AN EXAMPLE CONCERNING CLT AND LIL IN BANACH SPACE¹

By Naresh C. Jain

University of Minnesota

Let E be a separable Banach space with norm $||\cdot||$. Let $\{X_n\}$ be a sequence of E-valued independent, identically distributed random variables, and $S_n = X_1 + \cdots + X_n$. If $\{n^{-\frac{1}{2}}S_n\}$ converges in the sense of weak convergence of the corresponding measures in E, and E is the real line, then it is well known that $\mathscr{E}[X_1] = 0$ and $\mathscr{E}[||X_1||^2] < \infty$; consequently, the Hartman-Wintner law of the iterated logarithm also holds. We give an example here, with E = C[0, 1], such that the above convergence does *not* imply $\mathscr{E}[||X_1||^2] < \infty$, nor does it imply the law of the iterated logarithm.

1. Introduction. Let E, $\{X_n\}$ and S_n be as above. For convenience we will say that X_1 satisfies the central limit theorem (CLT) if $\{n^{-\frac{1}{2}}S_n\}$ converges in the sense of weak convergence of the corresponding measures; the limit measure must necessarily be Gaussian (possibly degenerate). If the space E satisfies the property that $\exists \alpha > 0$ such that $\forall x_1, x_2, \dots, x_n \in E$; $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ independent Rademacher random variables (i.e., $\varepsilon_j = 1$ or -1 with probability $\frac{1}{2}$), $\mathcal{E}[||\varepsilon_1 x_1 + \dots + \varepsilon_n x_n||^2] \geq \alpha \sum_{j=1}^n ||x_j||^2$, then it is shown in [1] that CLT $\Rightarrow \mathcal{E}[|X_1|] = 0$ and $\mathcal{E}[||X_1||^2] < \infty$, where $\mathcal{E}[X_1]$ is taken in the Bochner sense. It is also shown in [1] that in general CLT $\Rightarrow P[||X_1|| > \lambda] = O(\lambda^{-2})$. We give an example below to show that in general CLT $\Rightarrow \mathcal{E}[||X_1||^2] < \infty$.

In the real-valued case CLT and the Hartman-Wintner law of the iterated logarithm (LIL) are equivalent. The following formulation of the LIL in E is due to Kuelbs [3]. An E-valued random variable X is said to satisfy the LIL if for X_1, X_2, \cdots independent copies of X we have a limit set $K \subset E$ such that

(1.1)
$$P\left\{\omega: \lim_{n} d\left(\frac{S_{n}(\omega)}{a_{n}}, K\right) = 0\right\} = 1$$

and

(1.2)
$$P\left\{\omega: C\left(\left\{\frac{S_n(\omega)}{a}, n \geq 1\right\}\right) = K\right\} = 1,$$

where $a_n = (2n \log \log n)^{\frac{1}{2}}$, $d(x, A) = \inf_{y \in A} ||x - y||$, and $C(\{x_n, n \ge 1\}) = \text{set ot}$ strong limit points of the sequence $\{x_n, n \ge 1\}$ in E. We will show that our example does not satisfy such a LIL even though it satisfies the CLT. It should also be remarked that Kuelbs [3] has shown that LIL \Rightarrow CLT.

Received September 15, 1975.

¹ This work was partially supported by NSF.

AMS 1970 subject classifications. Primary 60B10; Secondary 60G15.

Key words and phrases. Banach space valued random variables, sums of independent random variables, central limit theorem, law of the iterated logarithm.

2. The example. Let ξ_1, ξ_2, \cdots be independent, identically distributed, real-valued, symmetric random variables such that

(2.1)
$$P[|\xi_1| > \lambda] = \frac{c}{\lambda^2 (\log \lambda)^2}, \quad \lambda \ge 2,$$
$$= 1, \qquad 0 \le \lambda \le 2,$$

so that $c = 4(\log 2)^2$. Let $\mathscr{E}[\xi_1^2] = \alpha$, which is finite. Let $\{\varphi_j, j \ge 1\}$ be a sequence of *nonnegative* functions in C[0, 1] (with the sup norm) such that

$$\varphi_j(t)^2 = 0 \quad \text{for} \quad t \notin (2^{-j-1}, 2^{-j})$$

$$= j^{-1} \quad \text{for} \quad t = 3 \cdot 2^{-j-2}, \quad \text{and}$$
linear in between.

Define

(2.2)
$$X(t) = \sum_{j=1}^{\infty} \xi_j \varphi_j(t), \qquad t \in [0, 1],$$

which is well defined since the φ_j 's have disjoint supports. We claim that if X_1, X_2, \cdots are taken to be independent copies of X, then this sequence constitutes our example. The following lemmas prove this claim.

LEMMA 2.1. The series $\sum_{j=1}^{\infty} \xi_j \varphi_j$ converges in norm in C[0, 1] a.s.

PROOF. Since the φ_j 's have disjoint supports, it suffices to check that (see Example 4.3 in [2])

$$\sum_{j} P[|\xi_{j}| > a||\varphi_{j}||^{-1}] < \infty , \qquad \forall a > 0 .$$

Since $||\varphi_j|| = j^{-\frac{1}{2}}$, by (2.1) we have

$$P[|\xi_j| > a||\varphi_j||^{-1}] \sim \frac{4c}{a^2 j (\log j)^2}$$

as $j \to \infty$, and the lemma follows.

Lemma 2.2. If X is given by (2.2), then $\mathscr{E}[||X||^2] = \infty$.

PROOF. By Corollary 3.5 [2] it suffices to check that

$$\sum_{j=1}^{\infty} \int_{\Lambda_j} \xi_j^2 ||\varphi_j||^2 dP = \infty , \qquad \forall a > 0 ,$$

where $\Lambda_j = [|\xi_j| ||\varphi_j|| > a]$. Now

$$\begin{split} \int_{\Lambda_{j}} \xi_{j}^{2} ||\varphi_{j}||^{2} dP &= j^{-1} \int_{\Lambda_{j}} \xi_{j}^{2} dP \\ &= a^{2} P[|\xi_{1}| > a j^{\frac{1}{2}}] + 2 j^{-1} \int_{a_{j} + 1}^{\infty} x P[|\xi_{1}| > x] dx \end{split}$$

by integration by parts. Therefore $\exists c_1 > 0$ such that for all j sufficiently large the jth term in the sum in (2.4) dominates $c_1/j \log j$. This proves the lemma.

LEMMA 2.3. X, given by (2.2), satisfies the CLT.

PROOF. First observe that the Theorem 4.1 [2] we have

(2.5)
$$\mathscr{E}[||X||^{2-\varepsilon}] < \infty, \qquad \text{for } 0 < \varepsilon \leq 2.$$

We will need this only for $\varepsilon = 1$. Let $\{\xi_j^{(k)}; k \ge 1, j \ge 1\}$ be independent real-valued random variables each having the same distribution as ξ_1 . Define

$$(2.6) Z_n = \sum_{j=1}^{\infty} n^{-\frac{1}{2}} (\hat{\xi}_j^{(1)} + \cdots + \hat{\xi}_j^{(n)}) \varphi_j.$$

We will show that $\{Z_n\}$ is a *tight* sequence. For $\delta > 0$ and $x \in C[0, 1]$, define

$$||x||_{\delta} = \sup_{|s-t| \le \delta} |x(s) - x(t)|.$$

Note that $||\cdot||_{\delta}$ is a pseudo-norm on C[0, 1].

By a lemma of Hoffmann-Jørgensen (Lemma 3.4, [2]) we have

(2.8)
$$P[|\xi_{j}^{(1)} + \cdots + \xi_{j}^{(n)}| > \lambda n^{\frac{1}{2}}]$$

$$\leq P[\max_{1 \leq k \leq n} |\xi_{j}^{(k)}| > \lambda n^{\frac{1}{2}/3}] + 4P[|\xi_{j}^{(1)} + \cdots + \xi_{j}^{(n)}| > \lambda n^{\frac{1}{2}/3}]^{2}$$

$$\leq nP[|\xi_{1}| > \lambda n^{\frac{1}{2}/3}] + 4 \cdot 81 \cdot \alpha^{2} \cdot \lambda^{-4},$$

where Chebychev's inequality is used for the second estimate. Using (2.1), we see that there exist $c_2 > 0$ and $\lambda_0 < \infty$ such that we have

$$(2.9) P[|\xi_j^{(1)} + \cdots + \xi_j^{(n)}| > \lambda n^{\frac{1}{2}}] \leq \frac{c_2}{\lambda^2 (\log \lambda)^2}, \forall n \geq 1, \forall \lambda \geq \lambda_0.$$

We will now apply the comparison theorem in [2] (Theorem 5.3 (5.9)). Let n and δ be fixed. For the linear space in that theorem we take C[0, 1] with $||\cdot||_{\delta}$ as pseudo-norm (the results in [2] hold for pseudo-norms as well, without any modification in arguments), and we indicate parenthetically what replaces the corresponding quantities in our present context, $\varphi(x)$ (= x), φ_i (= ξ_i), φ_i (= ξ_i). We thus conclude that for φ_i 1

$$(2.10) \mathscr{E}[||Z_n||_{\delta}] \leq (\frac{1}{2}\lambda_0 c_2 + c_2)\mathscr{E}[||X_1||_{\delta}] = c_3\mathscr{E}[||X_1||_{\delta}],$$

say. The important thing is that c_3 does not depend on n or δ . Since $||X_1||_{\delta} \le 2||X_1||$, and a.s. $||X_1||_{\delta} \to 0$ as $\delta \to 0$, using (2.5) by the dominated convergence theorem we have $\mathscr{E}[||X_1||_{\delta}] \to 0$ as $\delta \to 0$. Therefore by (2.10) we conclude that $\mathscr{E}[||Z_n||_{\delta}] \to 0$ as $\delta \to 0$ uniformly in n. This shows that $\{Z_n\}$ is a tight sequence since the finite dimensional distributions of $\{Z_n\}$ converge by the finite dimensional CLT. Hence CLT holds for X.

Finally we show that X does not satisfy the LIL. The following two lemmas suffice for this.

LEMMA 2.4. Let X be a C[0, 1]-valued random variable with mean 0 and a continuous covariance $\rho(s, t) = \mathcal{E}[X(s)X(t)]$. If X satisfies the LIL and K is the set occurring in (1.1) and (1.2), then $x \in K \Longrightarrow ||x|| \le ||\mathcal{E}[X(t)^2]^{\frac{1}{2}}||$.

PROOF. By the Hartman-Wintner LIL there exists a set Ω_1 of probability 1 such that

$$\begin{split} \Omega_1 &= \Omega_0 \, \cap \, \left\{ \omega : \lim \sup_n \frac{S_n(t,\,\omega)}{a_n} = a(t) \; , \\ &\lim \inf_n \frac{S_n(t,\,\omega)}{a_n} = -a(t), \; \; \forall \; t \; \mathrm{rational} \in [0,\,1] \right\} \, , \end{split}$$

 $CLT \Rightarrow LIL$ 693

where Ω_0 is the intersection of the two sets in (1.1) and (1.2), $a_n = (2n \log \log n)^{\frac{1}{2}}$, $a(t) = \mathcal{E}[X(t)^2]^{\frac{1}{2}}$, and $S_n = X_1 + \cdots + X_n$; X_1, X_2, \cdots being independent copies of X. If $x \in K$ and $\omega \in \Omega_1$, then $\exists n' \nearrow \infty$ such that

$$\frac{S_{n'}(\omega)}{a_{n'}} \to x \quad \text{as} \quad n' \to \infty .$$

Therefore $\forall t \text{ rational } \in [0, 1], |x(t)| \leq a(t), \text{ and the lemma follows.}$

LEMMA 2.5. X defined by (2.2) does not satisfy the LIL.

PROOF. It is clear that X defined by (2.2) is symmetric and has a continuous covariance. Therefore by Lemma 2.4 it suffices to show that $\forall A > 0$

(2.11)
$$P[||X_i|| > A\psi(j) \text{ i.o.}] = 1$$
,

where $\psi(j) = (j \log \log j)^{\frac{1}{2}}$, and X_j are independent copies of X. Now

$$\begin{split} P[||\sum_{k=1}^{j} \xi_{k} \varphi_{k}|| &> A \psi(j)] \\ &= P[||2 \sum_{k=1}^{j} \xi_{k} \varphi_{k} + \sum_{k=j+1}^{\infty} \xi_{k} \varphi_{k} - \sum_{k=j+1}^{\infty} \xi_{k} \varphi_{k}|| &> 2A \psi(j)] \\ &\leq P[||X|| &> A \psi(j)] + P[||\sum_{k=1}^{j} \xi_{k} \varphi_{k} - \sum_{k=j+1}^{\infty} \xi_{k} \varphi_{k}|| &> A \psi(j)], \end{split}$$

and using the symmetry and independence of the ξ_j 's the last two quantities are equal. Hence

$$(2.12) P[||X|| > A\psi(j)] \ge \frac{1}{2} P[||\sum_{k=1}^{j} \xi_k \varphi_k|| > A\psi(j)].$$

Since the φ_k 's have disjoint supports we have $||\sum_{k=1}^j \xi_k \varphi_k|| = \max_{1 \le k \le j} ||\xi_k \varphi_k||$, hence

$$P[||\sum_{k=1}^{j} \xi_{k} \varphi_{k}|| > A\psi(j)] = P[\max_{1 \le k \le j} ||\xi_{k} \varphi_{k}|| > A\psi(j)]$$

$$= \{1 - \prod_{k=1}^{j} [1 - P(||\xi_{k} \varphi_{k}|| > A\psi(j))]\}$$

$$= \{1 - \prod_{k=1}^{j} [1 - P(|\xi_{1}| > Ak^{\frac{1}{2}}\psi(j))]\}.$$

Now using (2.1) and (2.12), for all j sufficiently large,

$$P[||X|| > A\psi(j)] \ge \frac{1}{2} \left\{ 1 - \prod_{k=1}^{j} \left(1 - \frac{c}{A^2 k \psi(j)^2 (\log j)^2} \right) \right\}$$

$$\ge \frac{1}{2} \{ 1 - \exp[-c \sum_{k=1}^{j} (A^2 k \psi(j)^2 (\log j)^2)^{-1}] \}$$

$$\ge \frac{1}{2} \{ 1 - \exp[-c_4 (A^2 \log j \psi(j)^2)^{-1}] \},$$

for some $c_4 > 0$ and all j sufficiently large. Since the last quantity behaves like $c_5(j \log j \log \log j)^{-1}$, it follows that

(2.15)
$$\sum_{j=1}^{\infty} P[||X_j|| > A\psi(j)] = \infty,$$

and (2.11) follows by the Borel-Cantelli lemma.

REFERENCES

[1] JAIN, NARESH C. (1975). Central limit theorem in a Banach space. *Proc. First International Conference on Probability in Banach Spaces*. Springer-Verlag, New York.

- [2] Jain, Naresh C. and Marcus, M. B. (1975). Integrability of infinite sums of independent vector-valued random variables. *Trans. Amer. Math. Soc.* 212 1-36.
- [3] KUELBS, J. (1976). A counterexample for Banach space valued random variables. Ann. Probability 4 684-689.

SCHOOL OF MATHEMATICS
127 VINCENT HALL
UNIVERSITY OF MINNESOTA
MINNEAPOLIS, MINNESOTA 55455