
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