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ON THE INFORMATION CONTAINED IN
ADDITIONAL OBSERVATIONS

By LucieN LE Cam

Miller Institute, University of California Berkeley

Let {X;;j=1,2,---} be independent identically distributed random
variables whose individual distribution py is indexed by a parameter 6 in
a set ©. For two integers m < n the experiment &, which consists in
observing the first # variables is more informative than &,. Two measures
of the supplementary information are described. One is the deficiency o
(&m, &x) introduced by this author. Another is a number, (&, €») called
““‘insufficiency’’ and related to previous arguments of Wald (1943). Relations
between d and 7 are described.

One defines a dimensionality coefficient D for © and obtains a bound
of the type

WEm, En) < [2D(n — m)n]t .

Examples show that 6(&'n, &») may stay bounded away from zero in infinite
dimensional cases, even if m — oo and n =m + 1.

1. Introduction. Let {X,;j= 1,2, ...} be a sequence of independent identi-
cally distributed random variables whose distribution p, depends on a parameter
0 0. Let &, be the experiment which consists in observing the first n of the
variables. Intuition suggests that when m/n is close to unity the two experiments
&, and &, provide about the same amount of information. The same remark
applies to experiments %, in which the number N of variables observed is
decided by a sequential stopping rule, or other stochastic mechanism, provided
again that N/n be close to unity in probability.

The bulk of the present paper is devoted to an attempt to express this intuitive
feeling more precisely in terms of appropriate distances between experiments.

For two arbitrary experiments & = {P,; § € ©} and & = {Q,; 0§ € ©} indexed
by the same set © a natural distance A has been previously introduced by the
present author. Unfortunately this distance is often difficult to evaluate. Another
possibility occurs when one of the experiments, say &, is a subexperiment of the
other, so that roughly speaking, & consists in observing only certain functions
of the observations available in & . In this situation one can ask how much one
must modify the measures Q, attached to .5 so as to make sufficient statistics
of the functions which generate &

Ideas leading to this latter kind of distance may be found in Wald’s paper
[11]. Further developments occur in [5], [6] and in Kudo [4] and Pfanzagl [8].

After a preliminary Section 2 which describes the terminology, we give in
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Section 3 an exact definition of the distances used; Section 4 collects some
examples indicating their relations or lack of relation.

Section 5 considers more specifically the case of experiments &, and &, which
differ by the number of observations one is allowed to take. It is shown that
restrictions on the dimensionality of © insure the correctness of the intuitive
feeling described at the beginning of this Introduction. The examples of Section
4 show that the dimensionality restrictions cannot be entirely omitted. Since
the present work was suggested by the justification of the technical device which
consists in replacing the fixed sample size n by a Poisson variable N, special
mention is made of this case.

The general theme of Section 5 is, of course, not entirely without precedent
in the literature. Certain arguments of Bickel and Yahav [1] or Min-Te-Chao
[3] are related to the phenomenon described here. Perhaps the cleanest example
of this form of reasoning is that of Grace Yang in [12]. However, the bounds given
here appear to be more specific than anything that has come to our attention.

2. General terminology. For simplicity we shall follow closely the terminology
of [7]. However, since the abstractness of some portions of [7] may repel some
readers, we shall often state results in a more restricted form, the abstract de-
finitions being used only to avoid measure theoretic technicalities.

Let © be an arbitrary set. By a standard experiment indexed by © will be
meant a map 6 ~ P, from @ to the space of g-additive probability measures on
a g-field 7 carried by a set 2”and subject to the following restrictions:

(1) Zis a Borel set in a Euclidean, or Polish, space and %/ is the o-field of

Borel subsets of Z;
(2) There is a finite measure which dominates all the P,.

If {2, %7} and {Z/, '} are two measurable spaces, a Markov kernel from
(&, ) to {Z, #} is a map x ~ K, which assigns to each x € 22”a probability
measure K, on <%, with the added restriction that for each Be £ the function
x ~» K,(B) is -measurable.

When {2, %'} is the underlying space of an experiment & and y € 2/ is some
object of interest to the statistician, Markov kernels from {27, %'} to {Z/, &}
are also called randomized estimates based on &.

The corresponding terminology in [7] is as follows. An experiment & indexed
by © is a map 6 - P, to some abstract L-space L with restriction that P, = 0
and ||P,|| = 1. The role of Markov kernels is played by “transitions”. Given
two L-spaces L’ and L”, a transition from L’ to L” is a positive linear map T
from L’ to L” such that ||Tu*|| = ||#*|| for all pe L'.

For any experiment &, there is a smallest L-space which contains all the P,.
It is called the L-space of & and denoted L(&’). Randomized “estimates” are
then transitions from L(&’) to some other L-space.

Let & = {P,; 6 ¢ ©} and & = {Q,; 0 € O} be two experiments indexed by the



632 LUCIEN LE CAM

same set ©. The deficiency 6(&, &) of & with respect to & is the number
A&, F) = inf, sup, §||TP, — Q| »

where the infimum is taken over all transitions T from L(&’) to L(& ). The
distance A(&, &) is A&, &) = max {§(&, &), 0(F, &)}. (Note that these
definitions differ from those of [7] by the inclusion of a factor }.)

In the sequel, we shall be concerned almost entirely with estimation problems
in which the loss functions are bounded. In other words, there will be a decision
space, say Z, with a loss function W,(z) = W(0, z) defined on © x Z and such
that sup {|W (0, z)|; 0 €O, ze Z} < oo. Estimates will be transitions to the space
of linear functionals on the vector lattice generated by the constants and the
functions W,, 8 € ©.

The purpose of these abstract definitions is twofold. Our definition of “standard
experiment” requires domination. This is not preserved by small modifications
of the P,. However, the technical difficulties this entails are not insuperable.
The main reason for the sample space free definition and the replacement of
Markov kernels by transitions is that, when this is allowed, one can make most
if not all arguments as if all parameter, sample and decision spaces in sight were
finite and then pass to the limit. The amount of freedom so gained is well worth
the price, especially since many of the “regularity” conditions to be found in the
literature seem to have for their main object that our “transitions” are auto-
matically representable by Markov kernels.

Let us mention specifically two features of the abstract definitions. One is
that for decision spaces with bounded loss functions the minimax theorem always
holds and that the minimax risk can be obtained by first computing a minimax
risk for finite subsets 4 C © and then taking a supremum over A.

Another feature is that the deficiency 4(&", &) can also be written

o(&, F7) = g sup,infy supse , ||TP; — Q| »

for A ranging over all finite subsets of ©.

In general, for all the propositions stated in the present paper, one can first
restrict oneself to finite subsets of ©. In this case the Polish structure of standard
experiments can easily be made available by passage to likelihood ratios. Thus,
there will be no loss of generality in using it in the proofs or simply to make the
notation look more familiar. This flexibility will be used arbitrarily and without
much warning, especially to avoid measure theoretic difficulties.

3. Measuring the insufficiency of a subfield. In this section we shall consider
two experiments & = {Py; 6 € ©} and & = {Q,; 0 € ©} indexed by the same set
0, and assume in addition that & is a subexperiment of & in the following
precise sense. If & is standard, the measures Q, are probability measures on a
certain o-field &# carried by a set 27, There is another o-field & C <% and P,
is the restriction of Q, to .

In the general situation one has a certain L-space L, that is a Banach lattice
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with a norm such that ||P 4+ Q|| = [|P|| + ||Q|| for positive elements. The map
6 ~ Q, is a map from O to the positive part of L such that ||Q,|| = 1. The space
L has a dual M. One takes a w(M, L) closed sublattice M’ of M such that the
identity 7 of M belongs to M’. The functional P, is the restriction of Q, to M.
Obviously M plays the same role as the space of equivalence classes of the
bounded <% measurable functions and M’ plays the role of the equivalence
classes of the bounded .%”-measurable function.

In such situations one can measure the deficiency 6(2°, & ) by the method
indicated in Section 2. However, other measures become available. If .9 was
sufficient in the Halmos-Savage sense, statisticians would generally agree that
there is no loss of information in passing from £#'to % or equivalently from
M to M'.

This suggests measuring the loss of information by ascertaining how much
one needs to modify the measures Q, to insure that % is sufficient for the
modified family. In such modifications one may encounter difficulties with the
Halmos-Savage definition. In particular it may happen that % c %, that
&7 is sufficient but that .97 is not (see [2]). To avoid this lack of agreement
with intuitive requirements we shall use only pairwise sufficiency or, equivalently,
sufficiency for dominated subfamilies.

Thus, we shall consider a situation which in the usual case means this. We
have a complete vector space of measures L on <% such that if 0 < y <vel
then ¢ e L. The experiment & is given by a map 6 ~ Q, € L. The experiment
& is obtained by the map 6 ~ Q) of their restrictions to the space M’ of equiva-
lence classes of bounded .%7-measurable functions.

DerINITION 1. The lack of sufficiency of & relatively to & is the number
(&, &) = infsup, ${|Qy — Q||
where the infimum is taken over all families {Q,*; § € ©}, with Q,* € L such that
M (or &) is pairwise sufficient for {Q,*; 6 € 6}.

One will note that, in this definition, the family {Q,*} need not be dominated
even when the original family Q, satisfies this requirement. It will be shown
below that adding a requirement of that type would not change anything. How-
ever, one can add another restriction which may change the measure of loss of
information and yield a technically more convenient definition.

DEFINITION 2. The insufﬁciéncy 7(&, &) is the number
(&, &) = infsup, 3]|Qy — Qp*||

where the infimum is taken over all families {Q,*}, Q,* € L for which M’ is
pairwise sufficient and for which Q, and Q,* agree on M'.

We shall introduce below still two more possibilities, but for their motivation
and for the proofs of various equivalences we need an aside on conditional
expectations.
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Suppose that 2/ is a Polish space with its g-field <2 of Borel sets. Let . be
another g-field &7 C <. Let u be any finite positive measure on <#and let '
be its restriction to .. Let M be the space of u-equivalence classes of bounded
F-measurable functions. Let M’ be the corresponding space for (., p’). There
is a uniquely determined map u —~ uA4 of M onto M’ which is a positive linear
projection and is the conditional expectation operator for ¢ and the pair (%7, 7).
It is characterized by the equality {uv, ¢y = {(uA)v, ) for all ue M and ve
M. 1In the Polish case this operator admits a representation by a Markov kernel
x - K,, so that uA is the p'-class of { u(y)K,(dy). The map x- K, is well
defined up to possible modification on a y/-negligible set.

This kernel K, is always such that, for each 4 ¢ %7*the function x ~» K (4) is
p'-equivalent to the indicator of 4. However, K, is not always concentrated on
the atom of % defined by x. This is the case, except for a p/-negligible set, if %
is countably generated, for instance. However, since £ is countably generated
one can always find a countably generated sub-o-field 7] C % such that every
bounded _%-measurable function is y#’-equivalent to an .&;-measurable function.
More precisely, the bounded .%7“measurable are in the Daniell extension of g/
considered as defined on .97 only, and there they are equivalent to .%-measur-
able functions. Thus we shall if necessary assume that 57 is countably generated.

The situation is more complex if more than one measure is involved. Consider
for instance two finite positive measures S;, i = 1, 2 on &Z.

Let = S, + S, and let S/, ¢/ be the corresponding marginals on %, Each
S, has a conditional expectation given by a Markov kernel x ~ K; ,, but that
kernel is defined only up to an equivalence for S/, not necessarily up to an
equivalence for x/. We shall still say that a Markov kernel x ~ K, , is associated
to S; and (&%, &) if for each bounded ZZ-measurable u the function x -
§ u(y)K, ,(dy) has for S, equivalence class the conditional expectation of u given
7 for S,. Note, however, that we insist on the Markov kernel property.

In spite of the lack of definiteness of these kernels one can state the following.

LeEMMA 1. Let (Z/, SZ) be a Polish space with its Borel o-field 5. Let S be
another o-field, & C 8. Let S,, i = 1,2 be two positive finite measures on 5.
Let S, be the marginal of S; on % and let x — K, , be a Markov kernel associated
to S; and the pair (7, <%). Then

3 V11K, — Kadll(S: + Si)(dx) < (IS — S| + IS — Sy'][ -

Proor. Let ¢ = §, + S, and let f; be the density f; = dS,/dp. Similarly, take
the density f,’ = dS,’/dy’ on 7. Let x ~ A4, be a Markovkernel giving conditional
expectations for ¢ and the pair (%, £#’). Then, in terms of p'-equivalence
classes, f;'(uK,) = (uf;)A. Hence

[u(fs — fi)l4 = 3(uK, — uKy) + 3(f) — fi) (@K, + uK))

and therefore
3uk, — uky| < [Jull{(lfy — fi)4 + | =1}
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with ||u|| = ess sup |u(x)|. Here uK, is the p'-class of the function § u(y)K; .(dy).
The norm ||K, , — K, ,|| can be obtained by taking a supremum over a countable
subset of the ball {u; |u| < 1} and this subset can be selected independently of
x. Thus sup {|uK, — uK,|; |u| < 1} is the class of x — ||K, , — K, ,|| and the result
follows by integration with respect to p'.

Returning to a standard experiment & : § — Q, on the Polish (Z/, &), let
x - F, , be a Markov kernel associated to the pair (%, &), % C & for the
measure Q,.

COROLLARY. In the standard case, let Q,* be a family for which 7 is pairwise
sufficient. Assume also that all the restrictions Q,*' of the Q,* to S are dominated
by a finite measure p'. .

Then there is a Markov kernel x ~ K, from (Z/, 7') to (2/, &£) such that

3§ 11Fo. — KJl(Qs + Qo*)(dx) = 1Q0* — Qoll + 11Q0™ — O/l -

Indeed, since the Q,*" are dominated, there exists a Markov kernel K, associated
to all Q,* for the pair (&, 7).

Note that in the case where Q,* = Q,” one has §||F,, — K,||Qy(dx) =
[|Q,* — Q|| This remark suggests another possible definition as follows.

DErINITION 3. Let & : 6 ~ Q, be a standard experiment on the Polish space
(Z, F). Let 7 be a g-field ¥ ¢ & For each Q, let x — F, , be a Markov
kernel associated to (%, &&). The insufficiency 7,(&, &) is the number

7(&, F) = infsup, § § ||Fo,, — K.||Qy(dx)

for an infimum taken over all Markov kernels x ~— K, from (Z/, %) to (%, &%),
and all choices of the kernels x ~ F, ..

In the special case covered by this definition the number 7, is the same as the
7, of Definition 2. Indeed, let 1 be a measure which dominates the family {Q,}
and let g’ be its restriction to .7

Take a countably generated subfield %] ¢ % such that the space of p'-
equivalence classes of bounded .%;-mesurable functions is the same as the cor-
responding space on .%. Then there is a Markov kernel K from (2, %)) to
(%, &) such that | ||K, — K,||¢#'(dx) = 0. Similarly each F, , can be replaced
by a F, ,, so that ||F, , — K,|| is equivalent to ||F, , — K,]|.

By definition, and using the countable generation of %], each F,, is con-
centrated on the .%;-atom of x for Q, almost every x. Thus one can, without
increasing the norms, assume that each K, is likewise concentrated on the .%7}-
atom of x for y’-almost every x.

Let then O, be the measure defined by

s Qo = § [§ u(y)K(dY)]Qy(dx) -
For the family 0, the o-field % is sufficient and ||Q, — Q|| < § ||1Fy,. —
K,||Q,(dx). The reverse inequality is a consequence of the corollary of Lemma
2 since {u, Q,> = (u, 0,y whenever u is bounded and .%;-measurable.
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The property used here for kernels K, is that they provide a positive linear
projection of the space M of equivalence classes of bounded <% measurable
functions onto the space M’ of equivalence classes of .%-measurable functions.
To get additional results we shall use only this property and revert to the general
notation where & is an experiment 6 — Q, € L for some abstract L-space L of
dual M containing a closed sublattice M’ with /e M’. The experiment & is then
the function 6 ~ Q,’ where Q,’ is the restriction of Q, to M.

DEerINITION 4. The insufficiency 7(&, %) is the number
W&, F) = infy sup, } [|Q, — 11Q,||

where the infimum is taken over all positive linear projections I of M onto M’
and where I1Q is defined by (u, IIQ) = (ulI, Q).

REMARK. In this definition nothing changes if one replaces L by L( ) and
M and M’ by the appropriate quotients.

This definition has the following background. If pe L and se Mlets. y be
the element of L defined by {u, s - #) = {(us), u). It is a known result (see [7]
and [9] for instance) that pairwise sufficiency of M’ for {Q,} is equivalent to the
fact that for any finite sum p = ¥ a; Q,,j, a; real, thereisan seM’, 0 < s < 1
such that s . p = p*.

Another theorem of [7] says that this is equivalent to the existence of a positive
linear projection II of M onto M’ such that ull, Q> = <u, Q,).

In fact the result stated in [7] refers to the case where L is the space L(.Z)
generated by the family {Q,; 6 € ©} itself. To obtain the general result one can
proceed as follows. For each @ let s, be the smallest idempotent of M’ for which
(85 Qpp = 1. Let A4, be a positive linear projection of M into M’ such that
14, < I and (uw, Qp) = {(u4,)v, Q;) for all ue M, ve M. Take s = sup, s,
and for u € M, u > 0 define II, by uIl, = sup, (u4,)s,. If thereisa p,eL, p, =
0 such that {(/ — s), ¢,) > 0 one can suppose that g, is disjoint from L(%")
and take the smallest idempotent w, such that 0 < w, < 1 — s and (w,, p,) =
{I — s, ;). Continue transfinitely in the obvious manner till 7 — s is exhausted.
For each y; take a conditional expectation operator B; and, if 4 > 0, let uII, =
sup; (uB;)w;. Finally let uIl = max (uIL,, uIl,). This gives the desired projection.

Let us prove first a result which refers to the », of Definition 1.

LEMMA 2. Let {Q,*; 6 € ©} be a family of positive elements of L such that
1Qo*|| = 1 and for which M’ is pairwise sufficient. Then there is another family
{Qo} with the same properties but with Q, € L(.F~ ) such that

105 — Goll £ 11Q5 — ol
forall 0 ¢0.
ProOF. Let s be the smallest idempotent of M for which (s, Q,> = 1 for all

0. If (s, Q,*) = Oforall 4 then ||Q, — Q,*|| = 2 and the result follows trivially
taking 0,, ¢ € © identically equal to one of the Q,. If not, take a £ ¢ © for which
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(s, Qc*) > 0 and define 0, = s - Q,* + B(O)<s - Q;*) with a B(f) such that
[|Qs]] = 1. Take a finite sum g = 3] a,.Q,,j. It can also be written g = s - v
where v is a sum 3 b; QF. involving the chosen §. If 0 < f < 1, fe M’ is such
that f . v = v* then f(s-v) = (s - v)*. Hence M’ is still pairwise sufficient.
Since the inequality ||§, — Q,|| < ||@,* — Q|| is clear the result follows.

The following lemma summarizes the situation.

LEMMA 3. The numbers n,(&, &) and 9(&, &) are always equal and one has
w&, F) =&, F) = (&, F).

Furthermore, if the conditions of Definition 3 are satisfied one has 7, = 73 = 7.
Finally, let &, be the experiment 0 ~ Q, with 6 € A < ©. Then

W&, F) = sup, (9(&,, F,); A finite, 4 C 6}.

Proor. Let II be an arbitrary positive linear projection of M onto M’. Define
1o, = 9, by <(u, 0,5 = <ull, Q,). Then M’ is sufficient for {0,; 0 € ©} since
ull, 0,5 = (ullll, Q,Y = <uIl, Q,> = <u, @,y for all ue M. Conversely, sup-
pose M’ sufficient for {Q,*}. Then there is a positive linear projection II such
that (I — II)Q,* = 0 and therefore (/ — II)Q, = (/ — II)}(Qy, — Q,*). Since
I —1I has at most norm two this proves the first statement if one adds the
remark that IIQ, coincides with Q, on M'.

The equivalence with Definition 3 is now easy, since in that case the projec-
tions II are always representable by Markov kernels, and since we argued after
Definition 3 that one can restrict oneself there to Markov kernels which induce
projections.

The last statement is proved as follows. Let ¢ be a number strictly larger than
the right-hand side sup 7(&,, % ,). For each finite 4 take a projection II, with
|Q, — IIQ,|| < 2¢ for all § € A. Direct the sets A increasingly by inclusion.
The maps II, admit along this direction at least one cluster point II for the
topology of pointwise convergence on M x L. Indeed for u € M the values «II,
stay in a w(M’, L) compact subset of M’. This cluster point II is necessarily a
positive linear projection of M onto M’. Finally the norm is lower-semicon-
tinuous for the topology of pointwise convergence on M and therefore ||Q, —
IIQ,|| < 2¢ for all # € ©.

This completes the proof.

ReEMARK 1. The positive linear projections of M onto M’ form a convex set.
This and the compactness used above leads to the following consequence. Sup-
pose that S is a linear map of L into itself such that both S and its inverse S~
are positive. Assume that {SQ,} is a permutation of {Q,}. Suppose in addition
that the transpose of S maps M’ onto M’. Then there is a projection II of M
onto M’ such that SIS = II and such that }||Q, — IIQ,|| < »(&, & ). This
follows from the Markov-Kakutani theorem and extends to solvable groups of
transformations such as S.

We do not know of any good statistical argument which indicates that the
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number 7 = 7, is preferable to 7, as a measure of insufficiency. However 7
seems easier to handle in some situations. For instance, let {Q,; 0 € ®} be a
family of probability measures on a o-field <Z,. Suppose that <& C 7, is pairwise
sufficient for this family and that & C % c £. Suppose also that o7 is
pairwise sufficient for the family {Q,'} of the restrictions of the Q, to %7 The
four o-fields &7, € % C ' C <, correspond then to four experiments say &,
&, # and & . Thenitisclear that (&, &,) = n(&, &) although an analo-
gous statement, if true, is less visible for 7,.

For this and other analogous reasons we shall retain »(&’, &) as the measure
of “insufficiency”.

4. Examples illustrating the behavior of <deficiencies” and “insufficiencies”.
In this section we shall give an example showing that the intuitive feeling
described in the Introduction needs qualifications. Then we shall show that in
a very special case insufficiency may be bounded by a function of the deficiency.
The Gaussian shift experiments show, however, that this cannot be done generally
and that something like the dimension of the parameter space enters in the re-
lation between the two numbers.

ExAMPLE 1. Let 22” be the interval [0, 1] with the Lebesgue measure 2. Each
x €2 has a binary expansion x = 3., §;,(x)277 with §,(x) equal to zero or
unity. Take for parameter space © the set of integers ® = {0, 1,2, -..}. For
6 =0, let pp=2. For § > 1, let p, be the measure which has density 2§,(x)
withrespectto 2. Let & ™ be the experiment which consists in taking n independent
identically distributed observations from one of the p,.

Take a large integer k and let m be the integer k*2". Consider the set 0,, =
{1,2, ---,m 4 1} and the following estimation problem. The set D of possible
decisions is the set of all subsets of ®, which have a cardinality at most equal
to k* 4- k*. The loss function W(@, S) is always zero except if /¢ ©,, and 6 ¢ S
in which case the value is unity.

For a given 6 ¢ ©,, and a given number v of observations let M be the number
of indices j + ¢ of ©, such that §;(x)=1 forall i=1,2,...,v. Thisisa
binomial variable corresponding to m trials and a probability of success 2.
Thus EM = k2"~ and Var M < k*2"~*. In particular, for k large andv =n
the variable M will take a value inferior to k* 4 k* except for cases of very
small probability. The selection of the set S is then a trivial problem.

On the contrary, if v = n — 1 we have EM = 2k® and, with large probability
M will be larger than 2k* — k*. Once M is known the distribution of the sets
of indices j # 6 where II,§;(x;) > 0 is the same as if these were taken at random
from the available places. Thus, a simple argument shows that the minimum
risk is not much less than 1 — (k® 4 k*)[2k® — k*]~*. Since k can be chosen
arbitrarily large we can conclude that §(&’ "1, &") = }.

Let us return now to the case of two experiments & and & where & is given
by measures Q, on a o-field & and & is given by the restrictions Q,’ of these
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measures to a g-field % c <&, Let s be a fixed element of © and let v, be the
likelihood ratio v, = dQ,’/dQ,’. For each pair (s, t) let &, , be the experiment
&, = (Q,, Q,)and let &, be its restriction to .. Let d(s, ) be the deficiency
o(s, 1) = (&, ,, &,,,)-

PROPOSITION 1. Assume that there are numbers C = 1 and a €[0, 1] such that
Q,/[v, > C] < aforall e®. Letd, = sup,{d(s, t); t€ O}. Then

W&, F) < a+ 2C5,t.

ProoOF. According to Lemma 3, Section 3, it is enough to prove the result
when O is finite. In that case one can without loss of generality assume that the
underlying space (Z/, &%) is a Polish space. We shall do so.

Consider first the binary experiments &, , = (Q,, Q,) and &, = (Q,’, /).
Let S be a measure which dominates Q, and Q, and let $’ be its restriction to
7. Let f, be the density f, = dQ,/dS. Similarly, let f, = dQ,/dS and denote
f.'s f¢ the corresponding densities on the g-field %7, On the positive quadrant
of the plane let ¢,(u, v) be defined by ¢,(u, v) = min {(1 — z)u, zv} for z ¢ [0, 1].

Torgersen [12] has shown that the deficiency d(s, f) is precisely equal to

o(s, 1) = sup. {§ ¢.(f)'> f/) dS" — § ¢.(for £) 4} .

The densities taken on % are conditional expectations (for S) of the cor-
responding densities taken on <Z. Also, for each z, the function ¢, is concave.
Thus for any set 4 € % one has

o(s, ) 2 Sale /i f) — e f214S
Integrating in z for the Lebesgue measure yields d(s, #) = 3J(4) with
JA) = §,[ LS _fle as.
“ S‘[f,' +5 T +f,]

In this integrand one can introduce arbitrary terms, provided that their condi-
tional expectations be zero. Thus we can replace the integrand in J(A) by the
function

1 {fafz’ + /) S = SN =S 2 }
20+ K+ 1) fot 1
_ LY
(e + LIS+ 1)

Now consider arbitrary conditional distributions F, , and F, , associated re-
spectively with Q, and Q,. Definition 3 suggests consideration of the integrals
W(A) = §, ||F,, — F,.||Q/(dx) and of the remaining analogous part W(A4°). It
is clear that W(4°) < 2Q,/(A4°) and that W(A) is not modified if one ignores the
part of A4 where f,’ vanishes. Take for 4 the set where 0 < f,’ < Cf,’. On this
set one can write W(A4) = §, |f.f. — f./|(f.))*dS. Thus, by Schwarz’ ine-
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quality [W(A)] < J(A)K(A) where

K(4) = §, <f,’}tf¢'>’(f’ +f)dS <2(1 + C).

Collecting all terms and replacing 2(1 + C)* by the larger 2°C? one obtains
3§ IFe. — Fll|Q/(dx) < QA) 4 2C(5(s, 1)) -

It follows from this that Definition 3 is satisfied for a kernel K, = F,, and a
number 7, < a 4+ 2C3,4 This concludes the proof of the Proposition.

In some of the arguments given below the use of the L,-norm [|P — Q|| is
uncomfortable. It is often convenient to use the'Hellinger distance H(P, Q)
defined for positive P and Q by

HY(P, Q) = § | [(4P)! — (dQ)]".
Let us recall that, when P and Q are probability measures one has
H(P,0) < }||P — Q|| < H(P, Q)2

Also H (P, Q) = 1 — p(P, Q) where p is the affinity o(P, Q) = § (dPdQ)t.

Of course it is clear that 6(&", &) < (&, &), always, but we shall presently
show that d can be arbitrarily small and 7 large.

For this purpose let © be the r-dimensional Euclidean space. Let p, be the
Gaussian distribution p, = .#7(0, I) which has expectation ¢ and identity covari-
ance matrix,

PROPOSITION 2. Let &£™ be the Gaussian experiment which consists in taking n
independent identically distributed observations from 470, 1). Let &™* consist
of carrying out " and then taking one additional independent observation from
A0, I). Then

a(gn, gn+1) < Lf_
2(2%) n
and

(&, gy z L exp {— Tt 1} <L)é .
2n 8n n

Proor. For the Gaussian experiment with n observations tiie average of the
observations is a sufficient statistic which has a distribution G, , = #7(0, n~I).
Denote G, the distribution of this average for # = 0. Then G, , is the translate
of G, by 6 and ||G, y — G, || = ||G, — G,.,||- Thus, it is certainly true that
5(%7, y) = l”Gn - Gn+1”’

In fact Torgersen [10] has shown that §(%, &) is precisely equal to this
number. The upper bound given here is obtainable by noting that

(G, Gm):[l _ 2_271_1)2 :Im

and therefore H*G,, G,,,) < (r/16n%).
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For the second statement let us note that according to Definition 3 the
insufficiency »(Z™, £"+') is a minimax risk for the problem of estimating the
distribution p, using the observation x = (x,, x,, - - -, x,) provided by &* and
the loss function }||p, — K,||. Here x - K, is an arbitrary Markov kernel.
However, for such a kernel one can define estimates x — f(x) taking an ¢ > 0
and a measurable function such that

”Pt(z) - Kz” é €+ inft ”Pt - Kz” .
[1Po — Peall = € + 2||py — K| -

Since ¢ can be taken arbitrarily small we conclude that » < w < 27 where w is
the minimax risk in the problem of estimating @ for the loss function W(4, t) =
% 1lpo — p.l|- Simple algebra shows that W(@, r) = Prob {|u| < }||0 — ¢||} for a
real-valued .#7(0, 1) variable u.

Take a small number ¢ > 0 and use a prior distribution .#7(0, ¢-7). Compute
the posterior distribution, take the minimum risk, and let ¢ tend to zero. This
gives the minimax risk w. Simple algebra shows that

Then, one has

1
w=Prob{u = — },
Ml =551

for a variable y* which has the y* distribution with r degrees of freedom. In
other words w = Prob {|¢| < 4(r/n)}} for a t-statistic with r degrees of freedom.
In integral form

2 TIC D2 ggoi[g 4 20"

w= "1 T /=] (te/m2) ] —_— dt
ATerg) LT

The bound given in the proposition is obtained by using the crudest obvious
estimate of the integral and noting that for positive integer values of r the
coefficient in front of the integral reaches its minimum at » = 1.

REMARK 2. The reader will note that in these formulas, the dimension r of
© enters through a factor rt. An analogous factor will be encountered more
generally in Section 5.

The phenomenon illustrated by Proposition 2 is probably fairly general. To
give another instance, consider any family {p,; & € ©} of probability measures
on a space (2, .%’). One can then define an experiment & * which consists of
taking »n independent observations from one p,. One can also introduce a Poisson
experiment " as follows. First take an observation on a Poisson variable N
with EN = n. If N takes value zero do not do anything else. If N takes value
m > 1 carry out &™.

LEMMA 4. Whatever may be the family of probability measures {p,; 0 € ©} one
has for all positive integers 0 < k < n the inequality

s, Ty < X
n
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Proor. Consider on (2, %) a family {g,; 6 € 8} of finite positive measures.
To each p, one can associate a Poisson process which is an additive set function
A~» X(A). For each 4 the variable X(A) is a Poisson variable with EX(A) =
o(A) and, for disjoint sets {4,}, the corresponding X(4,) are independent. Let
£ be the distribution in R* of the process X. One can show by simple algebra
for a finite partition and a passage to the limit that

§ (@, di)t = exp {(—H(p,, )} -

It is also easy to verify that the experiment denoted 5" above is equivalent
to an experiment in which one observes a Poisson process X with distribution
induced by measures p, = np,. .

Thus, if P, is the distribution of the Poisson process corresponding to np, and
if Q, corresponds similarly to (n + k)p, one can write

H(Py, Qp) = 1 — exp {—H*(np,, (n + k)p,)}
< H[np,, (n + k)p,]
= 3[(n + k)* — niT".

Thus
1 k

3Py — Qoll < [(n + k) — ni] < o
n
This implies the desired result.

An experiment equivalent to &Z°**! can also be carried out as follows. One
first carries out &°" obtaining N and X, X,, - .., X;. Then one observes another
independent Poisson variable N’ with EN’ = 1 and one selects N’ independent
observations X', X/, -- -, X}, from p,.

In this case F°" is a subexperiment of Z”"*! and the associated conditional
distributions are certain measures v, which are such that H%»,,v,) =1 —
exp {—H*(p,, p;)}- Thus for the distance H estimating these conditional distri-
butions is nearly the same thing as estimating the p, themselves.

Suppose that p(.Z°", F°"*!) would tend to zero as n — oo. This would imply
the possibility of finding estimates g, such that sup, EH(p,, p,) — 0. However,
except for a probability which tends to zero as n becomes large, the Poisson
variable is not larger than 2n and then one could estimate p, almost as well
from &** as from Z°*. Example 1 of this section shows that this is not always
the case.

Thus it may happen that (2", &°**') does not tend to zero, contrary to the
statement available for §(°", F**1),

Note that this implies also that in the case of Example 1 the distance
A(&™, &™) does not tend to zero, since §(F°", F"+1) — 0 but §(&’*, & "**) does
not.

In the Gaussian or Poisson examples described here we were comparing two
experiments & and & which satisfied a very special relation. Specifically &~
was obtained by carrying out &, and then independently of what happened
there, by observing additional variables.
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It will be convenient to have an inequality relative to a slightly more complex
situation in which, after & has been carried out one observes variables
independent of those involved in & but in which the number of additional
observations taken depends on what happened in &.

An explicit description is as follows.

Suppose that & has for underlying space a set Q with o-field 7. Let o ~»
v(w) be an .¥“measurable function from Q to the nonnegative integers. For
each 0 ¢ © let g, be a probability measure on a certain space (7, &%).

To carry out &, one first carries out the experiment & itself, obtaining a
result . This determines the integer v(w) = m. One observes m independent
observations each distributed according to g,. )

The experiment & has for underlying space the direct sum {J, 4, x 2™
where A,, = {0; v(0) = m}. Restricted to 4,, x Z’™ the measure Q, agrees with
the direct product P, ® q,™.

PROPOSITION 3. Let & and Z be the two experiments just described. Define a
minimax risk
B = inf; sup, E, H*(q,, 45)
where 0 is allowed to be any randomized estimate of 0 based on the experiment &.

Then
W&, F) < (26B)}
with b = sup, E,v.

ProoF. According to Lemma 3, one can assume, without loss of generality,
that © is a finite set. Let o~ K, be a Markov kernel from (27, %) to the
subsets of ©. If w € 4,, define on Z’™ the measure

Wom = § ¢,"K,(d) .
Extend this to 4,, x Z/™, taking a semi-direct product by the formula

§§ 8(@, ))Vy,m(do, dy) = §§ §(, Y)W, n(dy)Po(dw) .

Let Q, ,, be the restriction of Q, to this same set 4,, x 2’™. Using standard
inequalities for Hellinger distances, one can write

HQom — Voull = 28 {4, (((@))H(q1s 40)K.(d1)Py(d0) -

Thus, reassembling all the V, , in one measure V,, one has

31Qs — VoIl < 2E,{(x(@))} § H(q.» 45)K.(aD)} .

Schwarz’s inequality gives
|El(-(@))* § H(qe» 4)Ku(d)] = [EpVIE|§ H(ger 40)Ku@r)]* -

However, for each w, one has

1§ H(qe 90)K(@0)]* = § H*(qe> 90)Ku(d1) -
This yields the desired result, since . is sufficient for the family {V/,}.
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5. Insufficiency for finite dimensional parameter sets. In this section we shall
consider situations where observations are made on independent identically
distributed variables and compare experiments which differ solely by the number
of observations taken.

Specifically, let & = (p,; 6 € ©} be given by probability measures on some
space {2, &7}. Let & be the direct product of n copies of &. We shall
compare experiments such as &* and &"+#, with k > 0.

In such a situation another interesting experiment is the Poisson experiment
" accompanying &*. This is constructed as follows. One first observes a
Poisson random variable N such that EN = n. Then, N being determined, one
carries out &7 :

The reason for introducing &°" is that it turns out to be a usable simplifying
device in many arguments.

Note that the inequalities given in this section are intended for use for fixed
values of n. We shall not let n tend to infinity.

The Gaussian example of Proposition 2, Section 4, suggests that 6(&™", &"+")
can be large when the dimension of the parameter space is large compared to
n. For an experiment & = {p,; 6 € O} with arbitrary 0 it is not entirely obvious
what definition of “dimension” is relevant. We shall introduce such a definition
and proceed to show that n(&™, &"+') is small when n is large compared to the
dimensionality coefficient of &.

The definitions and arguments will be given in terms of Hellinger distances
instead of the statistically more appealing L,-distance for the following reason.
If P and Q are two probability measures, their affinity equal to o(P*, Q") =
[o(P, @)]". In particular, this implies H*(P*, Q") < nH*(P, Q).

The L,-distances can be recovered through bounds such as || P* — Q"|| < 2y(2 —
yHrif ntH(P, Q) < y < 1. Similarly, }||P* — Q*| = 1 — exp {—nH*(P, Q)}.

To proceed further, consider the experiment & = {p,; # € ©} and numbers
a,, b, respectively defined by ¢,* = 2-**+ and b2 = 2-* forv =0, 1,2, - - ..

Define covering numbers C(v) by the following procedure. First metrize © by
h(s, t) = H(p,, p,)-

Let S be any finite subset S C © with diameter at most equal to b,_,. Cover
the set S by subsets {4,}, i € / whose diameters do not exceed a,. Let ussay that
two indices of a pair (i, j) are distant if

sup {h(s, t); se A, te A;} > b, .

For each i let C; be the number of indices # which are distant from i and let
C’ be the supremum C’ = sup, C;/. This number depends on the set S and on
the cover {4,}. Call the cover minimal for S if the number C,/(S) attached to it
is as small as possible. Finally, let C(v) be the supremum of C,’(S) over all
possible finite subsets § — ©® whose diameter does not exceed b, _,.

We still need another definition. Let & = {Q,; # € 0} be an experiment
indexed by ©. Let 4,, i = 1, 2, be two subsets of @. For each test ¢ available
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from the experiment & let
n(Ay, Ay F, ¢) = SUP,c 4, SUPte 4, § (1 —¢)do, + § ¢dQ,.

Let n(A4,, Ay &) = infy n(A,, Ay F, §)- This will be called the error sum
available on & for testing A, against 4,.

The covering number can be used to indicate the possibility of constructing
confidence sets according to the following scheme.

LEMMA 5. Let S C © be a finite set whose diameter is at most b,_,. Let {A;
i € J} be a minimal cover of S by sets A, (of diameter at most a,). Let & = {Q,;
0 € S} be some experiment indexed by S. For each distant pair (i, j) let ., ; be the
error sum available on Z for testing A, against A;. Let n be the supremum sup, ;
7w, ; taken over distant pairs.

Then, there are confidence sets B available on .5 such that

(i) the diameter of B never exceeds b,,
(ii) for all 6 € S one has Q [0 € B°] < 2C(v)x.

Proor. Disjoint the sets A,, for instance by letting 4, = 4, and 4,/ = 4, n
(Uj<i 4;'). For the new system of sets and for each i, let J(i) be the set of
indices j which are distant from i. This is not the same relation as the original
one using the sets 4, themselves.

Since S is finite, for each pair (i, j), j € J(i), there exists a test ¢ ; such that
m, ;= w[A/, A/ F, ¢, ;1. If the test ¢] ; is not given by an indicator, let ¢, ;
be the indicator of {¢,; > 4}. In any event this gives indicators ¢, ; such that
(A, A'; F, ¢, ;) < 2r, ; provided that j e J(i). By symmetry, one can assume
that b;ii=1— ¢, ;.

Let ¢, = inf {¢, ;; j€ J(i)}. By construction for any distant pair (i, j), one has
¢; < ¢;.=1—¢,;. Thus if ¢, =1 and je J(i), one must have ¢; = 0. In
addition, let 8 = 2 sup, 3, {=,;; j€J(i)}. The definition of ¢, shows that if s
A, then 0. =0} < 8.

Finally, suppose that one has carried out the experiment .5 obtaining a result
o. Let K(w) be the set of indices k such that ¢, (o) = 1 and let B = |J {4,";
ke K(w)}. If se A4, except for probability at most equal to 3, we shall have
¢i(@) = 1 and therefore se 4/ C B. Also assuming ¢,(») = 1, the set K(w)
contains no j € J(i) and therefore no points ¢ such that i(s, f) > b,. If all the ¢;
are zero, one can take an arbitrary point in S. Since § < 2C(v)x, the lemma is
completely proved. :

THEOREM 1. Let & be an experiment & = {p,; 0 € ©} with covering numbers
C),v=0,1,2, .-.. Let &" = {p,"; 0 € O} be the experiment direct product of
n copies of &. Let 7" be the accompanying Poisson experiment and let K be the
maximum of unity and

sup, {C(v); v < log, n} .
Then both &™ and 7 yield estimates 0 such that for all 6 € © one has
E,{nkx(8, )} < 16 log 6K .
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Note. For arbitrary © the word “estimate” may have to be taken with the
general meaning of Section 2.

Proor. In accordance with the above Note and the definitions of Section 2,
one may assume that @ is finite. Consider then an integer v such that r = 2* <
n. Let A4, and 4, be two sets of diameter at most a, containing points s, € 4,
such that #4(s,, 5,) = b,. Let &, denote any one of & or &° and let =, denote
the corresponding error sum for tests. The inequality A(s;, 5,) = b, implies that
7, [{s}, {s)}] < exp {—rb,?}. For the Hellinger distance defined by &, the square
diameter of 4, is at most 1 — (1 — a,*)". Translating this into L,-distances, one
obtains the inequality

7(A;, ) < exp {—rb3} + 2[1 — (1 — @]t
o, 2
Set+ 16
This gives 7,(2 — =) < 2¥/2.

A standard argument shows then that z,(4,, 4,) < 2-"/* with m, equal to the
integer part of n2->.

To construct the desired estimates, one can then proceed as follows. Suppose
that the construction has been performed for the integers 1, 2, - .., v — 1 yield-
ing a confidence set B,_, of diameter at most 5,_,. One can cover B,_, according
to the procedure of Lemma 5 and obtain a new confidence set B, of diameter at
most b, such that, if 6 € B,_, then

Prob {# ¢ B} < 2C(v)2~™/.
The construction can start at v = 1 since b2_, = 1 so that the diameter of ©
itself is not larger than b,_,. Proceeding in this manner, let us shrink the suc-
cessive sets B, up to some integer v = k. The probability that the last set
obtained does not contain the true ¢ is at most the sum of the probabilities of
not covering encountered at each step.

Introducing a number B such that 48 = log 2 and taking an arbitrary point ¢
in B,, one obtains

P,[#(0, 0) = 2] < 2! Tigyes C(v) €Xp {—pr2} .
For any random variable Z > 0, one can write
EZSPO<KZZ1+2P1<ZZ2)+ -0 +2P[200 <K Z 5294 00
Rearranging terms this yields
EZ<P[Z>0]+P[Z>1]+ --- +2IP[Z> 2] 4 ---.

This can be applied to the variable Z = 2"h2((§, 6) and gives the inequality

E[1¥B, 6)] < 2% + Yk_, 29-*P,{h(0, 6) > 2574}
The second term on the right is therefore smaller than the sum

J = 2 3%, 29 Ttz C(v) exp {— fn2)
< 2t Tk, C)2~ exp {— 2~} .
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Select a number K > 1 and restrict the possible range of k > 0 to values such
that n2=* > 2 log 6K and sup, {C(v); 1 < v < k} < K. Consider the function
f(x) = 27* exp {—pn27*} in this same range. Then f is a convex function and
one can write

J = 2K{f(k) + §§7f(x) dx} .
Since the first inequality assumed on k implies fn2~* > 3 one obtains J < 6K
f(k). Therefore
E{nk¥(@, 0)} < n27*1 + 6K exp{—pn274}.

In this inequality substitute for k the largest integer for which gn2~* > 2 log 6K.
Computing out the result gives

E{nkd, 6)} < 16 log 6K
and concludes the proof of the theorem.

REMARK 3. In Euclidean spaces the number of sets of diameter a, needed to
cover a set of diameter b,_; is approximately of the form C(v) = Cy(b,_,/a,)*
where d is the dimension of the space. Since we have chosen the numbers a,
and b, to maintain a constant ratio it follows that the coefficient 16 log 6K of
Theorem 1 is roughly proportional to something which is analogous to the
dimension of © for the distance 2. However, note that the covers used here
never involve any set of square diameter inferior to n=* 2. Thus © may be
allowed to have arbitrary topological dimension provided that the effects of that
dimension are only visible in sets of diameter smaller than (2-°/nt).

To simplify further formulas and statements we shall write D = 16 log 6K
and call it the dimensionality coefficient of &

COROLLARY. Let & be an experiment satisfying the conditions of Theorem 1 for
a dimensionaliy coefficient D = 16 log 6K. Then, for all k = 0 one has

we, w) < oy (L)

This follows from Proposition 3.

The result should be compared to the one obtained for Gaussian experiments
in Proposition 2, Section 4. In both cases 7*(&™", &"*?) is roughly proportional
to (D/n) where D is a suitable dimensionality coefficient.

The above corollary could also be stated for the Poisson experiments .&°* and
F#m+k, To compare & ™ and .Z°", we shall use an additional experiment better
than either one.

For this purpose, construct a space Q in the following way. Assuming that
the measures p, are probability measures on a space (27, %), we shall denote
&Z™ the direct product of m-copies of -2~ with the product g-field .o7™. If
m = 0, this will be interpreted to be a one point set with a trivial ¢-field.

For each integer j = 0, 1, 2, - - - let Q; be the product Z/; x Z;, where

(i) if j < n, the space Z; is the product 277 and Z; is the product 27"/,
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(ii) if j = n, the space Z/; is the product 22°* and Z, is the product 27",

Let Q be the direct sum of the spaces Q,.

For ¢ € © construct a probability measure Q, on Q as follows. First select an
integer j according to the Poisson distribution so that Prob (N = j) = e~"ni/j!.

Once j is ascertained, select an element y in Z/; according to a distribution
F; , direct product of the required number of copies of p,. Similarly, select a
z e Z; according to a distribution G; , direct product of the required number of
copies of p,. Thus, on Q; the induced measure is the measure e="(n?/j)F; , @ G; ,.

In words, the experiment .5, so obtained is describable as follows. One
observes the Poisson variable N and then takes a number of observations equal
to max (N, n).

On the space Q, one can define two projections fand g which yield experiments
respectively equivalent to the experiment & and the Poissonized version 7",

Specifically, if j < n, the map f is the identity map of Q; onto itself. If j > n,
the map f projects Q; on its first component Z/;.

Similarly, if j < n, the map g projects Q; onto Z/;. If j > n, the map g is the
identity map of Q,.

Observing f amounts to observing N and taking n observations from p, anyway.
This is an experiment &™ equivalent to &™. However, note that £ also provides
the value j of the Poisson variable.

Let &' denote the o-field constructed on the entire space Q for the experiment
F,, and let <, and <7, be the subfields induced by the projections f and g.

Application of Proposition 3 and Theorem 1 yields the following.

ProPOSITION 4. Let A = (2D)}, where D is the dimensionality coefficient for the
experiment & = {p,; 0 € ©}. Let &, = {Q,; 0 € O} be the experiment defined above
on the o-field <. Then

(i) there are probability measures Q,' on <& such that <5, is sufficient for {Q,’;
60 € ©}, and such that Q, and Q' coincide on <&, and otherwise ||Q,’ — Q,|| < An~%
on <7,

(ii) there are probability measures Q"' on <& such that B, is sufficient for {Q,";
0 € ©}; furthermore %||Q,” — Q|| < An~t and Q, coincides with Q, on ZB,.

CoROLLARY. Under the condition of Theorem 1, one has A(&™, F°") < 2A4n~%.

In fact, Proposition 4 gives a result somewhat stronger (see Torgersen [9])
than the above Corollary, since it yields the existence of measures Q,’ and Q,”
with appropriate marginals such that }(|Q,/ — Q,”|| < 24n~%.

We have mentioned that the inequalities given here can also be applied to
some sequential cases. Using the same underlying measures p,, let N be a
stopping variable and let & be the corresponding experiment. Suppose that
PN >n + k] £¢. Then

WE", ) < (2D): (g)’ te.
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Indeed & is weaker than the experiment .~ obtained by stopping at N’ =
max (n, N) and & differs by at most ¢ in norm from the experiment obtained
by stopping at min (n + k, N').
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