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THE STUDENT :-DISTRIBUTION FOR ODD DEGREES OF
FREEDOM IS INFINITELY DIVISIBLE

By EMIL GROSSWALD
Temple University

Let P, be the nth Bessel polynomial. Kelker (1971) showed that the
Student r-distribution of & = 2r + 1 degrees of freedom is infinitely divisi-
ble if and only if @u(x)=Pn-1(x*)/Pu(x?) is completely monotonic. Kelker
and Ismail proved that ¢, is indeed completely monotonic for some small
values of # and conjectured that this is always the case. This conjecture is
proved here by a twofold application of Bernstein’s theorem and the use
of some special properties of the zeros of the Bessel polynomials. The same
conclusion follows for Yi = (yx?)~!, where y#? is a chi-square variable with
k degrees of freedom.

1. Introduction. Let y, be the nth Bessel polynomial (denoted by BP in what
follows) in the normalization of Krall and Frink [9] (see also [5]) and set P,(x) =
x"y,(1/x); this is the normalization adopted by Burchnall and Chaundy [3],
Burchnall [2], Kelker [8] and Ismail and Kelker [7], and it will be used in the
present paper. After P. Lévy [10] and then Gnedenko and Kolmogorov [4] had
obtained necessary and sufficient conditions for the infinite divisibility of distri-
butions, it was shown by Kelker [8] and Ismail and Kelker [7] that, for k =
2n 4 1, both the Student r-distribution of k degrees of freedom and Y, = (x,*)™
(x* = a chi-square variable with k degrees of freedom) are infinitely divisible,
provided that the function

@) Pu(X) = Ppoy(x})/Po(x?)
is completely monotonic on (0, o).

The complete monotonicity of ¢, has been proved for small values of n([6],
[7] and [8]) and has been conjectured to hold for all n (see [6] and [8]). The
main purpose of this paper is to prove this conjecture.

I'am grateful to Professor S. Kotz, who brought this problem to my attention
and with whom I had many stimulating conversations.

2. Notations. The nth BP is denoted by P, and its zeros by ay, a,, - - -, a,.
The Laplace transform is denoted by &7, so that ¢, = Z/(G,,) stands for ¢,(x) =
§o° G,(t)e~* dt and the inverse Laplace transform by &1, so that we write G, =
ZN¢,). The integer n is considered fixed; therefore, to simplify notations,
the dependence on n will generally not be indicated and we shall write simply
¢ and G for ¢, and G, etc.
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Integrals of the form §=,,; u~*e~** du will occur where Re a < 0. The exact
path of integration is not important, but for definiteness we shall consider the
integral taken along a line parallel to the real axis, starting from the point —az#
(recall: Re (—at?) > 0) and going towards the right.

3. Main results. With the above notations the main results of the present
paper can be formulated as follows:

THEOREM 1. For every integer n = 1, the function ¢ defined by (1) is completely
monotonic.

COROLLARY 1. The t-distributions with odd degrees of freedom are infinitely di-
visible; the same holds for Y,, with k odd.

In order to prove Theorem 1 it is sufficient to show that the condition of
Bernstein’s theorem (see [11], pages 160-161) is satisfied, namely that ¢(x) =
Z(G), with G(f) Z 0on 0 < t < oo. Instead of this simple inequality, we shall
prove a stronger statement, namely:

THEOREM 2. For every integer n = 1, the function

2) G(t) = L o)(t) = (at)™t — 2z % 337, e (= e~ du
is positive and completely monotonic. ‘

Formula (2) is essentially known (see [7]) and also follows easily from a slight
generalization of 29.3.37 in [1], by taking into account the known property
Rea; < Oforj=1,2, .-, n(see[12]and [13], or Lemma I in Section 4). One
verifies (see Section 5 for details) on hand of (2) that G(t) = (zt)"* —n 4+ 0(1) > 0
for t — 0*; and that

G(ty = {mt-1.3.5...2n — )11 4 O(4)) > 0 for t— 4 oo

Hence, Theorem 1 follows already from (2) and the simple monotonicity of G(z).

In order to prove the complete monotonicity of G, we invoke once more
Bernstein’s theorem. Let ® = #7~}(G). Then one first obtains, by use of 29.3.4
and 29.3.114 in [1] and of Re «; < 0, that

() AA(rxt)™ + 77t T apxi(x + a)7

= (nt)™F — 2nt 311, e (7, p e du = G(1)
Next, by the uniqueness theorem of Laplace transforms it follows that
4) $(x) = TO(x) = 1+ Do ay(x + a) .

The proof of Theorem 2, hence that of Theorem 1, is now reduced to the proof
of:

THEOREM 3. If a;(j = 1,2, .-, n) are the zeros of the nth BP P,, and ¢ is
defined by (4), then

(5) G(x)=0 on 0<x< oo.
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4. Lemmas. In this section some needed, known results concerning the zeros
of BP’s are quoted for ease of reference.

LeMMA 1 (see [12] and [13]). Rea; < O.

LeMMA 2 (see [S5]). All zeros of P,(x) are complex and occur as complex con-
jugate pairs, except for one single negative zero, in case n is odd.
LeMMA 3 (see [2], [3]; also [7]).
I+ Ziaa™ = Diaa, % =0  for k=12 ,n—1.

LEMMA 4 (see [7]). Y%, a, @+ = (—1)%1.3.5 ... (2n — 1))

5. Some proofs. On account of Bernstein’s theorem, Theorem 1 is an im-
mediate consequence of Theorem 2. In order to prove Theorem 2, we start from
formula (2) (this is known from [7]). Next we verify that

lim,_o+ {G(r) — (x1)74} = =2z~ lim,_o¢ Y}, €%% (=, pe P du=n,

because {* e~ du = r#/2.
To find the asymptotic value of G(t) for t — co, one integrates repeatedly by
parts, obtains for integral k > 1 that

S‘fatge—wdu: e—a?t (1 1 +._.+(_1)k1.3...(2k_1)>

“2att \' 20 (2at)*
1.3...Qk+1) . e*du
+ (_l)k+1 k+1 S""% y2k+2 ?

sets k = n, substitutes the result in (2), estimates the integral (one may use the
indications of Section 2) crudely, and obtains by Lemma 3 and Lemma 4 that
G(t) = (xt.2"-1.3.5... (2n — 1)t"*)=*  O(r=""). It follows that G(r) = 0
for + — 0* and for t — 4 oco. In order to complete the proof of Theorem 2, it
is now sufficient to apply Bernstein’s theorem and show that for 0 < x < oo,
P(x) = £Y(G) = 0.

In Section 3 it was shown that 7xt®(x) = ¢(x) = 1 4+ 3%, a;(x + a;)7, so
that Theorem 2, hence also Theorem 1, will be completely proved, as soon as
we show that

(3) P(x) =0
holds on 0 < x < oo, as asserted by Theorem 3.

6. Proof of Theorem 3. In Section 3 we saw that (4) is an immediate con-
sequence of (3), while (3) is obtained routinely from known results (29.3.4 and
29.3.114 in [1]). It only remains to prove' (5). This is done by the following
steps.

(a) It follows from (4), Lemma 1 and Lemma 2, that ¢(x) = p(x)/¢(x), where

1 By taking k = n + 1, it may be shown that the error term is, in fact, only O(z-»-#%), but this
will not be needed here.
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q(x) = T3 (x + a;%) is a real-valued polynomial of exact degree n, without
positive zeros and with at most one negative zero, and p(x) is also a real-valued
polynomial of exact degree n.

(b) One observes that g(x) > 0 for sufficiently large x; hence, as g(x) = 0 for
x = 0, it follows that g(x) > 0 for 0 < x < co. Also p(x) > 0 for sufficiently
large x, as follows, e.g., from (4), because lim,_,, ¢(x) = 1.

(c) We now prove that p(x) = 0 has a root of order n at x = 0.

(d) Once (c) is proved, it is clear that the polynomial p(x) of degree n cannot
vanish for x = 0, so that in particular, by (b), p(x) > 0 for 0 < x < co. It
now follows from (a), (b) and (d) that ¢(x) = p(x)/q(x) > 0 for 0 < x < oo,
thus proving (5). The proof of (c) will therefore finish the proof of Theorem 3
and with it that of Theorems 2 and 1. '

In order to prove (c), i.e., that p has a zero of order nat x = 0, it is sufficient
to show directly that ¢™(0) = O form = 0, 1, - - -, (n — 1); indeed, ¢(0) is finite,
so that the order of the zero x = 0 is the same for ¢(x) as for p(x). However,
¢0) =1+ 3",a;7' = 0and ¢™(0) = 3 7., a;~®"*" = 0 by Lemma 3, so that
(c) is proved and with this the proofs of all three theorems are complete.

7. Secondary results. The results concern new properties of the BP’s are
easily obtained from some of the preceding considerations, and may be the sub-
ject of a separate publication.
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