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CONSISTENT ESTIMATION OF JOINT DISTRIBUTIONS
FOR SUFFICIENTLY MIXING RANDOM FIELDS

BY JEFFREY E. STEIF1

Chalmers University of Technology and the Mittag Leffler Institute

The joint distribution of a d-dimensional random field restricted to a
box of size k can be estimated by looking at a realization in a box of size
n 4 k and computing the empirical distribution. This is done by sliding a
box of size k around in the box of size n and computing frequencies. We

Ž .show that when k s k n grows as a function of n, then the total
variation distance between this empirical distribution and the true distri-

Ž .d Ž d . Ž . Žbution goes to 0 a.s. as n ª ` provided k n F log n r H q « where
.H is the entropy of the random field and providing the random field

satisfies a condition called quite weak Bernoulli with exponential rate.
This class of processes, studied previously, includes the plus state for the
Ising model at a variety of parameter values and certain measures of
maximal entropy for certain subshifts of finite type. Marton and Shields
have proved such results in one dimension and this paper is an attempt to
extend their results to some extent to higher dimensions.

� 4 d1. Introduction. Let X be an ergodic stationary random fieldm mg Z
taking values in a finite set A. The marginal joint distribution

� 4X �Ž . 4mg i , i , . . . , i : 1Fi Fkm 1 2 d j

can be estimated by a realization

� 4X �Ž . 4mg i , i , . . . , i :1Fi Fnm 1 2 d j

Ž .n 4 k by counting frequencies. This means that we look at all translates of
�Ž . 4 �Ž . 4i , i , . . . , i : 1 F i F k inside of i , i , . . . , i : 1 F i F n and use these1 2 d j 1 2 d j
translates together with the realization

� 4X �Ž . 4mg i , i , . . . , i : 1Fi Fnm 1 2 d j

to give us an empirical distribution for

� 4X .�Ž . 4mg i , i , . . . , i : 1Fi Fkm 1 2 d j

Ž .More precise statements will be given later. For k fixed, the multidimen-
Ž w x.sional ergodic theorem see 13 guarantees that with probability 1, as

n ª `, these empirical distributions will converge to the true distribution.
ŽThe question that interests us is when k also goes to ` but much more
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.slowly than n , how slowly must k grow relative to n so that the above
w x Ž w x.estimation scheme works. We briefly recall the results of 11 see also 12 ,

where only one dimension was considered. In these papers, it was shown that
Ž . Ž . Ž . Žfor any ergodic process in one dimension if k n G log n r H y « where H

.is the entropy of the process , then such an estimation scheme cannot work. It
Ž .was also mentioned that given any sequence k n ª `, there is an ergodic
� Ž .4process for which this estimation scheme, using k n , does not work. The
Ž . Ž . Ž .main results of their paper were to show that if k n F log n r H q « and

Žthe process is nice enough i.i.d., irreducible Markov, c-mixing, weak
.Bernoulli , then the above estimation scheme works. In this paper, we want

to extend, to some degree, these results to higher dimensions.
In the remainder of this introduction, we would like to explain some of the

problems that one encounters when going from one to higher dimensions.
While there is no reason to give the definitions of c-mixing and weak
Bernoulli for one dimension here, we mention that these definitions formally

w xextend to higher dimensions. Using these definitions, the results in 11
mentioned above extend as well. However, it was pointed out by Bradley in
w x Ž w x w x .2 see 5 and 6 for further discussion concerning this point that any
process which satisfies this formal generalization of weak Bernoulli or c-mix-
ing in dimensions greater than one is in fact finitely dependent, which means
that there is some fixed number l such that any two sets of random variables
associated to two index sets which are more than l apart are completely

Žindependent. Since most interesting random fields e.g., Ising models in
.statistical mechanics will not satisfy this latter condition, these extensions of

the definition of weak Bernoulli and c-mixing to dimensions greater than 1
Žare then obviously too strong. We mention here in passing that a more useful

definition of weak Bernoulli involving the notion of a coupling surface is
w x . w xproposed in 6 . We therefore would like to extend the results in 11 to some

w xclass which contains interesting and natural random fields. In 5 , a certain
mixing property, called quite weak Bernoulli with exponential rate, was
introduced. It turns out that one can extend the Marton and Shields result to

Ž .this class in fact, a slightly larger class and, on the other hand, this class is
general enough that it contains a number of interesting random fields. In the
next section, after the definitions are given, we give some examples of
random fields which satisfy this property and mention other facts about this
property.

While in one dimension, as mentioned above, Marton and Shields can
prove their result for any irreducible Markov chain, it seems that the more

Ž .complicated structure of Markov random fields d G 2 does not allow one to
Ž .carry out at least as far as the author sees such an argument for general

Markov random fields. Proving such a result for general Markov random
fields seems to be an interesting problem and this paper is a small contribu-
tion to this problem.

2. Definitions and statements of results. Let Z denote the integers
� 4 dand let N denote the positive integers. Let X be a stationary ergodicm mg Z

process taking values in a finite set A. Stationarity means that for all sets
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d d � 4 � 4S : Z and all u g Z , the joint distributions of X and X arem mg S m mg Squ
the same. Ergodicity means that any event which is invariant under all
translations of the lattice has probability 0 or 1. We will usually identify such
a process with its distribution which is a probability measure m on AZ d

which is invariant under translations of Zd.
For u, v g Zd, we write u F v if u F v for i s 1, . . . , d. For m, n g Zd,i i

with m F n, let
n � d 4B s x g Z : m F x F n .m

` B n
m ŽB is used to represent the obvious thing. Given a g A which we think ofm

n .as a finite configuration defined on B taking values in A , we letm

w x Z d na s h g A : h x s a x for all x g BŽ . Ž .� 4m

denote the corresponding cylinder set. If h g AS, m F n and Bn : S, we letm
h n denote the restriction of h to B n .m m

Ž .If k is an integer, we will also use k to represent the vector k, k, . . . , k g
Zd. It will always be clear from context which interpretation is intended. If
k F n, h g AB n

1 and a g AB k
1 , let

n nykq1 iqky1<f a h s i g B : h s aŽ . � 4k 1 i

and let
n <f a hŽ .kn <m a h s .Ž .ˆk dn y k q 1Ž .

nŽ < . B k
1Clearly m ? h is a probability measure on A , which is the empiricalˆk

distribution using the configuration h g AB n
1 . In words, we look at h in the

box B n and look to see how often the different configurations in the box B k
1 1

occur in h and use these frequencies to define an empirical distribution which
hopefully will estimate the true distribution of m on the box B k. We will1
denote by m the restriction of m to the box B k.k 1

Ž .The entropy of a stationary process is defined as follows. Letting H m sn
n Žw x. Žw x. Ž .ByÝ m a log m a , we then define the entropy of the process m, H m ,ag A 1

Ž . dto be lim H m rn , which always exists by a subadditivity argumentnª` n
Ž w x. Ž .see 8 . We will write H instead of H m if the measure m is clear from

Ž < <.context. It is well known that H is at most log A with equality holding only
w xin the i.i.d. uniform case. See 16 for a discussion of entropy for one-dimen-

sional processes.
Ž .If p and q are probability measures on a measurable set V, BB , the total

5 5variation distance between them, which we denote by p y q , is defined by

< <sup p E y q E .Ž . Ž .
EgBB

�Ž Ž .4 Ž .DEFINITION 2.1. The nondecreasing sequence k n F n is admissible
for the ergodic process m if

5 n < 5lim m ? h y m s 0 m a.s.Ž .ˆk Žn. k Žn.
nª`
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� Ž .4 Ž .In words, the sequence k n is admissible for m if eventually for large n
one estimates the distribution of the process restricted to the box B k Žn., m ,1 k Žn.
well using the empirical distribution obtained by looking at a realization on

Ž . nthe much larger box B . We feel that from an applied point of view, one1
perhaps would only be interested in that the above holds in probability rather
than a.s., but we formulate this stronger result anyway.

We first mention the following easy result whose proof will not be given.
We mention that this result follows fairly easily from the multidimensional
ergodic theorem.

� Ž .4THEOREM 2.2. For any ergodic process m, there exists a sequence k n
which is admissible for m.

� Ž .4What one is really after is to find a sequence k n which is universally
admissible, that is, admissible for all ergodic processes or perhaps for a large

w xclass of ergodic processes. The following negative result is mentioned in 11 .

� Ž .4THEOREM 2.3. Given any sequence k n , there exists an ergodic process m
� Ž .4taking only the values 0 and 1 for which k n is not admissible.

The next negative result, which is of more interest to us, is identical to a
w xresult in the one-dimensional case described in 11 . Although the proof is

also identical, we nonetheless feel it worthwhile to give.

Ž .dTHEOREM 2.4. For any ergodic process m, if « ) 0 and if k n G
Ž d . Ž Ž . . � Ž .4log n r H m y « , then k n is not admissible for m.

n n Ž < .PROOF. First note that for every h g B , the probability measure m ? hˆ1 k Žn.
clearly has at most nd point masses since there are at most this many

k Žn. n d ŽŽ . Ž .d .translates of B in B . Next, since n F exp H y « k n , the multidi-1 1
Ž w x.mensional Shannon]McMillan]Breiman theorem see 13 implies that for

B k Žn.
1 ŽŽlarge n, the m probability of any subset of A with at most exp H yk Žn.

. Ž .d . n Ž < .« k n elements must be arbitrarily close to 0. Since, for all h, m ? hk Žn.
concentrates all its mass on such a set, this implies that the total variation

n Ž < .distance between m ? h and m must be close to 1 for all h. Ik Žn. k Žn.

Ž .d Ž d . Ž .The point is now to show that if k n F log n r H q « and m is ‘‘nice’’
� Ž .4in some sense, then k n is admissible for m. As described earlier in the

w xIntroduction, although this was proved in 11 for one-dimensional Markov
chains, the structure of higher dimensional Markov random fields is much
more complicated and their methods do not go through. It would be reason-

� Ž .4able to hope that for any Markov random field m, any sequence k n
Ž .d Ž d . Ž .satisfying the necessary entropy constraint k n F log n r H q « given

in Theorem 2.4 would be admissible for m, but we cannot prove this. We will,
however, show that for certain random fields, to be defined below, which have

� Ž .4reasonably strong mixing properties, any sequence k n satisfying the
necessary entropy constraint is admissible.
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All types of mixing conditions give a type of asymptotic independence and
there are many such precise formulations of this. The following formulation

Žhas some resemblance to the notion of weak Bernoulli equivalently, absolute
. Ž . dregularity mentioned but not defined earlier in one dimension. For S : Z

Z d
< Žand m a probability measure on A , we let m be the restriction orS

. w x d dprojection of m to the points in S. We also let L be yn, n l Z . Finally,n
Ž .in the definitions below, n 1 y a will mean n 1 y a , the greatest integerŽ .

Ž .less than or equal to n 1 y a .

DEFINITION 2.5. A translation invariant ergodic measure m on AZ d
is

Ž .called quite weak Bernoulli QWB if for all a ) 0,

5 < d < d < 5lim m y m = m s 0.ŽZ _ L .j L Z _ L Ln nŽ1ya . n nŽ1ya .
nª`

Two stronger versions of the above definition follow:

DEFINITION 2.6. A translation invariant ergodic measure m on AZ d
is

Ž .called quite weak Bernoulli with summable rate QWBS if for all a ) 0,

5 < d < d < 5m y m = m - `.Ý ŽZ _ L .j L Z _ L Ln nŽ1ya . n nŽ1ya .
n

DEFINITION 2.7. A translation invariant ergodic measure m on AZ d
is

Ž .called quite weak Bernoulli with exponential rate QWBE if for all a ) 0,
there exist constants s ) 0, c ) 1 so thata a

5 < d < d < 5m y m = m F c exp ys nŽ .ŽZ _ L .j L Z _ L L a an nŽ1ya . n nŽ1ya .

for all n.

Note that QWBE implies QWBS, which in turn implies QWB. Before
stating our main theorem, we discuss these properties in some detail. If the
process m satisfies the QWB property, then it is well known that the process

Ž . Žis isomorphic in the sense of ergodic theory to an independent process see
w x.15 . This means that there is an invertible measure preserving transforma-

Ž .tion from m to some product measure representing an i.i.d. process which
commutes with all translations. Such processes are called Bernoulli shifts
and play a fundamental role in pure ergodic theory.

There are a number of random fields which satisfy the QWBE property.
One of these is the plus state for the Ising model at a variety of parameter
values. Some of the parameter values where this property has been proved is

Ž w x.any d, zero external field and low temperature see 9 and any d, zero
Ž w x w xexternal field and high temperature see 9 or combine the methods in 1

w x. w xand 5 . See 10 for other parameter values. Standard methods together
w xwith a percolation result in 7 show that for d s 2 and zero external field,

temperatures less than the critical temperature belong to this class. Finally,
w xit is proved in 14 that for d s 2, we are in this class if there is a zero

external field and the temperature is greater than the critical temperature or
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if there is a nonzero external field and the temperature is arbitrary. The last
two results show that in two dimensions, we always have the QWBE property
except if we are at the critical point where the external field is zero and the
temperature is the critical temperature.

Another collection of measures for which the QWBE property has been
established are certain measures of maximal entropy for subshifts of finite

Ž w x. Ž w x .type see 5 . Subshifts of finite type see 3 for a discussion are certain
dynamical systems which arise in ergodic theory and which have connections
to statistical mechanics. Such objects have natural measures associated to

w xthem, so-called measures of maximal entropy. In 5 , it is proved that for a
certain family of subshifts of finite type, all the ergodic measures of maximal
entropy satisfy the QWBE property. Within this class, one can find, for any d

Žand k, a subshift of finite type in d dimensions with exactly k ergodic and
. Ž w x.hence QWBE by the above measures of maximal entropy see 4 .

We also mention that the QWBE property implies a central limit theorem
Ž w x. Ž .see 5 and that the QWB property is one of a few possible extensions to
higher dimensions of the definition of absolute regularity introduced by

Ž .Kolmogorov which is equivalent to the definition of weak Bernoulli .
We now state our main theorem.

THEOREM 2.8. If m is an ergodic process which is QWBS, « ) 0, and
� Ž .4 Ž .dk n is a nondecreasing sequence approaching ` and satisfying k n F
Ž d . Ž Ž . . � Ž .4log n r H m q « for all n, then k n is admissible for m.

It seems that in order to find an admissible sequence, one needs to know
Ž .d Ž d . Ž .the entropy of the process in order to insure that k n F log n r H q «

< <for all n. However, since the entropy is always at most log A , by taking
Ž .d Ž d . Ž < < .k n F log n r log A q « for all n, the earlier inequality will be assured.

In most cases where the above theorem can be applied, one probably has the
Ž .stronger QWBE property. However after the suggestion of a referee , we

formulate our result in the more general setting above so that one sees
precisely what is needed. The final section of this paper is devoted to the
proof of Theorem 2.8.

3. Proof of main result. We assume that m is an ergodic stationary
� Ž .4process which is QWBS and that k n is a nondecreasing sequence ap-

Ž .d Ž d . Ž .proaching ` and satisfying k n F log n r H q « for all n. Most of the
w x Ž w x.argument of one of the results in 11 see also 12 can be extended. One of

the differences is that, at some point in the argument, we will need to
partition the lattice into boxes where the space between the boxes grows with

Ž .the size of the box as opposed to in one dimension, where they do not .
Another difference is that there is a martingale argument in the one-dimen-
sional case which one cannot carry out, but the summable rate in our mixing
assumption will circumvent this difficulty.

kqa k ŽLet k g N, a ) 0 and r g B . In the rest of the paper, a k will always1
. dmean a k , the greatest integer less than or equal to a k. For j g Z , denote? @
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rq Ž jy1.Žkqa k .qky1 Ž . Z d Ž .B by V j, r, k, a . If h g A , we let h r, k, a be the re-rq Ž jy1.Žkqa k . j
Ž . w Ž .xstriction of h to V j, r, k, a , and let h r, k, a be the correspondingj

Ž .cylinder set. We note that for different j’s, the boxes V j, r, k, a are sepa-
rated by distance a k. This is different from the one-dimensional case in that
this separation grows with k.

d d ŽWe now need to place a linear order $ on Z . This is the usual ordering
.used in ergodic theory for higher dimensional processes. This ordering will

be defined by induction on d and can be thought of as a backwards dictionary
ordering. For d s 1, we use the natural linear order - . For d G 2, we define
$d by induction via

x , . . . , x $d y , . . . , yŽ . Ž .1 d 1 d

if and only if

x - y or x s y and x , . . . , x $dy1 y , . . . , y .Ž . Ž .d d d d 1 dy1 1 dy1
d d d� 4If U : Z , let U s U j x g Z : x $ u for some u g U . Next, let

Ž . dFF j, r, k, a be the sub-s-algebra s X : i g D V j9, r , k , a . If g ) 0,Ž .Ž .i j9$ j
` Ž . Z d

we say that j g B is a g , r, k, a splitting index for h g A if1

<m h r , k , a FF j, r , k , a F 1 q g m h r , k , a m a.s.Ž . Ž . Ž . Ž .Ž . Ž .j j

Ž . � Z d Ž . 4We let B g , r, k, a s h g A : j is a g , r, k, a splitting index for h . Notej
˜ d ˜ Ž .that for any j with j $ j, B g , r, k, a is measurable with respect toj

˜Ž .FF j, r, k, a .
w xOur first lemma is completely analogous to Lemma 6A in 12 .

LEMMA 3.1. Fix g ) 0, k g N, a ) 0 and r g B kqa k and let J be a finite1
` Ž . V Ž j, r , k , a .set contained in B . Then given h r, k, a g A for j g J, we have1 j

< <J
m h r , k , a l B g , r , k , a F 1 q g m h r , k , a .Ž . Ž . Ž . Ž .Ž . Ž .F Łj j jž /

jgJjgJ

w xPROOF. This is proved as in the one-dimensional case, Lemma 6A in 12 ,
the only difference being that to start off the induction, we let j be the
maximum element in J with respect to the linear ordering $d . I

Ž .Given n, k and a , let t s t n, k, a be the largest integer t satisfying
Ž .t k q a k q k y 1 F n.

Ž .LEMMA 3.2. If 0 - g - 1r2 and a ) 0, then there exist integers k g , a
Ž . � Ž .4and t g , a and a sequence of measurable sets G g , a such that:n

Ž . Ž Ž . .i m G g , a eventually s 1.n
Ž . Ž . Ž . Ž . Ž .ii If k G k g , a , t n, k, a G t g , a and h g G g , a , then there are atn

Ž .Ž .d kqa kleast 1 y g k q a k values of r g B for which there are at least1
Ž . Ž .d tŽn, k , a . Ž .1 y g t n, k, a indices j g B that are a g , r, k, a splitting index1
for h.

Ž . ` ` Ž .Note: G g , a eventually refers as usual to the event D F G g , a .n ms1 nsm n
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PROOF. It is easy to show that
nm hŽ .1

d d5 < < < 5E 1 y F 2 m y m = m .ŽZ _ L .j L Z _ L Ln nŽ1ya . n nŽ1ya .n <m h FF 1, 1, n , aŽ .Ž .1

5 < d < d < 5Denoting m y m = m by q , Markov’s inequalityŽZ _ L .j L Z _ L L a , nn nŽ1ya . n nŽ1ya .

gives
n 2m h g 2 q 4qŽ .1 a , n a , n

m 1 y G F s .n 2 2ž /<m h FF 1, 1, n , a 2 g r2 gŽ .Ž .1

Ž .Using the fact that m is QWBS, choose k g , a so that
` 21 g

4q - .Ý a , l2 2g Ž .lsk g , a

This gives
l 2 2m h g gŽ .1

m 1 y - ;l G k g , a ) 1 y .Ž .l <ž /2 2m h FF 1, 1, l , aŽ .Ž .1

Let C denote the event
l 2m h gŽ .1

1 y - ;l G k g , a .Ž .l½ 5< 2m h FF 1, 1, l , aŽ .Ž .1

The multidimensional ergodic theorem applied to the indicator function I ,C
Ž .tells us that if we let G g , a ben

1 g 2
iy1h : I T h ) 1 y ,Ž .Ý Cd½ 52n nigB1

Ž . w i Z d
then i holds. Here T is the transformation on A which shifts configura-

iŽ .Ž . Ž . xtions by the vector i, that is, T h x s h x y i .
2Ž . Ž .To proceed with ii , we first define t g , a s 2rg . Now assume that

Ž . Ž . Ž . Ž . Ž .k G k g , a , t n, k, a G t g , a and h g G g , a . Write t for t n, k, a .n
2Since t G 2rg , we then have

1
iy1 2I T h ) 1 y gŽ .Ž .Ý Cddt k q a k tŽkqa k .Ž . igB1

Žthe idea being that since t is large, this average cannot differ much from the
.earlier one , which implies

1 1
rq Ž jy1.Žkqa k .y1 2I T h ) 1 y g .Ž .Ž .Ý Ý Cd dtk q a k kqa k tŽ . rgB jgB1 1

Žkqa k . < < Ž .Ž .dThis implies that there exists R : B such that R G 1 y g k q a k1
and for all r g R,

1
rq Ž jy1.Žkqa k .y1I T h ) 1 y g .Ž .Ž .Ý Cdt tjgB1
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t < < Ž . dNext, if r g R, there exists J : B such that J G 1 y g t and for all1
rq Ž jy1.Žkqa k .y1Ž .j g J, T h g C. The proof will be completed if we can show

Ž . Ž .that each such j is a g , r, k, a splitting index for h. Since k G k g , a , the
above implies that for such j,

rq Ž jy1.Žkqa k .qky1 2m h gŽ .rq Ž jy1.Žkqa k .
1 y - .

rq Ž jy1.Žkqa k .qky1 < 2m h FF j, r , k , aŽ .Ž .rq Ž jy1.Žkqa k .

Ž rq Ž jy1.Žkqa k .qky1 < Ž ..Multiplying by the denominator m h FF j, r, k, a , simplerq Ž jy1.Žkqa k .
Ž 2 .algebra and using the fact that 1r 1 y g r2 F 1 q g show that

<m h r , k , a FF j, r , k , a F 1 q g m h r , k , aŽ . Ž . Ž . Ž .Ž . Ž .j j

Ž .showing that such a j is a g , r, k, a splitting index for h as desired. I

We will now replace our empirical distribution by nonoverlapping averages
in the following way. For h g AB n

1 , a g AB k
1 , r g B kqa k and J : B tŽn, k , a ., let1 1

r , a , n , J rqŽ jy1.Žkqa k .qky1<f a h s j g J : h s aŽ . � 4k rqŽ jy1.Žkqa k .

and let
r , a , n , J <f a hŽ .kr , a , n , J <m a h s .Ž .ˆk < <J

In words, we partition B n into blocks of size k separated by distance a k andr
� Ž .4consider the empirical distribution over the boxes V j, r, k, a of size kjg J

which are nonoverlapping, separated from each other by distance G a k and
all contained in B n. The following lemma is clear and the proof is left to the1
reader.

Ž .LEMMA 3.3. For all d ) 0, there exists g g 0, 1r2 and a ) 0 so that if
5 nŽ < . 5 Ž .dkrn - g and m ? h y m G d , then it follows that for at least 2g k q a kˆk k
kqa k tŽn, k , a . < < Žindices r g B , we have that for all J : B with J G 1 y1 1

. Ž .d 5 r , a , n, JŽ < . 5g t n, k, a , m ? h y m G dr2.ˆk k

� Ž .4To prove that k n is admissible for m, it suffices to show that ;d ) 0,

5 n < 53.1 m h : m ? h y m G d i.o. s 0,Ž . Ž .ˆŽ .k Žn. k Žn.

where i.o. stands for infinitely often.
Now given d ) 0, Lemma 3.3 gives us a g and a . We also assume that g is

so small that

d2nŽ . d dŽ . Ž Ž . .2 n r k n2k n exp ycg log g 1 q gŽ . Ž . Ž .Ý dž /k nŽ .n

Ž d .ŽHq« r2.r ŽHq« . d dq1 d 2nd yn rŽ2 k Žn. .CŽd r100.= n 2 - `,Ž .
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where c and C are two universal constants to be given later. Given our g and
Ž . Ž .a , we then apply Lemma 3.2 to obtain integers k g , a and t g , a and a

� Ž .4 Ž . Ž .sequence of measurable sets G g , a such that conditions i and ii ofn
Lemma 3.2 hold.

Ž Ž . . Ž . Ž .Since m G g , a eventually s 1 by i , in order to prove 3.1 , it suffices byn
Borel]Cantelli to show that

5 n < 53.2 m h : m ? h y m G d l G g , a - `.Ž . Ž .Ž .ˆ� 4Ý ž /k Žn. k Žn. n
n

Ž . Ž .Since k n ª ` and k n rn ª 0 as n ª `, Lemmas 3.2 and 3.3 imply that
for large n, if

5 n < 5h g h : m ? h y m G d l G g , a ,Ž .Ž .ˆ� 4k Žn. k Žn. n

k Žn.qa k Žn. 5 r , a , n, JŽ < . 5then there exists r g B such that m ? h y m G dr2 forˆ1 k Žn. k Žn.
tŽn, k Žn., a . < < Ž . Ž Ž . .dall J : B with J G 1 y g t n, k n , a and such that there are at1

Ž . Ž Ž . .d tŽn, k Žn., a . Ž Ž . .least 1 y g t n, k n , a indices j g B which are a g , r, k n , a1
� tŽn, k Žn., a . < < Ž . Ž Ž . .d4splitting index for h. Let JJ be J : B : J G 1 y g t n, k n , a .1

This implies that for large n,

5 n < <h : m ? h y m G d l G g , aŽ .Ž .ˆ� 4k Žn. k Žn. n

Ž . Ž .k n qa k n d
r , a , n , J5 < 5: h : m ? h y m G l D r , J ,Ž .Ž .ˆD D k Žn. k Žn. n½ 52rs1 JgJJ

where

D r , J s h : j is a g , r , k n , a splitting index for h ; j g J .� 4Ž . Ž .Ž .n

k Žn.qa k Žn. Ž . Ž Ž . .Fixing r g B and J g JJ, note that D r, J s F B g , r, k n , a1 n jg J j

Ž Ž . . V Ž j, r , k Žn., a .and therefore Lemma 3.1 gives us that if h r, k n , a g A forj
j g J, then

m h r , k n , a l D r , JŽ . Ž .Ž .Ž .F j nž /
jgJ

< <JF 1 q g m h r , k n , a .Ž . Ž .Ž .Ž .Ł j
jgJ

3.3Ž .

We will now use a large deviation result for i.i.d. random variables. Let
Y , Y , . . . be i.i.d. random variables taking values in AB k

1 and having distri-1 2
nŽ < . B k

1bution m . Let m ? Y , Y , . . . be the empirical distribution on A givenˆk k 1 2
B k

1 nŽ < .the Y ’s. As before, this means that for h g A , m h Y , Y , . . . sˆi k 1 2
Ž . n1rn Ý I . Lettingis1 �Y sh4i

« «kB d d1W s h g A : exp y H q k F m h F exp y H y k ,Ž .k k½ 5ž / ž /ž / ž /2 2
w xLemma 2 in 11 implies that

d 2< <Wn ynCŽd r100.k5 < 53.4 m ? Y , Y , . . . y m G F n q 1 2 ,Ž . Ž .Ž .ˆk 1 2 kž /2
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Ž .where C is a universal constant provided that m W G 1 y dr10, which ink k
turn holds for large k by the multidimensional Shannon]McMillan]Breiman
theorem.

We use this to bound the probability of

d
r , a , n , J5 < 5h : m ? h y m G l D r , J .Ž .Ž .ˆk Žn. k Žn. n½ 52

Ž . Ž .Equations 3.3 and 3.4 imply that this probability is bounded by

< < 2< < WJ y < J <CŽd r100.k Žn.< <1 q g J q 1 2 .Ž . Ž .
The multidimensional Shannon]McMillan]Breiman theorem implies that

< < ŽŽ . Ž .d . Ž .W F exp H q «r2 k n for large n. Also, letting t denote t n, k, a wek Žn.
d < < d Ž . Ž . Ž .dhave t r2 F J F t and nr2k n F t F 2nrk n for large n. Since k n F

Ž d . Ž .log n r H q « , this gives us that the above is bounded by
d d ŽŽ . Ž d . . d dq1 d 2exp Hq«r2 log n rHq«Ž . Ž Ž . .2 n r k n d yŽn rŽ2 k Žn. ..CŽd r100.1 q g n 2Ž . Ž .

d d Ž d .ŽHq« r2.r ŽHq« . d dq1 d 2nŽ . Ž Ž . .2 n r k n d yŽn rŽ2 k Žn. ..CŽd r100.F 1 q g n 2 .Ž . Ž .
� d4 Ž . dUsing the fact that the number of subsets of 1, . . . , t with at least 1 y g t

Ž Ž . d .elements is a most exp ycg log g t for some universal constant c, this
gives

5 n < 5m h : m n ? h y m G d l G g , aŽ . Ž .Ž .ˆ� 4ž /k k Žn. n

d2nŽ . d dŽ . Ž Ž . .2 n r k nF 2k n exp ycg log g 1 q gŽ . Ž . Ž .dž /k nŽ .
Ž d .ŽHq« r2.r ŽHq« . d dq1 d 2nd yŽn rŽ2 k Žn. ..CŽd r100.= n 2 .Ž .

We note that this is summable in n by the way g was chosen. This completes
the proof. I
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