The Annals of Probability
1976, Vol. 4, No. 4, 690-694

AN EXAMPLE CONCERNING CLT AND LIL
IN BANACH SPACE!

By NaresH C. JAIN
University of Minnesota

Let E be a separable Banach space with norm |[+||. Let {Xy} be a se-
quence of E-valued independent, identically distributed random variables,
and S, = X1 + -+ + Xx. If {n~1S%} converges in the sense of weak con-
vergence of the corresponding measures in E, and E is the real line, then
it is well known that &[X1] =0 and &T||Xi|?] < co; consequently, the
Hartman-Wintner law of the iterated logarithm also holds. We give an
example here, with E = C[0, 1], such that the above convergence does not
imply &7||X1][2] < oo, nor does it imply the law of the iterated logarithm.

1. Introduction. Let E, {X,} and S, be as above. For convenience we will
say that X satisfies the central limit theorem (CLT) if {n~%S,} converges in the
sense of weak convergence of the corresponding measures; the limit measure
must necessarily be Gaussian (possibly degenerate). If the space E satisfies the
property that 3« > 0 such that V x;, x;, -+, x, € E; ¢, ¢, ---, ¢, independent
Rademacher random variables (i.e., ¢; =1 or —1 with probability 1),
Ellerx, + -+ + & X%,0"1 = a 2%, ||x;][% then it is shown in [1] that CLT =
Z[X,] = 0 and &[||X}||*] < oo, where &[X|] is taken in the Bochner sense. It
is also shown in [1] that in general CLT = P[||X,|| > 4] = O(2~%). We give an
example below to show that in general CLT = &7[||X,||*] < oo.

In the real-valued case CLT and the Hartman-Wintner law of the iterated
logarithm (LIL) are equivalent. The following formulation of the LIL in E is
due to Kuelbs [3]. An E-valued random variable X is said to satisfy the LIL
if for X}, X,, - - - independent copies of X we have a limit set K C E such that

(1.1) P{wzlimnd<_&»a(_“’),1<>=o}=1
and '
(1.2) P{w:cq_&»‘f_“’),n;l}):K}:l,

n

where a, = (2nlog log n)t, d(x, A) = inf,., ||x — y||,and C({x,, n = 1}) = set of
strong limit points of the sequence {x,,n = 1} in E. We will show that our
example does not satisfy such a LIL even though it satisfies the CLT. It should
also be remarked that Kuelbs [3] has shown that LIL == CLT.
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2. The example. Let £, &,, - - - be independent, identically distributed, real-
valued, symmetric random variables such that

_c
A(log 2>’
=1, 0<i1g2,

(2.1 P[l&,] > 2] =

so that ¢ = 4(log 2)>. Let &[§,’] = a, which is finite. Let {¢;, j = 1} be a se-
quence of nonnegative functions in C[0, 1] (with the sup norm) such that
o;(1)? = for r¢ (277, 279
=j for t=3.277?, and

linear in between.

Define

(2.2) X(0) = L5 &i950) te[0, 1,
which is well defined since the ¢,’s have disjoint supports. We claim that if
X,, X,, - - - are taken to be independent copies of X, then this sequence con-

stitutes our example. The following lemmas prove this claim.
LEMMA 2.1. The series Y 5., &;¢; converges in norm in C[0, 1] a.s.

Proor. Since the ¢,’s have disjoint supports, it suffices to check that (see
Example 4.3 in [2])

(2-3) 25 PLIE;L > allelI ] < o0, Va>o0.
Since ||o;|| = j~%, by (2.1) we have

4
P[I&;] > allg||™] ~ —v

as j — oo, and the lemma follows.

LemMA 2.2, If X is given by (2.2), then &[||X|]*] = co.
Proor. By Corollary 3.5 [2] it suffices to check that
(2.4) D5 S, &l AP = oo, Va>0,

where A; = [I¢][l,l| > a]. Now
n, 0,2 dP = j {5 &2 dP
= @P[|£,] > aj!] 4 2j7* {54 xP[[§)] > x] dx

by integration by parts. Therefore 3¢, > 0 such that for all j sufficiently large
the jth term in the sum in (2.4) dominates ¢,/j logj. This proves the lemma.

LemMmaA 2.3. X, given by (2.2), satisfies the CLT.
Proor. First observe that the Theorem 4.1 [2] we have

(2.5) LX) < oo, for 0<ex<2.
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We will need this only for e = 1. Let {§,*; k = 1, j = 1} be independent real-
valued random variables each having the same distribution as &;. Define

(2.6) Z, = L5ant D 4 o+ 605
We will show that {Z,} is a tight sequence. For ¢ > 0 and x € C[0, 1], define
2.7) [Ixlls = sUP—yss [x(s) — x(1)] -

Note that ||+||, is @ pseudo-norm on C[O0, 1].
By a lemma of Hoffmann-Jgrgensen (Lemma 3.4, [2]) we have

PlIES + -0 4+ &7 > 2nt]
&9 < P[max,guz, [69] > 03] + 4P[E® + - + &,)] > an3]
< nP[|&)]| > Ant[3] + 4 .81 . a%. 274,

where Chebychev’s inequality is used for the second estimate. Using (2.1), we
see that there exist ¢, > 0 and 2, < oo such that we have

2.9 PIlE.® L ... () ml< S
(2.9) (6% + - + &M > ] = (iog 7)
We will now apply the comparison theorem in [2] (Theorem 5.3 (5.9)). Let n
and 0 be fixed. For the linear space in that theorem we take C[0, 1] with ||.||,
as pseudo-norm (the results in [2] hold for pseudo-norms as well, without any
modification in arguments), and we indicate parenthetically what replaces the
corresponding quantities in our present context, ¢(x)(= x), 7;(=§;),
55 (: (5_7‘(1) + .- + 55(”))’1—%), a (: 2), b(: 1), o (.—_' Cz_l), xo(: 20), llk(z ¢k)
We thus conclude that for n > 1
(2.10) EUZall] = Ghe, + )ZTIIX]] = & 1XL]

say. The important thing is that ¢; does not depend on n or 4. Since |X;||, <
2|1X,||, and a.s. ||Xj||; — O as § — 0, using (2.5) by the dominated convergence
theorem we have &[||X,||,] — 0 as § — 0. Therefore by (2.10) we conclude that
&T[11Z,/|,] = O as & — O uniformly in n. This shows that {Z,} is a tight sequence
since the finite dimensional distributions of {Z,} converge by the finite dimen-
sional CLT. Hence CLT holds for X.

Finally we show that X does not satisfy the LIL. The following two lemmas

suffice for this.

YVnz=1,Viz=2i,.

LEMMA 2.4. Let X be a C[0, 1]-valued random variable with mean 0 and a con-
tinuous covariance (s, t) = Z[X(s)X(t)]. If X satisfies the LIL and K is the set
occurring in (1.1) and (1.2), then x € K = ||x|| < ||Z[X(2)*]}]|.

Proor. By the Hartman-Wintner LIL there exists a set Q, of probability 1
such that

Q=Qn {w: limsupnﬂéﬁ)— = a(t),

lim inf,, Sit o) —a(t), V trational € [O, 1]} ,
a”
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where Q, is the intersection of the two sets in (1.1) and (1.2), a, = (2n log log n)},
a(t) = E[X(1yt, and S, = X, + -+ + X,; X, X,, - - being independent copies
of X. If xeK and we Q,, then 3n’  co such that

Lgﬁi(fi)_——»x as n'—>oo.
al

Therefore V ¢ rational € [0, 1], |x(f)] < a(¢), and the lemma follows.
LEMMA 2.5. X defined by (2.2) does not satisfy the LIL.

Proor. It is clear that X defined by (2.2) is symmetric and has a continuous
covariance. Therefore by Lemma 2.4 it suffices to show that V. 4 > 0

(2.11) PIIX] > 4¢(j) 1o]=1,
where ¢(j) = (jloglog j)t, and X; are independent copies of X. Now

Pl Zi=1&eeull > A9())]
= P[|I2 Zi= §rpe + Diimin Eror — 2iiin Eupull > 249())]
= PlIIXN > Ad(D] + Pl ZEi=1 Eepe — Zimien el > A1

and using the symmetry and independence of the &;’s the last two quantities
are equal. Hence

(2.12) PlIX]| > A¢(N] =z 3Pl Zizr Euull > A())] -
Since the ¢,’s have disjoint supports we have ||3{_; &, 0,/ = max,o.<; ||€, 245
hence
Pl[|Zi- €epull > AP())] = Plmax,geg; [§cpull > Ad(j)]
(2.13) = {1 = i [ = P(I€reill > AS())]}
= {1 = [T [1 — P& > Akt ()]} -

Now using (2.1) and (2.12), for all j sufficiently large,

. 1 ; _ c
PO > 49D 2 5 {1 = Tl (1 = s )|
(2.14) = 31 — exp[—c Nk (4kg(j)(log y) T
= 31 — exp[—e(4* log jg(j)) "]}

for some ¢, > 0 and all j sufficiently large. Since the last quantity behaves like
¢(j log jlog log j)7*, it follows that

(2.15) 25 PIIXG ] > 49())] = oo,
and (2.11) follows by the Borel-Cantelli lemma.
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