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EFFICIENCY IN SUBSAMPLING

By Louis GORDON!?

Stanford University

An analysis of the behavior of the cdf randomly determined by the
subsample means yields results on the asymptotic relative efficiency and
consistency of Hartigan’s subsampling procedure. Examination of higher
order approximation to the normal is carried out in two special cases.

1. Introduction and summary. One may test the hypothesis that n independent
random variables Y, ..., Y, are symmetrically and continuously distributed
about the common median 0 by computing all possible sums obtainable by chang-
ing the signs of a given subset of the observations. The hypothesis is rejected
if the sum of the original values is unusually large or small among the class of
all sums obtained by sign changes. The test is exact and is due to Fisher (1935,
page 46). :

Fisher’s test may be inverted to provide an exact confidence procedure for
the common median of Y}, - . -, Y,, independent, continuous, and symmetrically
distributed random variables: Given 4 C {1, ..., n} write S, = ¥ {Y,|i € 4}
and y(A) for the cardinality of 4. Compute and order the subsample means
S,/v(A) for all nonempty 4 C {1, - - -, n}. Choosing an interval whose endpoints
are the k;th and k,th ordered subsample means yields an exact confidence inter-
val with confidence (k, — k,)/(m + 1), where m = 2 — 1 is the number of all
the subsample means computed.

Hartigan (1969) generalizes Fisher’s formulation by showing that, instead of
computing all subsample means S,/v(4), 4 + @, one retains exactness in the
Fisher procedure if and only if, for & the collection of nonempty subsets
Ac{l, ..., n} for which S,/v(4) is computed, & U {®} constitutes a group
under the set operation symmetric difference. In a later paper, Hartigan (1970)
extends the method to certain analysis of variance problems.

This study is primarily concerned with the behavior of the subsample means
in the independent identically distributed (i.i.d.) case. We follow Hartigan
(1969) and Forsythe and Hartigan (1971) in examining the empirical cumulative
distribution function (cdf) determined by the aggregate of the subsample means.
In the former paper conditions on the collections & are given to assure that
for large samples of i.i.d. normal observations, the properly normalized sub-
sample empirical cumulative distribution function approximates a normal cdf.
The latter shows that, in the original Fisher formulation, the normalized sub-
sample empirical cdf, also converges to a normal cdf whenever the Y, are i.i.d.
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with finite variance. In Section 2 we show that the result of Hartigan (1969)
is applicable to the i.i.d. case with finite variance. In this case, we obtain as a
corollary that for certain sequences of subsampling schemes the procedure has
Pitman efficiency 1 with respect to the Student’s ¢ procedure.

In Section 3 we present a Monte Carlo study of the behavior of subsampling
for various symmetric parent distributions in small samples. A more elementary
examination of the subsample empirical cdf, yielding a consistency result for
symmetric parents with moderately heavy tails, is found in Section 4.

We indicate in Section 5 a computation for the limiting variance of the nor-
malized cdf studied in Section 2. The computations indicate that fine behavior
depends both on the higher moments of the parent distribution, and on the
structure of the collection & which determines the choice of subsamples.

Although the subsampling method does not appear to be well suited for use
in the i.i.d. case because of its extensive use of averaging, the examination of
this case may give some indication of the method’s behavior in more complex
situations. In this light, we draw the following conclusions:

In large samples one might as well use subsampling instead of ¢-methods.
The advantages of this approach are somewhat less sensitivity to long tails than
t and exactness when the observations are symmetric about a common median.
The major disadvantage over ¢ is computational complexity which can be sur-
mounted with the aid of an electronic computer. However, as indicated by the
results of Section 4, the median subsample tends to be close to the grand mean
of all observations. Subsampling therefore shares many of the drawbacks of the
t-procedure. In particular, the reader should recall that the Fisher-Yates Normal
Scores procedure is asymptotically superior to the -procedure (e.g., see Hajek
and Sidak (1967) page 279).

2. Relative efficiency of subsampling and ¢. In this section we show that,
under certain sufficient conditions, the subsampling procedure is efficient with
respect to ¢. The proof is accomplished by an extension of Hartigan’s technique

of examining the distribution function randomly determined by the subsample
means.

Given any collection of indices {1, ..., n} and subsets 4 and B, we denote
their symmetric difference by 4 o B. A collection & satisfying the conditions
of Hartigan (1969) that (1) ¢ ¢ ¥ and (2) Ao Be & U {¢} for all 4, Be ¥ is
called a reduced group. Observe that o is an Abelian group operation having
¢ as its identity and that conditions (1) and (2) require that & U {¢} be a group,
hence the terminology.

Given Y, ..., Y,, i.i.d. with mean zero, variance one and common cdf F,
we apply the subsampling procedure determined by the reduced group &,. We
place three basic requirements on the reduced groups ¥, which are used to
form the subsample means. They are employed in Hartigan (1969) to obtain a
more restricted result.

In particular, we demand that (1) the reduced group &, be composed of
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subsets of the indices {1, ---, n}, (2) nearly all subsets comprising &, contain
almost half the indices {1, - - -, n}, and (3) we eventually compute large numbers
of subsample means.

Requirement (1) needs no justification; the reduced group &, is to be used
when n observations are taken. Requirement (2) imposes some regularity on
the structure of the groups. Note first that if & is a reduced group on {1, - - -, n}
then the average size of a subset in & is {n(v(¥) + 1)/uv(¥) whenever each
index lies in some component index subset of &.

Secondly, if R is the v(¥7) X n incidence matrix of 0’s and 1’s for the reduced
group ¥ and J is a matrix of the same dimensions composed entirely of 1’s,
then (2) implies that nearly all pairs of rows of R — 3J are practically orthogonal.
Hence most pairs of rv’s in the collection {n=*(S, — £5,)| 4 € &} are asymp-
totically normal and practically uncorrelated, while condition (3) guarantees
that we obtain a large number of them. Here we depend on the observation
that, since S, = S, + Sy, S, — 35, = (S, — S,0)-

It therefore seems reasonable that the random cdf,

”_l(gn) 2 I(n-lwA—;s,,)sm—i) ’
determined as a sum of indicator functions, behaves similarly to an empirical
cdf for standard normal variates. In particular, the above empirical subsample
cdf converges uniformly in probability to a standard normal c.d.f.

Note that this convergence yields consistent estimates for the standard normal
quantiles and that subsample empirical cdf is centered about S,/n. Further,
under requirement (2), most sets of indices in &, are nearly half-samples, so
that 2(S, — 4S,)/n is approximately S,/v(4) — S,/n. Hence, in the presence of
a finite second moment, the Hartigan and ¢ procedures are asymptotically rela-
tively efficient, for the given sequence of reduced groups &,.

Formally, let &, be a sequence of reduced groups on {1, - .., n}. Fore > 0,
define P, , = v{d e &, |ne < |v(A) — $n|}/u(Z,). Here, we denote by v(D) the
cardinality of a given set D. P, is the proportion of subsets in &, whose
cardinality deviates substantially from half the number of indices available.
We now state an analogue of the Glivenko-Cantelli theorem for the empirical
cdf of subsample means.

THEOREM 1. If Y, Y,, --. are i.i.d. as F with arbitrary mean and unit vari-
ance, and &, is a sequence of reduced groups on {1,2, ..., n} with P, , —0 and
v(Z,) — oo, then

sup, [v(Z,) Duew, Lis y1viar-s,ynsemty — Q)] =50
where @ is the standard normal cdf.

The proof is accomplished in a series of lemmas. We may assume without loss

of generality that EY,; = 0. We write ¢(f) for the standard normal density.
The following notation and conventions are used throughout the section. F

denotes a distribution function with mean 0 and variance 1. Y,, Y,, --. are a
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sequence of i.i.d. random variables distributed as F. S, stands for a random
variable distributed as the nth partial sum of the Y’s. The normalized n-fold
convolution of F is written F™ and is the distribution function of S,/nt. If
several independent partial sums are needed, they are denoted S,*, §,”, and
so forth.

LEMMA 1. Let t be fixed; then there exist a constant B and a sequence b, | 0 such
that, if (i) e < §, (i) |p; — | < ne, i £ 4, and (iii) };ip, = n, then
Bl 5524150 _sigenty — P(0)| = Be + b, .
Proor. Let a; be a sequence decreasing to 0 for which a; < sup |F'9(¢) —
@(r)]. We suppress the subscript p;, and write S% for Sf). We write J =
El g _sa 45955108y Lt Z¥, i < 4 be four mutually independent standard

normal variates, independent of the S®.
Conditioning on §®, §®, and $* yields

J = EQ([tn} + S — |S® — S¥|]p,~t) + a,

where |a,| < a, . Use of the mean value theorem then yields

J = E®2t + $SPp,~t — |S®p~t + SWp,H)) + a, + B
where

18] < ltll(n[py)* — 1] + E D= 1S9p;7HI1 — (Pslpo)*] -
Since, by assumption, ¢ < §, approximation shows the ratios lie within 32¢ of
the indicated integers so that |8] < 128(1 4 |t|)e. We may now write J as the
expected value of an indicator function of Z®, §®, §®, §®. Repeated applica-
tion of conditioning, the central limit theorem, followed by reconversion to an
expression using an indicator function yields

J= El‘z(l)_z(2)+|z(3)_z(4)|523) + /3 + Ziai

where |a,| < 4a,,.
Observe that {Z® — Z® 4 |Z® — ZW| < 21} is the intersection of inde-

pendent events. Hence |/ — @) < 128(1 + |t|)e + 16a,, 4.

LEMMA 2. Given t there exist constant B, and a sequence d, decreasing to zero
such that, for ¢ and p, as in Lemma 1,

|E[]4s;,1]’—s;f;+s;;°‘3’—s;,‘:smh - (D(’)][](s;}l’—s;fz’-s;,33’+s;,‘4’smh — ()] < Bye + d, .

ProorF. We may multiply out the quantity whose expectation is to be taken
and then apply Lemma 1, if we may similarly bound

|E[4s;11}—s;?+s;3;—s;‘4’) — O(1)] .

This may be done using the same conditioning-unconditioning and Taylor series
arguments as in Lemma 1.

LEMMA 3. Let &, be a sequence of groups on the first n indices for which P, , — 0
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JSfor any positive ¢, and let v(&,) = m, — oo. Then for any fixed t,
m,™ ¥ 4e Fn I(SA—SAoétnh —p D(1) .
Complementation is taken relative to the set {1, - .., n}.

Proor. The proof turns on Hartigan’s idea of showing that the difference
converges to 0 in L?. We suppress the subscript » in the notations &,, m,, and
P,, for the sake of simplicity. Choose ¢ positive with ¢ < 4. Consider the
subset of Zgiven by &, = {d e &||v(A) — }n| < ne}. Let &, = {(4, B)e @, x
&,| Ao Be&)}. Note that »(¥ x L\ #) < 3m*P,. We write CD for C n D
when C and D are subsets. If (4, B) ¢ %, we may write

Sy — Sge =845 + Sape — Sucp — Scpe»
and .
Sp — Spe = Syp — Sype + Sycn — Syepe -
Denote p, = v(A4B), p, = ¥(4°B°), p, = v(A°B)and p, = v(AB*). Then (4, B) ¢ %,
implies |p; — n/4| < 2ne. Note that the hypothesis of Lemma 2 is satisfied.
Now,

Em™ Y 4eo s -sg0staty — P@)])*
=m*E ., 2w T 2w [Lis45-540p0+5 4058 gpostnt) — D(1)]
X [I(SAB—SAch—SAcB+SABcStn5) - (I)(t)])
< m[43m’P, + m) 4 (2B,¢ + d,)m*],
which completes the proof.

If, instead of requirement (3), we demand that the proportion of observations
used when n data points are provided, n"w{i < n|lie Ae ¥,, for some A} con-
verge to 1, then P,, — 0 for each positive ¢ implies that m, — co. This
follows since the average size of a nonempty set in the reduced group is
(m, + {iliec Ae &,, some A}/2m,. Recall that we take m, = v(Z,).

LEMMA 4. Let Y, denote S,[n. Let t be fixed and let P, , — O for all ¢ > 0, then

mn_l[ZAe?,, Lis jv=104)-F pstnty — ](SA—SAcétnh] —p0.
Proor. We show the quantity in question converges in L'. We employ the
same notation as in the previous lemma.
Let a, be the same decreasing sequence as in the proof of Lemma 1. Choose
e < 4 and positive. Let &, be as in Lemma 3. Then, for 4, write p = v(4)
and g = y(A°) so that
J(4) = |E(I(s4”h—lm)—uh7,,s:; - I{SA—SAcgtni))l
= |E(I(s4nép—1—n—i(sA+sAo)st<(sA—SAo)n—h
+ ](sAnép-l—n—é(sA+sAc)>¢;(sA_sAcm—h)|
< 2[2a, + E|®((n/g)'[—1 — (1 — n[p)S,n7*])
— Q((n/g)'[—1t + SynH])I] = 44,4 + Bye

where B, is a constant independent of the choice of ¢ and n.
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Hence,

-1 —
E|m ZAG?I(SAuiy(A)"l—niY"St)_- «sA—sAcszuhl

é m—l(ZAe?\gsz + Zdeeg J(A))
< m™(2mP, + m[4a,,, + B)) .

We therefore have L' convergence to 0.

Theorem 1 now follows from Lemmas 3 and 4. Uniformity of convergence
is immediate because the limit cdf is continuous. Since the uniform conver-
gence of the subsample empirical cdf for subsample means of unknown variance
yields consistent estimators for two quantiles of the normal distribution with
the appropriate variance, we immediately obtain the

COROLLARY. Under the conditions of Theorem 1, subsampling has Pitman effi-
ciency 1 with respect to the t procedure.

The conditions P, , — 0 and m, — oo are not so strong as may appear at first
glance. The following are two equivalent formulations of a sufficient condition
for the above to hold for all positive ¢: »

(1) Let &, be a group on the indices {1, ---,n}. Then if 1 Si<j=n
implies there exist sets 4, B in &, for whichie 4, je¢ 4, je B, and i ¢ B, we
then have P, , — 0 for all ¢ > 0, and m, — co.

(2) Let R, be the m, X n incidence matrix of 0’s and 1’s where (R,);; =

iy, Then m, — oo and P, , — 0 for each ¢ > 0 if R, is rank n.
Note in particular (1) and (2) are indeed satisfied for &, the power set of
{1, - - -, n}. Assertion (2) may be verified by calculating trace (R, — $J)"(R, — 3J).
Condition (1) may then be shown to be equivalent to (2) by means of the group
structure of &,. We call condition (1) complete separation because the subsets
A and B separate indices i and j. Some consequences of complete separation
are studied in Gordon (1971).

3. Monte Carlo simulation. The following table was constructed to examine
the behavior of subsampling intervals in the small sample case. For each of the
distributions tabled, a set of 2! — 1 observations were taken and transformed
using the completely separating reduced group corresponding to a saturated
Resolution III fractional factorial design. (See Box and Hunter (1961), and
Section 5, below.) Size, therefore, corresponds to both the subsample size and
the size of the reduced group used in subsampling. These particular reduced
groups were chosen since they are related to a commonly used experimental
design. This is discussed in Section 5. Also, these reduced groups are shown
in Gordon (1971) to minimize the relative variance criterion of Hartigan (1969)
among all completely separating reduced groups on 2' — 1 indices.

The simulation was performed on the ACME facility at Stanford University.
The in-house pseudo-random number generator was used to obtain samples from
the various distributions listed and the subsampling method was repeatedly ap-
plied to the random samples thereby obtained. Sampling was continued until a
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TABLE 1
Expected confidence interval length for symmetric distributions tabled in units o/nt
Size (n = m)
Distribution Confidence Kurtosis
7 15 31
Laplace 50% 1.42 + .03 1.40 + .02 1.40 4 .02 3
75% 2.38+ .10 2.38 4+ .05 2.38 4+ .08
Triangular 50% 1.38 + .02 1.38 + .01 1.38 + .01 —.60
75% 2.57+ .10 2.42 4+ .05 2.38 + .07
Truncated 50% 1.43 + .02 1.37 + .02 1.36 + .01 —.54
Cauchy (2) 75% 2.59 4 .10 2.44 + .09 2.35+ .05
Truncated 50% 1.42 4+ .03 1.38+ .02 1.36 + .01 —.046
Cauchy (3) 75% 253+ .09 242+ .08 2.35+ .05
Truncated 50% 1.44 + .02 1.42 £+ .01 1.37 + .01 2.53
Cauchy (8) 75% 2.33+£ .05 2414 .07 2.35+.05
Truncated 50% 1.09 + .03 1.30 £+ .02 1.39 4+ .01 50.7
Cauchy (100) 75% 1.42 4 .03 1.80 +£ .02  2.05+ .02
Truncated 50% .64 + .03 .85+ .03 1.03 & .05 522
Cauchy (1000) 75% .75+ .02  1.03 + .01 1.28 + .03
Normal 50% 1.41 1.38 1.37
75% 2.56 2.42 2.36 0
Normal Limit 50% 1.35
75% 2.30

reasonably small standard error for the expected lengths in question was
computed.

To facilitate comparisons, the expected lengths tabled are for symmetric 509,
and 759 confidence intervals, normalized by multiplication by the square root
of the sample size and are in units corresponding to the standard deviation of
the underlying distribution. The error terms in the table correspond to two
standard errors for the estimate of the expected length.

The Laplace distribution is also called the double exponential. The notation
Truncated Cauchy (T) indicates that the distribution was truncated at +T. The
last row indicates the limit of the normalized interval lengths as the size ap-
proaches infinity.

The table gives evidence that the normal approximation tends to err in the
conservative direction in small samples. The shortness of the intervals in ex-
tremely long-tailed cases suggests that the subsampling procedure may be less
sensitive to long tails than the ¢-test. This is indeed the case, as is. indicated in
the next sections.

4. Consistency. This section is intended to justify the assertion that sab-
sampling is less sensitive to long tails than is +. In particular, since sums of
i.i.d. variates are averaged to obtain the subsample means, we use the subsample
empirical cdf and the laws of large numbers to obtain the consistency of the
subsampling procedure when the second moment of the original variates may
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not be finite. The use of the weak law of large numbers here parallels the use
of the central limit theorem in proving the efficiency result of Section 2.

Recall that when the underlying cdf is continuous and symmetric, subsampl-
ing is exact. Therefore, when the variates are symmetric, one can employ sub-
sampling instead of 7 to gain consistency in the case of moderately long tails,
while sacrificing neither exactness nor efficiency when the variance is finite.

Throughout this section F represents a continuous cdf symmetric about 0.
The random variables Y, are distributed independently as F. As before, S, =
2. {Y;|ie A} and we write S, for 37 Y,. We say F satisfies the weak law of
large numbers (WLLN) if S,/n — 0 in probability.

We continue with the conventions that &, is a sequence of reduced groups
on {1, ..., n} for which v(&,) = m,. Recall that P, , = m,~v{d e &, ||v(4) —
n/2| > en}.

LemumaA 5. If F satisfies WLLN and P, , — 0 for some ¢, < 4, then

1 m,™* ZAey,, ](sAgtu(A)) '_')P'O for t<0.
and
(2) M, Ysew, lisztvy —p 0 for t>0.

Proor. Since the random variables in (1) and (2) are nonnegative, conver-
gence of the expectations to 0 establishes L' convergence. For assertion (1),

Em,™ 31 Lsystvan = Peyn + SUP; i P{S; = Jjit} -

The second term on the right is o(1) since F satisfies WLLN. Assertion (2) is

proved in an identical manner.
The preceding lemma shows that, under the hypotheses, the subsampling

procedure is consistent.
The following two lemmas indicate that, under somewhat stronger hypotheses,

when n is large, S,/n is usually included in any subsamplmg confidence interval
which contains the median subsample average -

LEMMA 6. Let F satisfy WLLN.Lef % ? be a sequence of completely separatmg
reduced groups on {1, - - ., n} and m, = v(Z,). It follows that

-1
m, ZAeyn I(SA/v(A)<Sn/n| - I(SA—SAc<0) —p0.

Proor. From the remarks concluding Section 2, we obtain by Chebyshev’s
inequality that P, , < 1/né’.

Write J(4) = E|lis, /<5, m — lis -s40<0r]- NotethatS, — S, = (25, — S,)/n.
Then |} — v(A)/n| < kn~t implies that, for large n, J(4) < P{n~}|S, — S, <
5kn=|S,|}. By WLLN, the latter goes to 0 uniformly in n. Also, for e(n) = kn~*
we have P,,, . < k™% The proof is completed by choosing k large and is here-
after similar to the proof of Lemma 2.4.

LEMMA 7. Let &, be as in Lemma 6, then m,™ 3. sc o Lis,_s,0c00 =5 %-
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Proor. Given a random variable X, let Q(X;[) = sup, P{Xe[§, & + []}.

Q(X; .) is called the Lévy concentration function of X (e.g., see LeCam (1963)).

Let 4, B be elements of &, and write J(A4, B) = P{S,_S,. < 0and S;_S;. < 0}.
As in Lemma 2.3, J(4, B) = P{|S,*| — §,® < 0} where p + ¢ = n, and S,
S,®, ... indicate independent partial sums. We do only the case p < ¢g. The
case p = ¢ is similar. Let r = ¢ — p, so that

P{ISp(l)l < SP(2)} — P{Sp(?) + ST(3) é lSpll < Sp(ﬁ)} é P{ISp(l)l < Sq(ﬁ)}
< P(S,%] < 5,%) + PIS,” < [5,7] < 5,7 + 5.} .

So, by symmetry, |J(4, B) — 1| < EQ(S,™; |S,?).

If kr < p for some integer k, then by the inequality due to Kolmogorov in
LeCam (1963), |J(4, B) — 1| < 8E(kG(|S,|))~* where G(r) = P{S, > t}. Hence
|J(4, B) — }| < 16k~%. The proof is completed in the usual manner by showing
L* convergence.

Lemmas 5, 6, 7 imply that a symmetric subsampling confidence interval based
on completely separating reduced groups eventually is short and contains the
grand mean of all observations with large probability. Since subsampling is
exact for continuous symmetric parent distributions F, Theorem 2 follows:

THEOREM 2. If F is continuous, symmetric, and satisfies WLLN and if the re-
duced groups &, are completely separating, then a symmetric subsampling confidence
procedure is consistent and the probabzlzty that S, [n is contained in the interval con-
verges to 1 as n— oo.

In the sense of consistency, then, subsampling may be made less sensitive to
moderately long tails than ¢.

5. Fine behavior of the empirical subsample CDF. The normalized and cen-
tered subsample cdf

H,(t) = m,™ 3 Lis jyar-1-%,stn—h)

plays a crucial role in the preceding discussion. In particular, H,() behaves as
if it were the empirical cdf of a collection of m, independent standard normal
variates. The question of the quality of the approximation naturally arises.

The asymptotic variance, lim m, E[H,(f) — @(#)’, of the random variables
H,(t) is therefore of interest. This limiting variance is strongly dependent on
the structure of the group in question. The assertion is supported by computing
the asymptotic variances associated with two very similar reduced groups. One
group consists entirely of half samples; in the second, all but one component
subset are half samples.

We draw heavily in this section on Mallows (1969) which considers the re-
lated problem of transformations of i.i.d. observations by orthogonal linear
transformations.

We describe the reduced groups in question by a matrix representation. Cor-
responding to a reduced group & is its 0 — 1 incidence matrix R. The rows of
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R correspond to nonempty sets in &; a 1 appears in column j if the index j
appears in the set corresponding to the row in question. We use three sequences
of incidence matrices.

Define R* = (1). We define inductively the 2! — 1 x 2! — 1 matrices R,*
for I = 2.

In particular,

R* R* 0
R¥, = (Rt* J— R* e)
or e’ 1
where J is a square matrix of all 1’s and e is a column vector of all 1’s. Observe
that the 2! X 2! — 1 matrix (0 R*)” is the design matrix of a saturated resolu-
tion III fractional design (e.g., see Box and Hunter (1961)). Also, R;*, R*,
and R;* are the incidence matrices used in the Monte Carlo study of Section 3.

We now construct the two reduced groups which will be examined. Define

Ry = (R,*0) and
R* - 0
Rzz = e’ 11.
J—R* e

Observe that (0, Ry;)” is the 2+1 x 2! incidence matrix of a saturated resolution
IV fractional factorial design.

All the rows of Ry have 2!~ 1’s and 2'-* 0’s.” Also, all but one row of Ry
have 2!~ 1’s and 2'~* 0’s; the remaining row possesses all 1’s. Hence, if P,
and PM; correspond to the reduced groups &,; and Zy having incidence matrices
R, and Ry, then P,y — 0 and P, ,; — 0 for all ¢ > 0. Also, the very simple
structure of the cardinalities in the two reduced groups makes a calculation of
the limiting variances of Hy(f) and Hy(f) possible.

For example, for / = 2,

1100

1010

1100 0110
&:(1010) and R =|1 1 1 1.
0110 0011
0101

1001

Note that R, is R, “reflected” in the middle row of 1’s. For the remainder
of this section, F denotes a cdf symmetric about 0, with variance 1, finite fourth
moment g,, and finite sixth moment. F is assumed to have a continuous bounded
density function f, and F*» then has density f, where F™ is the distribution
function of S,/n. We take Y,, Y,, --- to be a sequence of independent random
variables distributed as F. S, stands for a random variable distributed as the
nth partial sum of the Y’s. If several independent partial sums are needed, they
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are denoted S,, S,®, and so forth. We write £ = (¢, — 3)/24, for the nor-
malized kurtosis of F.

We define 9,(x) = n(f™(x) — ®(x)) and A, (x) = n(F™(x) — O(x)). We also
write 6(x) = £¢'"(x) and A(x) = £¢'"'(x), where ¢ is the standard normal density
and ¢!, ¢', ... are its derivatives. Use of the Edgeworth expansion (e.g. see
Feller (1966), Chapter XVI) yields A,(x) — A(x). The following lemma is fun-
damental to the derivation of the asymptotic variances. It, and (1) of Theorem
3 below are essentially Mallows’ (1969) Lemma 4.1.

LEMMA S.

lim,._.w ”E[I(s”(1)+s"(2)§¢(zm!)I(s,,(l)—s,,(Z)st(zmép - ¢2(t)] = A(t)(D(t) + 3’c[¢i(t)]2 .

Theorem 3 provides an evaluation of the limiting variance of the subsample
empirical cdf. The two different variances obtained suggest that a general
theorem about fine behavior of the subsample empirical cdf may be difficult to
formulate. Note that the latter collection of subsample means is symmetric
about the grand mean. This symmetry decreases the variance close to zero,
but increases it far from zero. Theorem 3 may also be derived without assump-
tions on the sixth moment.

THEOREM 3. Let iy = W(Zy) and my = ((Zy). Then
1) lim iy E[Bu(t) — QT = O(1)(1 — O(1) + 66[0)T
and
2)  lim my E[Hy(t) — D@
= () (1 — 20(1)) + [Q(r) — D(—0)]* + 12:[$*(1)]* .

Proor. 1) Write n = 2!~* and let the expectation on the left of the equality
in the statement of the theorem be denoted D,. Then

D’n = (2” - 1)_1 Z Z E[I(SA—SAagt(zmh - q)(t)][I(sB~sBc§e<zmh - (D(t)]
where set complementation is relative to {1, - - -, 2n}.

If A+ Bthen S, — S, = S5 + Sape — Ssp — Syope and Sz — Sz, may be
similarly decomposed. We thereby obtain the simultaneous representation
S, — Spe=285,24+8,?and S5 — Sz = S5, — S,®. Therefore

D, = ©(H)(1 — B(t)) — 2A(1) ()
-]— 2nE[I‘sn(l)+s”(2)5t(zn)!) - (I)(t)][lls”(l)—sn(ﬂgt(zmh - (I)(t)] + 0(1) ¢

From Lemma 6,

D, = ®(1)1 — O(1)) — 2A()D(t) + 2A()P(¢) + 6k[¢* ()] + o(1) .
2) Let n = 2'-*and D, again correspond to the quantity whose limit is to be

taken, found on the left side of the equality in the statement. Let N =
{1,2, ..., 2n} and observe that N e &,,. As before, we may write

D, = (4n — V)TE X ¥ [Lis uy-1-Fpysramty — PO ispum-1-Fpusvamy — PO] .
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There are four types of pairs (4, B) possible:

(1) (A, A), 4n — 1 pairs,

(2) (N, A) or (4, N), A+ N, 2(4n — 2) pairs,

(3) (A4, B), A+ N + B+ A + B, (4n — 2)(4n — 4) pairs,
(4) (A, A°), A+ N, 4n — 2 pairs.

These classes make the following contributions:

(1) @)1 — () + o (1),
(2) o(1),

(3) by Lemma 5,

4nE[lLs a)ys,®seamby — OO s, w-s,®stcamb — Q(1)] + o(1)
= 26O + o(1)

(4) E[I(SA—SAast(Zn)’h - (D(t)][I(SAc—SASt(Zm’H - (I)(t)] + 0(1) .

The latter quantity equals (D(f) — ®(—1)* — @*(r). Adding the contributions
yields the result.
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