The Annals of Statistics
1974, Vol. 2, No. 4, 703-712

POSTERIOR CONSISTENCY FOR COEFFICIENT ESTIMATION
AND MODEL SELECTION IN THE GENERAL
LINEAR HYPOTHESIS

By ELkAN F. HALPERN
Rutgers—The State University

Berk (1970), LeCam (1953) and others have given conditions for the
consistency of posterior distributions from a sequence of random variables.
They have required that the sequence be i.i.d. We show that their results,
Berk’s in particular, may be extended to the general linear hypothesis with
normal errors model (where the sequence of observations of the dependent
variable need not be i.i.d.). We do not assume that the distribution govern-
ing the sequence of dependent variables has a regression function which
satisfies the assumed model nor do we assume its errors are normal. Con-
sistency is shown for both fixed and random sampling designs. We show
that the convergence is to a projection of only the true regression function
upon the space of regression functions given by the model. Finally, we
assume that several such models are under consideration, each with a prior
probability. We determine conditions for the a.s. convergence of their
posterior probabilities to a degenerate distribution. Not all these conditions
may be derived by any simple extension of Berk’s results.

1. Introduction. Let (X,, Y}), (X, Y,), --- be a sequence of sample observa-
tions. Consider Y,, Y, - - - to be the sequence of the values of a random dependent
variable and X, X,, --- to be the sequence of corresponding independent vari-
ables. X, may be scalar or vector-valued. Let the actual distribution of Y; given
X; be determined by

(1.1) Y, =f(X) + 9,

where f{( ) is some arbitrary function and 4,, d,, - - - is a sequence of i.i.d. random
variables with mean zero and finite variance v*. We will use Z to denote the
common probability distribution of the 4’s.

The sequence X, X, - - - will be considered to be either a fixed sequence of
numbers (vectors) as in Section 4 or a sequence of i.i.d. random variables with
common probability distribution W as in Section 3.

Assume that the family of models for the distribution of Y, given X; is deter-
mined by

(1.2) Y, = 217i9,(X) + &

where g,(), 95(+), - - -, 9,(+) are known functions, ¢,, ,, - - - is a sequence of i.i.d.
N(0, ¢%) random variables and 7,, 7, - - -, 7, and ¢* are the parameters of the
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family. In Section 5, we shall assume that there are T such families differing
only in r and the functions g,(+), - -+, g,(+).

Let 7 = (71, 73> *+ +» 7,) and let g(+) be the column vector defined by g(.)' =
91(+)> 95(¢) - - -, 9,(+)). Our model may be reexpressed as
(1.3) Y, =rg(X) + e -

Let P, denote the (possibly improper) prior measure on the parameter space.
Let C, , denote the carrier of P, on the parameter space (7, ¢°). Assume that
there exists a C, C R" and a C, C (0, ) such that C,, = C,® C,. This as-
sumption is included merely to assure that, given ¢?, the a.s. convergence of the
conditional posteriors of # is to a distribution of 7 which is degenerate at a value
of 7, say r*, which is independent of ¢®. The consequence is that the a.s.
convergence of the marginal posteriors of y is to this same y*. Without this
asumption, the vector y* given ¢® may depend on ¢® simply because some y’s
are excluded from consideration for given ¢%. If so, we retain the a.s. conver-
gence but do not have the convenient expression of y* as simply a projection of
f(x) onto a space spanned by g(x).

Let A be any set of the o-field of C,. Let P, 4 denote the marginal posterior
probability of the event 7 € 4 given (X, Y)), (X;, Y,), - -+, (X,, Y,).

(1.4) p 4 — Sasc, 11T $[(Y: — 78(X))/0] 4P,
" Sorec, I S1(Y: — 78(X0)/0] 4P,

where
(1.5) $(u) = exp{—4u’}/(27)}.

In Section 3, we assume that the sequence X;, X,, - .. is, itself, a sequence of
sample observations of i.i.d. random variables. (That is, the sequence (X, Y,),
(X,, Y,), - - - is a sequence of i.i.d. random variables.) We use W to denote the
common distribution function. Let
(1.6) A7) = § (f(x) — r8(x))* dW(x) .

By this definition, A(7) is the distance of f(x) from yg(x) in the L,(W) norm. In
Theorem 3.1, we give conditions for the a.s. [Z, W] convergence of P, to a de-
generate distribution. When these conditions are satisfied, the convergence is
to the vector y* such that

(1.7) A(r*) = min, ¢ {4(7)}
provided the solution is unique. Thus, y* is the vector of coefficients of the
projection of f(x) onto the space spanned by g(x) with coefficients in C,. All
that is needed to show the consistency is no more than proving that the assump-
tions made in Berk’s paper are satisfied.

In Section 4, we assume that the sequence X, X,, --. is the non-random
sequence of values of the independent variable(s) for a fixed sampling design.
Treating X, X,, - - -, X, as a sample of size n, let W, be the empirical cumulative
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sampling distribution. Assume W,(x) — W(x) pointwise, where W/(x) is a prob-
ability measure. In Theorem 4.1, we give conditions for the a.s. [Z] conver-
gence of P, to a degenerate distribution. We find that the convergence is to 7*
as defined by (1.6) and (1.7) again, where, of course, W has this new meaning.
In this situation where the values of the dependent variable are the only random
part of the sample, the assumptions in Berk’s paper are not satisfied because the
sequence Y}, Y,, - .- isnoti.i.d. However, Berk used the assumption of identical
and independent observations in proving only one lemma (his Lemma 2.1). We
show that a result equivalent to this lemma holds for our problem too and that,
as a consequence, all his other lemmas and theorems may be applied to prove
consistency. .

In Section 5, we assume that instead of one model, we have T alternative
models, each with a prior probability. We find some additional constraints that
guarantee by Berk’s method of proof that when there is a.s. convergence for the
coefficients for each of the models, there is a.s. convergence of the posterior
probabilities of the models to a degenerate distribution. We conclude this paper
by showing that, for at least a restricted set of priors, there will be a.s. conver-
gence of these model probabilities even when all the additional constraints are
not satisfied. These last more general constraints may not be derived by any
direct extension of Berk’s methodology.

To conclude this introduction, let us stress that neither of the assumptions
concerning the form of the model are crucial for all of our results. The linear
combination yg(x) may be replaced by g(7, x) in all results except for Theorem
5.2. One need only assume that y is estimable. In addition, the assumption of
normal errors for the model is not necessary for the proofs of consistency in all
theorems except 5.2. It may not even be necessary there. However, even though
there may be consistency without normality, the convergence need not be to 7*
as we defined it.

2. A summary of Berk’s results. Berk assumed that X}, X;, . .- was an i.i.d.
sample sequence with common distribution F. F also denoted the joint distri-
bution of the sequence. He let p(x| ) be the family of probability densities for
0 € (©, "), the parameter space, which served as the model for the common
distribution of the sequence. He assumed that there was a prior measure, P,
on (0, ).

For all 4 ¢ %7, Berk let P, A denote the posterior probability of § € 4 given
X,, X;, - -+, X,. He defined the function /,(¢) of ¢ and X,, X,, ..., X, by

2.1) L(0) = n™" 2t In [ p(X; | O)p*(X))]
where p* was some positive function. By this definition
(2.2) P,A =, exp{nl,}dP/\, exp{nl,} dP,.

Berk then defined 2(9) by A(6) = E In[p(X|6)p*(X)] where the expectation
was with respect to F. He showed in his Lemma 2.1 by means of the Strong
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Law of Large Numbers for i.i.d. random variables that, if p* was such that
P{4(0) exists} = 1, then F(I,(6) — A(0)[P,]) = 1.

Berk then demonstrated that if 2(6) is substituted for /,() in (2.2) for all n,
P, A— 0 iff ess sup {A(f): 0 € A} < ess sup {A(f): § € ©} = 2*. Consequently, if
[,(6) = () for all n and “if 2 achieves its essential supremum 2* at some point
6* and is essentially bounded below 2* off (open) neighborhoods of 6*, then . - - P,
converges weakly to the distribution degenerate at 6*.”

Since, in general, one does not have /,(6) = A(f) but rather a.s. convergence
of [,(6) to A(f), more was needed to prove the a.s. convergence of P, to the
“distribution degenerate at 6*.” In this Theorem 3.3, Berk gave general con-
ditions for this convergence. The material from his Lemma 2.1 through his
point within these Theorem 3.3 contained the proofs of the sufficiency of these
conditions. At no point within these proofs did he need or use any assumption
of i.i.d. sample observations X, X,, - - -.

3. Random sampling designs. Let X|, X,, - - - be a sequence of sample obser-
vations of i.i.d. random variables with common distribution W. Then, by (1.1),
the sequence (X, Y,), (X,, Y,), - - - is also a sequence of observations of i.i.d.
random variables. Thus, we may apply all of Berk’s results directly.

Let us fix . We intend to show that the conditional posterior distributions
of y given ¢® tend a.s. [Z, W] to the distribution degenerate at y* (as defined in
(1.6) and (1.7)) for all ¢®. Since y* is independent of ¢%, and ¢ is finite, it is
immediate that the marginal posteriors P, P,, - .-, for the normal regression
model also converge a.s. [Z, W] to the same distribution.

Assume that under the model, w,(x) is the density of the distribution of X; for
alli. Let p*(x, y) = {8[(y — f(x))[e]w,(x)}"*. Then our analogue, /(X, Y |7, ¢%),
of Berk’s In [ p(X| 8)p*(X)] is given by

(3.1) I(X, Y7, 0% = In{g[(Y — y&(X))/e]w.(X)p*(X, Y)}
= In {g[(Y — r&(X))/e]/$[(Y — f(X)/o]}.
If, according to the model, the common distribution of X;, X;, - - - is not assumed

to have a density, there still exists a p*(x, y) so that (3.1) holds.
Since by (1.5), ¢(+) is the density of a N(0, 1) random variable, we may write

(32)  —lxpl7r, ) = {2)(f(x) — r8(x)) + (r&() — (f(x))'}/20*
= {20y — f))(*) — r8(x)) + (f(x) — 78(x))}/20" .

If we take the expectation of /(x, y |7, ¢*) with respect to the actual distribu-
tion governing the data, we find that since Z is a probability measure with mean

zero,
E[I(X, Y |7, 09)] = §§ U(x, y |7, 0°) dZ(y — f(x)) dW(x)
(3-3) = = (f(x) — r8(x))'[20* AW (x)
= —Ay)[20*.
Thus, for our problem — A(7)/20® serves the role of A(f) in Berk’s paper.
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We have shown that if the conditions of Berk’s Theorem 3.3 are satified, then
the conditional posterior distributions of 7 given o® converge a.s. to the single
degenerate distribution, which is degenerate at * as defined by (1.7). The im-
mediate consequence is that the marginal posteriors of 7, namely P,, P,, - - - also
converge a.s. to this distribution.

Because we have assumed normal errors for our model, many of the conditions
needed to prove Berk’s Theorem 3.3 are automatically satisfied. What remains
is given in the following theorem.

THEOREM 3.1. When X,, X, - - - are a random sample from a population with
distribution W, then P, converges a.s. [Z, W] to the distribution degenerate at 7*
whenever

(3.42) C,.=CQC,
(3.4b) PA(7)]o* < 0} > 0
(3.4¢) A7*) < A7) Yr+r*reC,

and (3.4d) P, becomes proper a.s. [Z, W]..

These conditions are not very restrictive. Condition (3.4 b) will be satisfied if
all of f(x), 9,(x), 95(x), - -, 9,(x) are in L(W). Condition (3.4c) requires that
there be a unique y* so that y*g(x) is “closest” to f(x). If C, is the entire r
dimensional space, condition (3.4c) will be trivially satisfied.

Condition (3.4d) is trivially satisfied if P,, itself, is proper. It is easy to show
that if P, is the improper measure with density proportional to ¢~*do dy, then
the joint posteriors of 7 and ¢? (and, hence P, also) become proper whenever
n = r + aand the r X r matrix 37 g(X;)'g(X;) is nonsingular. For the special
case of polynomial regression (g,(X;) = X,*-), we have shown (Halpern (1973 a))
that the matrix is nonsingular if there are at least r distinct values among X,

X, -+, X,. For the special case of linear spline regression with r — 2 knots,
we have shown (Halpern (1973b)) that nonsingularity follows from having at
least one X, of X, ..., X, on each interval between successive knots.

Condition (3.4a) certainly may be relaxed. We have given it in this form
rather than a more general one because we feel that any generalization is of only
mathematical interest. Let us remark again that if (3.4a) is not satisfied one may
use another p*(x) to get a A(f), restate the other conditions, and still have con-
sistency. However, one no longer can prove that the convergence for the
coefficients is to a function of f(x) alone.

4. Fixed sampling designs. Let X, X, --. be a sequence of fixed numbers
(vectors). Then, neither sequence, Y,,Y,, ... nor (X, Y)), (X,, ¥,), --+, is a
sequence of i.i.d. random variables (unless f(X;) = f(X;) for all i and j).

However, as we stated in Section 2, Berk used the fact that the sequence of
observations was i.i.d. in only one proof, that of his Lemma 2.1. If we can
prove that the consequences of Berk’s Lemma 2.1 hold in this situation we may
apply the argument of Section 3 to reach the desired conclusions.
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In our Lemma 4.1, we give sufficient conditions for the equivalent results for
our situation. Let I(x, y|7, ¢°) be as defined in (3.1). Let

4.1) L(r, o) =nt 30X, Y,|7,0%).
Thus, our [, (7, ¢°) is the analogue of Berk’s /,() defined in (2.1). Let W, be the
empirical cumulative sampling distribution of X, X,, --., X, when they are

treated as a sample of size n. Then, we may write

n7t T (X)) — re(X))' = § (f(x) — 78(x))* dW,(x) .

LEMMA 4.1. If there exists a probability measure W such that

(4.22) §8(x)'g(x) dW,(x) — § g(x)'g(x) dW(x)

(4.2b) § f(x)g(x) AW (x) — § f(x)g(x) dW (%),

(4.2¢) § (f(x)) dW,(x) = § (f(x))* dW(x) ,

and, if

(4.24d) A7) < o0, forall 7
then, if V* is finite,

(4.3) Z(L (@, %) — —A(p)o”) = 1

forall (y,d*) eC, ;2.
REMARK. Before we prove the lemma, note that each integral on the left-hand

side of the conditions given in (4.2) may be written as an average for the first
nX;’s. Note, also these conditions are equivalent to: for all y € C,,

(4-4) § (f(x) — 78(x))" dW,(x) = A7) = § (f(*) — r8(x))* dW(x)
and
A7) < .
In addition, they are implied by W, — W weakly and limsup,_., § [/*(x) +
Y 9.(x)]dW,(x) < oo wheneverg,, g,, - - -, g,and f are all continuous functions.

Proor or LEMMA 4.1. We would like to apply Kolmogorov’s Strong Law of
Large Numbers for independent variables.

Let a; = f(X;) — rg(X,) and let b, = n~'. Define U, = a,(Y, — f(X;). Then,
by (1.1) and the assumption that Var (Y; — f(X,)) = v* < oo foralli, U,, U,, - - -
is a sequence of independently distributed random variables such that E(U;,) = 0
and E(U?) = v%a;? (< oo, for all i).

Use (3.2) to write

=X, Y7, 0°) = U; + a)[24*.
By (4.1), write
—L(r, o) = (2 Lt Uifn + X7 a;’[n)[20" .
By (4.4), n~* 331 a;* > A(7). Hence by the Law of Large Numbers a sufficient
condition for n~! ;7 U; —» 0 a.s. [Z] is J 7 a?/j* < oo.
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It is merely a matter of series manipulation to show that for all sequences of
nonnegative numbers a.?, @,%, - - -, lim,_, n~* 317 a;* < oo implies that
lim,_, >ta?/j* < .
Since (4.4) explicitly states that lim,_, n™* % a2 = A(y) < oo, we have shown
that for all y € C,,
L(7, %) — —A(7)/o? as. [Z].
With this lemma proven, we may follow Berk’s method through his Theorem

3.3, eliminating conditions our model automatically satisfies, and prove the fol-
lowing theorem.

THEOREM 4.1. When X,, X,, - -- is the sequence o}' values of the independent
variables for a fixed sampling design, when W, is the empirical cumulative sampling
distribution of X,, X,, - - -, X, treated asa sample of size n, and when the probability
measure W exists then P, converge a.s. [Z] to a distribution degenerate at y* whenever
(4.52) C,.,=C®C,,

(4.5b) equations (4.2a), (4.2b) and (4.2c) are satisfied,

(4.5¢) Ar*) < A7) Vr#r*7€C,,
and

(4.54d) P, becomes propera.s. [Z].

5. Model selection. Assume that there are T alternative models for the distri-
bution of the sequence (X;, 1)), (X;, Y}), - - - instead of only one as assumed in
the previous two sections. Assume, further, that each of the models fits the
structure assumed for one model in Section 1. The only change in notation we
need is the addition of the subscript ¢ to any symbol that refers to a quantity or
vector associated with a specific model, the th. Finally, let ¢, , denote the prior
probability of the /th model and let g, , denote the posterior probability of that
model given (X, Y)), (X;, 1), - -+, (X,, ¥,), where 3,4, , = 1.

We wish to determine when the a.s. convergence of P, , implies that there
exists an index, m, such that ¢, ., — 1 a.s. A very general theorem of this form
may be stated as follows.

THEOREM 5.1. If X,, X, - -- is an i.i.d. random sequence and conditions (3.4)
are satisfied for all t or if it is a fixed sequence and conditions (4.5) are satisfied,
then, whenever

(5.1a) Coo=C, foral t
and

(5.1b) An(Tn®) < A(1*) Vt#m
are satisfied,

(5.2) Gom— 1 as. [Z,W] or [Z].
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This theorem is really a corollary to the two previous theorems. To prove it,
note only that if we create the new model

Y, =37 7:8.(X)) + ¢

we have returned to the one model problem with the parameter space being the
space of vectors of the form (7,, 7., « -+, 77, 0%) = (7, 0?). The carrier of the
implied prior of this parameter space is contained within the union of appropri-
ate subspaces. Hence, with assumption (5.1a) to guarantee (3.4a) or (4.5a) for
the new parameter space, all we need is that there exists a unique minimum to
A(6) over the carrier to assure a.s. convergence to a unique ¢ contained within
one of the subspaces. Since each g, , is the total mass of a subspace for the nth
posterior distribution, we have our result.

This theorem is almost as satisfactory as the two preceding ones. The only
discomfort we feel with it is that we are more willing to assume (3.4c) or (4.5¢)
than we are to assume (5.1b). Any P, for which C, equals the entire r dimen-
sional space will automatically guarantee a unique minimum to A(y) at the pro-
jection. No equivalent type of statement may be made for more than one model.
1t is too easy to think of examples such as T nested models with an f(x) orthogo-
nal to them all. Theorem 5.1 would not imply posterior consistency here since
2,(0) = 0 for all ¢ and, therefore, (5.1b) is not satisfied.

Yet there may well be posterior consistency, at least for some forms of P, ,.
The remainder of this paper is an attempt to show posterior consistency when
(5.1b) is not satisfied. To do so, we restrict the type or priors we consider.

We shall assume the following: given o?, the prior distribution of 7, is MVN
(#0,0> 0* X0,;) for all # or it is the improper uniform on r, dimensional space for
all r. The marginal prior distribution of ¢* is prior inverted gamma for all ¢,
improper with density proportional to ¢=*do for all ¢ or degenerate at some
fixed value o/’ for all z. Thus, the priors we allow are the natural conjugate
distributions given the model or the improper distributions representing the
limits as the prior certainty about either 7, or ¢* or both approaches zero for
all z.

With these priors P, , may be explicitly expressed. Assume all assumptions
except (5.1b) are satisfied. Then since, forall¢, P, , converges to the degenerate

distribution with a spike at 7,*,
(5.3) Gue ~ BM, \["Fexp{—b, 1T [Y; — 7.,*8.X)]"}

for some positive constants b, and b, where M, , is the r, X r, matrix defined
earlier by M, , = 717 8.(X,)'8.(X,)- (A result similar to (5.3) is contained in
Section 11.12 of DeGroot (1970)).

With the convergence of P, , for all ¢+ implied by our assumptions, we also
have that a.s. 31 [Y; — 7.*8(X;)]’ is asymptotically of the order n[v* + 4,(7,*)],
where v* = E(Y; — f(X;))’ < co. This follows from n~! };7[Y, — 7, *8(X)] =
Tt (Y — fX)n — 20,7, o).
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The asymptotic order of |M, ,|-* equals n=¥":. This follows from the fact that
a typical element of M, , equals 37 g; (X,)g,..(X;). When X, X,, - .. is fixed, by
definition and assumption (4.2a), n=* 337 g, (X,)9:.«(X;) = § 9;,(%)9s,«(x) dW(x).
If the sequence is random, the convergence is a.s. [W]. The matrix
§ 8.(x)'g,(x) dW(x) is nonsingular by the assumption that eventually P, , becomes
proper.

We have proven the following theorem.

THEOREM 5.2. Assume all conditions of Theorem 5.1 are met except for (5.1D).
Assume also that, for all t, Py, is the natural conjugate or related improper form
specified earlier. Let S be the largest subset of {1,2, --., T} such that

(-4 A(7,*) = minyg, o, 4,(7,%) VsesS.

If there exists an m € S such that

(5.5) r, <r, VseS,s#+m,
then
(5.6) Qo — 1 a.s. [Z,W] or [Z].

The implications of this theorem, especially for nested models, are pleasing.
They seem to be a mathematical form of Occam’s Razor. If, for instance, the
tth model for the regression curve is of a ¢ — 1st degree polynomial in the uni-
variate independent variable x and f(x) is an m — lIst degree polynomial in x,
then under the weak assumptions given above, ¢, , — 1 a.s. This convergence
is independent of the actual form of the errors as long as v* < co. It is inde-
pendent of the priors; as long as they are of the correct form they can be as
misleading as possible and still the convergence holds. Finally, it is independent
of the sampling design as long as the posterior distributions become proper.

When the models are not nested, this form of Occam’s Razor still follows.
If two models are equidistant from f(x) in terms of ,(7,*), eventually one will
believe in the model with fewer terms. Intriguingly, here though, the word fewer
is used in reference to r,, the number of terms in the mth model and not in
reference to numbers of nonzero elements of 7,*.
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